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Abstract: This paper presents development of a day ahead load forecasting
(DALF) model for Turkish power system with an artificial neural network (ANN).
Effects of special holidays including national and religious days, and hourly ran-
dom load deviations observed in Turkish power system due to significant arc fur-
nace loads are discussed. Performance of the ANN is investigated in the sense of
both DALF performance — in terms of both daily mean absolute percentage er-
ror (MAPE) and hourly absolute percentage error (APE) — and hourly secondary
reserves required to ensure supply/demand adequacy of the system. The most
sensitive cities to DALF in terms of daily city temperature forecasts are ranked in
order to reduce the input of the developed ANN and thereby to improve execution
of the model. Candidate cities are determined based on both their placement with
respect to climatic zones of the country and their contribution to the system load
during peak hours. The results show that, although a well-trained ANN could pro-
vide very satisfactory daily MAPEs at non-special days, such as ~1%, the hourly
absolute percentage errors (APE) could be significant due to large random load
disturbances, which necessitate special attention during the day ahead allocation
of hourly secondary reserves. By limiting the temperature data set with major
cities, the input of ANN reduces significantly while not disturbing the MAPEs.
Main contributions of the study are; addressing both benefits of the prioritizing
the cities in a power system in the sense of their temperature forecast effects on
the DALF performance and assessing the performance of DALF in the sense of
necessary amount of secondary reserves in power systems which include significant
random load deviations (e.g., large arc furnace loads).
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1. Introduction

Power system planning and operation introduce complex engineering problems
which are dependent to many system and environment variables. The key point is
maintaining supply demand balance in the system at all times. Therefore, demand
information must be forecasted for different time frames to carry out required ac-
tions and planning processes that ensure steady power system balance. Day ahead
load forecasting (DALF'), which cannot be easily formulated due to the high level
of nonlinearity and randomness encapsulated in the load forecasting, is among the
most crucial problem in this area. Therefore, learning by example approaches like
regression, artificial neural network (ANN), have been utilized to obtain solutions
[1, 3,5, 8, 14].

Recently, the highest attention has been given to the ANN in solving DALF
problem due to its function approximation performance and ease of use. There are
several neural network types used in literature like recurrent networks [1, 14], Ko-
honen maps [3, 5] and back propagation networks [7, 8, 10]. Improved version of the
ANN, such as adaptive wavelet neural network (AWNN) has also been developed
and applied in short term load and price forecasting [15]. Moreover, anomalous
loads like holidays and differences in load curves during week will drive researchers
to the integrated complex neural network models [7, 10].

Demand forecast horizon is ranging from one hour to one week to comply with
related accuracy criteria. Weekly forecasts [6, 9] give more flexibility to the opera-
tors in making unit commitment, security analysis, and fuel scheduling. Essentially,
major drawback of the weekly forecast is the degradation in forecast accuracy. The
balance between forecast accuracy and operational assistance capacity leads to 24
hours ahead forecasts commonly in the literature [2, 6, 7, 8, 10, 12].

As given in [11], one hour ahead forecasting approach leads to better accu-
racy in load forecasting due to both accurate temperature information and the
strong correlation between the demand and temperature. Since the power system
of a country is composed of several demand substations that are spread among
the country, temperature forecast for system total demand forecast is challenging
due to the fact that the temperature forecasts of the cities varies among the cities
particularly in geographically large countries, like Turkey. This complicates the
learning by example in the ANN methods. The availability of accurate day ahead
forecast for each substation could be another concern. In this study, this concern is
addressed by prioritizing the cities in the sense of their temperature forecast effects
on the DALF performance. ANN based DALF is performed for the Turkish power
system which has different climatic zones, and therefore temperature diversifica-
tion among the cities is significant. Sensitivity of the DALF performance to the
temperature forecasts of major cities is discussed. This is the first contribution of
the study.

