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Abstract: A representative dimensionality reduction is an important step in the
analysis of real-world data. Vast amounts of raw data are generated by cyber-
physical and information systems in different domains. They often feature a com-
bination of high dimensionality, large volume, and vague, loosely defined structure.
The main goal of visual data analysis is an intuitive, comprehensible, efficient,
and graphically appealing representation of information and knowledge that can
be found in such collections. In order to achieve an efficient visualisation, raw data
need to be transformed into a refined form suitable for machine and human analysis.
Various methods of dimension reduction and projection to low-dimensional spaces
are used to accomplish this task. Sammon’s projection is a well-known non-linear
projection algorithm valued for its ability to preserve dependencies from an origi-
nal high-dimensional data space in the low-dimensional projection space. Recently,
it has been shown that bio-inspired real-parameter optimization methods can be
used to implement the Sammon’s projection on data from the domain of social
networks. This work investigates the ability of several advanced types of the dif-
ferential evolution algorithm as well as their parallel variants to minimize the error
function of the Sammon’s projection and compares their results and performance
to a traditional heuristic algorithm.
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1. Introduction

The Sammon’s projection is a well-known non-linear projection algorithm interest-
ing for real-world data analysis because of its emphasis on preserving the relative
dependencies of data from the original, high-dimensional data space in the lower-
dimensional projection space [26]. In contrast to widely used force-directed map-
ping methods, the Sammon’s projection relies on the distances between particular
data points (graph vertices) and aims at minimizing the changes that are intro-
duced by the reduction of data dimension. Because of that, the distance measure
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is a key attribute of the algorithm. The choice of an appropriate distance mea-
sure allows interesting modifications of the resulting projection (and eventually
visualization) in order to obtain networks with desired properties.

The quality of the Sammon’s projection of a data set is expressed by a projection
error measure. Traditional error minimization techniques (e.g. steepest descent)
are usually employed to minimize this error and obtain good low-dimensional rep-
resentation of the original data. However, various metaheuristic algorithms have
been recently shown to find good Sammon’s projections as well. We have shown,
that among them, the differential evolution algorithm (DE) has a great poten-
tial for obtaining the Sammon’s projection of data sets from the domain of social
networks and co-authorship [19].

This work extends our previous research on the use of differential evolution for
the Sammon’s projection in three ways. First, it compares a traditional and an
advanced, adaptive, variant of the algorithm to asses the capability of a well-known
self-adaptation scheme to improve results of the mapping. Second, it compares the
quality of projections obtained by both DE variants in a sequential and a parallel
configuration, respectively. Finally, it uses a set of simple, easily comprehensible
graphs to conduct the experiments. That simplifies the clarity and interpretation
of results.

The rest of this article is organized as follows: first, the notion of the Sammon’s
projection is introduced in detail in Section 2. Related work on the algorithms on
Sammon’s projection and its applications is presented in Section 3. The algorithms
of differential evolution, self-adaptive differential evolution, and their parallel vari-
ants are summarized in Section 4. Extensive experiments with different variants of
the investigated algorithms are presented in Section 5 Finally, major conclusions
are drawn in Section 6.

2. Sammon’s projection

The Sammon’s projection [26] is one of several existing methods for projecting
a data set from an original, high-dimensional data space to a space with lower
dimensionality. It aims at preserving the between-point distances from the high-
dimensional data space in the lower-dimensional projection space. This goal is
achieved by minimizing an error criteria that penalizes the changes of distance be-
tween points in the original high-dimensional data space and in the low-dimensional
projection space. For the purpose of visual data analysis, projections into two and
three dimensional spaces (2D and 3D) are of utmost importance.