Secondary reserves are allocated in power systems to compensate for both errors
in hourly average demand forecasts and the load deviations (i.e., ramps) that occur
within the hours [4]. Although, the better hourly average demand forecast, the
lesser secondary reserve allocation, random demand variations (e.g., arc furnace
loads) in power systems can significantly affect the amount of secondary reserve
requirements. This is challenging phenomenon in countries which are subjected to
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significant amount of random demand variations, like Turkey. In such countries,
performance of the DALF algorithms can negatively be affected due significant
random demand variations. It is a challenge to decouple the negative effect of such
random load deviations in assessing the performance of the DALF algorithms.
The random load deviations existing in the power system could hinder to give a
decision about whether the DALF algorithm should be improved further or not.
This concern is addressed in this study by assessing the performance of the DALF
algorithm in the sense of necessary amount of secondary reserves which include
significant random load deviations due to arc furnace factories spread in Turkey.
This is the second contribution of the study.

The paper is organized as follows, in Section 2 structure of ANN utilized in this
study is presented and input data selection and processing algorithms are described.
In addition, the effects and the results of special holidays in neural networks are
discussed. In Section 3, the effects of temperature information in neural network
training are assessed and an approach for selecting optimal temperature data set
for enhancing load forecast quality is presented. Finally, conclusion drawn from
the study is given in Section 4.

2. ANN structure and input data process

2.1 ANN structure

There are several types and variations of neural networks in the literature that
have been used for DALF purposes. Feed forward back propagation type is the
most popular and effective one which is commonly preferred [12]. Therefore, a
two layer feed forward back propagation network that is represented in Fig. 1 is
selected in this study to perform DALF simulations with two years of historical
data (between 2009 and 2010) of Turkish power system. Last 100 days of historical
data is separated from training data set to fulfill testing purposes. Total number of
neuron number is optimized considering the total number of inputs and outputs.

In order to evaluate the load forecasting performance of the ANN, four different
performance criteria are utilized:

e MAPE (Mean Absolute Percentage Error),
e Maximum Daily MAPE,
e Maximum Daily APE,

e Maximum Daily Peak Load APE,

where Load Load |
Oadforecast — Oadactual
APE = 100 1
Loadactual %, ( )
1
MAPE = — Y APE, 2
5 X ®

where Ny, is the number of hours forecasted (24 for day ahead forecast).
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Fig. 1 Feed forward ANN structure that utilized in the analysis.

First two performance criteria defined above are utilized for evaluating net-
work’s fitting performance on target data (24 hour day ahead load) while the other
two are utilized for evaluating network’s fitting performance on daily load curves.
The reason behind assessing different performance criterion is to prevent ANN from
over fitting due to concentrating on a single performance criteria.

2.2 Selection of input variables and training process

As given in [2], there are several input parameters that are used in neural networks
to achieve better load forecasting accuracy. However, there is no certain rule defined
in selection and priority of input parameters as these parameters should be country
specific. In order to ensure appropriate ANN architecture, 4 different ANN models
are developed for Turkish power system in terms of total number and type of inputs,
and total number of hidden layers as shown in Tab. I and II.

L: Load; d: Day; h: Hour;

S: Special day (religious and/or national holidays);

T: Temperature of the major city in the sense of demand (i.e., Istanbul).

2.3 Performance of the developed ANN in DALF

The inputs and outputs of the ANN are normalized between [—1, 1] range to im-
prove the performance. The performance analysis of the aforementioned ANN for

446



Tamdir O., Tér O.B.: Accuracy of ANN based day-ahead load forecasting in. ..