Suppose that we have a collection X with m data points X = (X1, X2, ..., Xm),
where each data point Xi is an n dimensional vector Xi = {xi1, xi2, ..., xin}. At
the same time we define a collection Y of m data points Y = (Y1, Y2, ..., Ym), where
each data point Yi is a d dimensional vector and d < m. The initial values of the
coordinates in Yi are chosen at random. The distance between vectors Xi and Xj

is denoted d ∗
ij while the distance between corresponding vectors Yi and Yj in the

lower-dimensional space is denoted dij . Here, any distance measure can be used
to evaluate dij . However, the distance measure suggested originally by Sammon is
the traditional Euclidean metric [26]. In that case, d ∗

ij and dij are defined in the
following way:
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d ∗
ij =

√√√√ n∑
k=1

(xik − xjk)2, (1)

dij =

√√√√ d∑
k=1

(yik − yjk)2. (2)

Projection error E (so-called Sammon’s stress) measures how well the current
configuration of m data points in the d-dimensional space matches the m points in
the original m-dimensional space

E =
1

m∑
i<j

[d ∗
ij ]

m∑
i<j

[d ∗
ij − dij ]

2

d ∗
ij

. (3)

In order to minimize the projection error, E, any minimization technique can
be used. Sammon’s original paper from 1969 [26] used widely known methods such
as pseudo-Newton (steepest descent) minimization:

y′ik(t+ 1) = y′ik(t)− α

∂E(t)
∂y′

ik(t)∣∣∣ ∂2E(t)
∂y′

ik(t)
2

∣∣∣ , (4)

where y′ik is the k-th coordinate of the data point’s position y′i in the projected
low-dimensional space. The constant α is usually taken from a range 0.3 – 0.4,
originally proposed by Sammon. However, this range is not optimal for all types
of problems. Equation (4) can cause a problem at the inflection points, where
second derivative is very small. Therefore the gradient descent may be used as an
alternative minimization method.

In this article, Sammon’s projection is performed by the means of the meta-
heuristic algorithms of differential evolution, self-adaptive differential evolution,
and their parallel variants.

3. Related work

Sammon’s projection has been realized by a number of algorithms and extensively
used in many different areas. Often, the particular algorithm used to achieve the
mapping has been developed with respect to the investigated problem. This section
provides a brief overview of some algorithms for and applications of this projection
method.

Almost two decades ago, Mao and Jain [21] studied the basic Sammon’s pro-
jection algorithm and developed SAMANN, a feedforward neural network with
unsupervised back-propagation learning algorithm which performs the same map-
ping as the basic Sammon’s method. This approach addressed one of the weak
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points of the original algorithm, i.e. the inability to process (project) new data
without the need to re-build the mapping as a whole. Similarly to traditional
feedforward neural networks, SAMANN was able to generalize the projection and
process previously unknown data.

Dybowski et al. [9] used Sammon’s projection for visualization of the conver-
gence of genetic algorithms. In this work, binary strings were mapped to target
values with the use of Hamming distance as a distance measure. The mapping
was able to indicate the presence of multiple solutions during the iterative genetic
algorithm process.

Sammon’s projection is in [2] used for an analysis of the relationships between
proteins based on their DNA sequences. The mapping was employed to visually
separate different classes of the protein kinase family.

Pal and Eluri [23] used an improved Sammon’s projection as a part of a structure
preserving dimensionality reduction method. They modified the basic algorithm by
a combination of sub-sampling with the original Sammon’s algorithm and used it
as a neural network-based mapper. The neural network was trained to mimic Sam-
mon’s projection using the backpropagation algorithm. The proposed approach
was shown to work better than the method of Mao and Jain presented in [21] and
be less expensive from the time and space point of view.

Backer et al. [6] evaluated several non-linear dimensionality reduction tech-
niques including the Sammon’s projection for unsupervised feature extractions.
Sammon’s projection performed well on high-dimensional data with limited num-
ber of points, but it failed on low-dimensional data sets with a very large number
of points.

Kovacs and Abonyi [18] and Abonyi and Babuska [1] modified the Sammon’s
projection in order to visualize results of fuzzy clustering. Their modified algorithm,
called FUZSAMM, reduced the computational complexity of distance evaluation
in each iteration from O(N2) to O(N · c), where c is the number of clusters. The
results, obtained with the help of the modified algorithm, identified cluster shapes
more accurately and reliably in a much faster time. Both, Sammon’s projection and
FUZSAMM, outperformed the linear mapping algorithm of principal component
analysis (PCA). The FUZSAMM algorithm was then successfully applied for the
analysis of phase-space trajectories [12].

Kim and Moon [16] applied the Sammon’s projection to the visualization of
the genetic algorithm iterations and individuals. The work first presented the
ability of the mapping to solve graph partitioning problems. Then, it was used
to visualize the fitness landscape (distribution of the local optima according to
the distance between chromosomes) and for a visualization of the genetic search
process. The mapping proved its ability to work well and allowed a straightforward
visual comparison of the results.