ANN model Neuron no Inputs Description

1 Day of week code

Special day code
(S(d-—1)=1,5(d) =2,5(d+1)=3)

3 Hour Code

1 51
4_ 97 Temperature forecast of Istanbul city
B (T'(d,h),h=1,...,24)
Last day’s load
28 =51 (L((d—1),h),h=1,...,24)
1 Day of week code
9 Special day code
(S(d—-1)=1,5d)=2,5(d+1)=3)
3 Hour code
Last day’s temperature of Istanbul city
2 [E A=2T (P d=1),h),h=1,...,24)
98 — 51 Temperature forecast of Istanbul city
- (T'(d,h),h=1,...,24)
59 _ 75 Last day’s load

(L((d—1),h),h =1,...,24)

Tab. I ANN models 1 and 2, d + i corresponds to the day before/after.

Turkish power system is given in Tab. ITI. As seen from the table, the highest per-
formance is observed with the ANN Model 4 in which both realized and forecasted
hourly temperatures of the major city, Istanbul, are included to the training set,
in addition to historical load information. It is evident that the performance of
the ANN model increases as the number of input variety increases preserving re-
liability of the data. The performance analysis given in Tab. III makes clear that
adding last week’s load values and last day’s temperature values lead to better
network performance in the sense of MAPE (see Tab. T and II). Given its highest
performance, the ANN Model 4 is selected for further analysis.

Although the ANN methods give satisfactory results in general, the MAPE
performance significantly reduces particularly during annual national and religious
holidays in the country. The MAPE is observed to be as high as 20% during the
religious holidays in Turkey. As seen from the Fig. 2, which describes daily MAPE
values over the entire 2010, the model cannot generate accurate load forecasts
during special holidays since the occurrence of such days are strictly limited in
the two years historical data. This phenomenon clearly observed on the 100 days
test data. On the other hand, weekend forecasts are acceptable given the two year
training data set already includes sufficient weekend loading data. The MAPE of
the ANN is around 1% during both weekdays and weekends as seen in Tab. II
which shows one-year performance.
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ANN model Neuron no Inputs Description

1 Day of week code

Special day code

2 (Sd-1)=1,5) =2,5(d+1) =3)
3 Hour code
Temperature forecast of Istanbul city
3 £ A=2T p@n),h=1,...24)
Last day’s load
28 =51 (L((d—1),h),h=1,...24)
Last week’s load
2= (L(d=T),h),h=1,...24)
1 Day of week code
9 Special day code
(S(d-—1)=1,5(d) =2,5(d+1)=3)
3 Hour code
4_ 97 Last day’s temperature of Istanbul city
A 99 (T((d—=1),h),h=1,...24)
08 _ 51 Temperature forecast of Istanbul city
B (T(d,h),h=1,...24)
Last day’s load
2= (Ld—1),h),h=1,...24)
76 — 99 Last week’s load

(L(d—T7),h),h=1,...24)

Tab. IT ANN models 3 and 4, d i corresponds to the day before/after.

ANN Model MAPE of the training set
(%]

1.47
1.26
1.32
1.15

W N =

Tab. III Performance comparison of different ANN models.

3. Ranking of major cities in terms of sensitivity
of the system load to city temperature forecasts

According to the results given in the previous section, it is observed that the
temperature information along with the previous load data are the main factors
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Fig. 2 Daily MAPFE values.

that influence the load forecasts. However, utilization of the temperature forecasts
of all cities within the country as an input to the ANN increases dimension of the
ANN significantly, particularly for large countries that have various climatic zones,
like Turkey. (The availability of accurate day ahead forecast for each demand
substation can also be a concern.) This will essentially slow down the execution
of the ANN during daily load forecasting. Therefore, selection of a considerable
size of temperature data set (i.e., temperature set of cities on which system load
is more sensitive), which describes the hourly load forecast of the power system
under investigation is important.

In this section, ranking of the cities in Turkey in terms of the sensitivity of the
total system hourly load to their temperature forecasts is analysed. For this aim,
first, the cities in the country are ranked with respect to their share on the Turkish
annual peak demand. Then, starting from the top of this rank, the cities that are
placed at different climatic zones of the country are picked. Turkey is one of the
countries that has different climatic zones as shown in Fig. 3. The cities which
both contribute to the country annual peak demand most and placed at different
climatic zones are given in the last raw of Tab. IV.

Performance of the ANN is analysed separately for all scenarios shown in
Tab. IV in order to reveal the effect of increasing number of temperature inputs
to the ANN. In order to better observe this, the test data is reduced to 30 days
(unlike the training data set defined in Section 2 in which test data was 100 days).
The reason for this reduction is to separate the negative effects of holidays that
occurred during the last 100 days.

Performance result of each scenario is given in Tab. V (note that the Scenario 1
is the same as ANN Model 4 (see Tab. III) in which only temperature data set of
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Fig. 3 Distribution of mean temperatures in Turkey (2010).

Scenarios Input temperature Share on Turkish peak load
[7%]
1 Istanbul 17.77
2 Istanbul, Izmir 2591
3 Istanbul, Izmir, Ankara 31.05
4 Istanbul, Izmir, Ankara, Bursa 35.37

Tab. IV Temperature data sets utilized in training.

Istanbul city — the largest metropolitan in Turkey — is taken into account). When
the MAPEs of different scenarios are compared, it is observed that the inclusion
of additional city temperature data to the ANN input improves the performance
of the ANN. On the other hand, the improvement is saturated as the number of
metropolitan cities increases further.

The developed ANN is trained continuously with the accumulated data. DALF
results including before and after a special day (19 May 2012; national holiday) are
given in Fig. 4, 5 and 6, along with the actual demands recorded. These figures
verify success of DALF performance of the ANN in both special and non-special
days. It is clear from the figures that the degradation in DALF performance in
the special day recovers significantly in the day after. Performance of the DALF in
special days is expected to be improved as the accumulation of input data in the
future.
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Scenarios MAPE of the training set
(%]

1.15
1.15
1.09
1.06

[N JUIN NI

Tab. V. MAPE comparison of all scenarios (training data).
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Fig. 4 DALF results on 18 May 2012 (day before the special day).
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Fig. 5 DALF results on 19 May 2012 (special day: national holiday).
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Fig. 6 DALF results on 20 May 2012 (day after the special day).
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4. The effects of random load deviations on the
performance of DALF

Indeed, the insufficiency of historical special holiday load data is not the sole rea-
son in getting poor performance values from the ANN. Great amount of random
load deviations presents in Turkish power system due to large arc furnace factories.
These arc furnaces, which consume more than hundreds of MWs during melting
process, are widely distributed in the country and operating randomly. This phe-
nomenon is illustrated in Fig. 7 which shows power steps during switching on and
off of an arc furnace in Turkey. Therefore, it is common to have random sharp load
increment or decrement in the system load.

Arc Furnace Load (MW)

I I I I
0 600 1200 1800 2400 3000 3600
Time (Sec)

Fig. 7 Power steps during switching on and off of an arc furnace (taken from a
factory in Turkey).

Amount of the power that reflected on the interconnection lines essentially
increases if the arc furnaces located at different parts of the country coincide. In
Turkey, total power step amount up to ~900 MW within ~5 minutes is observed
due to arc furnaces as illustrated in Fig. 8 (pink curve). As seen in the figure,
the available secondary reserve (blue curve) drastically reduces to compensate the
ACE which is deviated due to power mismatches on the interconnected lines during
the fast load changes. This curve illustrates the correlation between the required
amount of secondary reserves and random large load changes as well.

This phenomenon disturbs the ANN training process in both working days and
holidays. As shown in Fig. 9, the daily curve of the actual load (given in dashed
line) is much smoother in holidays than that of normal working days as the steel
factories are working less in holidays than working days (see the black rectangle in
Fig. 9).

In conclusion, although during non-special holidays the ANN gives quite sat-
isfactory MAPE values, hourly load forecast errors (APEs) are significant during
some hours due to the random load deviations. An example of this situation is
shown in Tab. VI and Fig. 10.
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Fig. 8 SCADA measurements taken from Turkish grid (the effect of arc furnace
on the ACE).
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Fig. 9 Forecast accuracy degradation in special holidays.

As seen from Tab. VI, although the MAPE for 24 hour load forecast is lower
than 1%, there is an hour (13:00 i.e., 01:00 pm) when the maximum APE is above
4%. At that hour, this significant error in APE would result in utilization of
secondary reserves that is available to compensate the generation/load imbalance
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MAPE of the day Maximum APE along the day
(%] (%]

0.73 4.34

Tab. VI ANN performance indices on January 8, 2010.
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Fig. 10 Hourly forecast error of a day.

in the power system. For a 30000 MW peak load, this corresponds to almost 4%
x 30000 = 1200 MW, which is a significant value.

It should be emphasized that, from the day ahead generation planning point of
view, the hourly load forecast errors may lead significant load generation imbalance
which should be compensated by the available secondary reserve on the power
system. In other words, to be on the safe side, the hourly load forecast errors
of the ANN should be lower than the total secondary reserve available in the
system (ignoring uncertainties in generations). Otherwise, either the insufficient
secondary reserves will be compensated by the neighbour interconnected power
systems, or the frequency deviation of the system will increase during these hours
which may result in load shedding by means of low frequency load shedding relays.
Given the complexity of management, secondary reserves are generally allocated
fixed amounts for several hours rather than hourly allocation [13]. For example,
secondary reserves are allocated twice a day (day and night) in Turkey. On the
other hand, given the fact that the high APE values are connected with the random
loads particularly due to arc furnaces in Turkey, such forecasting errors during
some hours cannot be mitigated by the ANN that is trained under the scope of
minimizing the total MAPE.
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Tab. VII compares different ANN performance criterion. As seen from Tab. VII,
although the MAPE of the training set is around 1% in both Scenario 1 (only
temperature data of Istanbul city is considered in the ANN) and Scenario 4 (tem-
perature data of major cities are considered in the ANN), the maximum APEs
within the day are significantly above the average due to random loading effects of
arc furnaces. On the other hand, the maximum APE values are very close in both
scenarios. That is, although performance of the ANN in Scenario 4 is better than
that of Scenario 1, this does not make sense in terms of the amount of allocated
secondary reserve amount which is fixed for several hours. In other words, the im-
provements in the daily MAPE by including more city temperatures as an input to
the ANN does not make sense from the viewpoint of secondary reserves allocation
which is connected with the maximum APE. In conclusion, given the significant
random load disturbances, considering hourly temperature forecasts of only four
major cities in Turkish power system is sufficient.

Scenario Training set MAPE [%)] Maximum daily test set [%]

MAPE APE
1 1.15 2.44 6.33
4 1.06 2.45 5.99

Tab. VII MAPE comparison of Scenarios 1 and 4 (test and training data).

5. Conclusion

In this study, ANN based DALF for Turkish power system is discussed. The
results show that special holidays (national and religious days) and random load
deviations due to arc furnaces have significant negative effect on the load forecasting
performance of the ANN in the sense of APE performance. Although the ANN’s
performance during non-special days including both weekdays and weekends is
satisfactory from daily MAPE point of view, the hourly APEs along the day could
be significant due to this random load effects.

Although the inclusion of more city temperature data to the ANN input im-
proves the MAPE performance of the ANN, the improvement is saturated as the
number of cities increased. Main advantage of the proposed technique is that fur-
ther increase of ANN input dimension is not necessary to forecast sufficient amount
of secondary reserves in power systems, which include significant random distur-
bance loads, like Turkey. However, as a common problem of ANN techniques,
forecasting the demand at special days still needs improvement.

Future studies may include training the ANN model without special days and
holidays and develop a special model for such days. Clustering the available tem-
perature time series and using the cluster centres as ANN inputs is also a promising
follow up study.
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