Paper [22] presents a modification of the standard Sammon’s projection for
sparse data. The proposed scheme was also able to alleviate the well-known curse
of dimensionality problem. The key concept of the proposed modification lies in
processing a local topology using a newly defined dissimilarity measure.

Some other metaheuristic approaches to Sammon’s projection based on artificial
neural networks were proposed by de Ridder and Duin in [7]. A parallel implemen-
tation of the SAMANN algorithm was introduced by Ivanikovas et al. [15].
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The differential evolution was first used to perform Sammon’s projection by
Kromer, et al. [19]. A simple variant of the DE algorithm, /DE/rand/1, was used
to find 2D projections of a co-authorship network. It was shown that the DE is
able to minimize the error function of this specially-weighted social network more
than the traditional method.

This work further investigates the ability of more advanced methods from the
family of differential evolution to perform Sammon’s projection.

4. Differential evolution

The DE is a versatile and easy to use stochastic evolutionary optimization algo-
rithm [24]. It is a population-based optimizer that evolves a population of real en-
coded vectors representing the solutions to given problem. The DE was introduced
by Storn and Price in 1995 [27,28] and it quickly became a popular alternative to
the more traditional types of evolutionary algorithms. It evolves a population of
candidate solutions by iterative modification of candidate solutions by the applica-
tion of the differential mutation and crossover [24]. In each iteration, so called trial
vectors are created from current population by the differential mutation and fur-
ther modified by various types of crossover operator. At the end, the trial vectors
compete with existing candidate solutions for survival in the population.

4.1 Traditional differential evolution

The DE starts with an initial population of N real-valued vectors. The vectors are
initialized with real values either randomly or so, that they are evenly spread over
the problem space. The latter initialization leads to better results of the optimiza-
tion [24]. During the optimization, the DE generates new vectors that are scaled
perturbations of existing population vectors. The algorithm perturbs selected base
vectors with the scaled difference of two (or more) other population vectors in or-
der to produce the trial vectors. The trial vectors compete with members of the
current population with the same index called the target vectors. If a trial vector
represents a better solution than the corresponding target vector, it takes its place
in the population [24].

The two most significant parameters of the DE are scaling factor and mutation
probability [24]. The scaling factor F ∈ [0,∞] controls the rate at which the
population evolves and the crossover probability C ∈ [0, 1] determines the ratio of
elements that are transferred to the trial vector from its opponent. The size of the
population and the choice of operators are another important parameters of the
optimization process.

The basic operations of the classic DE can be summarized using the following
formulae [24]: the random initialization of the i-th vector with N parameters is
defined by

xi
j = rand(bLj , b

U
j ), j ∈ {1, . . . , N}, (5)

where bLj is the lower bound of j-th parameter, bUj is the upper bound of j-th
parameter, and rand(a, b) is a function generating a random number from the
range [a, b]. A simple form of the standard differential mutation is given by
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vi = vr1 + F (vr2 − vr3), (6)

where F is the scaling factor and vr1, vr2, and vr3 are three random vectors from
the population. The vector vr1 is the base vector, vr2 and vr3 are the difference
vectors, and vi is the trial vector. It is required that i ̸= r1 ̸= r2 ̸= r3.

An alternative differential mutation which favours exploitation over exploration
is defined by

vi = xbest + F (vr1 − vr2) (7)

and combines two randomly chosen difference vectors with the best vector in pop-
ulation, xbest.

The uniform (binomial) crossover that combines the target vector, xi, with the
trial vector, vi, is given by

vij =

{
vij if (rand(0, 1) < C) or j = jrand

xi
j , otherwise

(8)

for each j ∈ {1, . . . , N}. The random index jrand is in the above selected randomly
as jrand = rand(1, N). The uniform crossover replaces the parameters in vi by the
parameters from the target vector xi with probability 1 − C. The outline of the
classic DE according to [11,24] is summarized in Algorithm 1.

Algorithm 1: A summary of classic differential evolution

1 Initialize the population P consisting of M vectors using Equation (5);
2 Evaluate an objective function ranking the vectors in the population;
3 while Termination criteria not satisfied do
4 Let G = number of current generation;
5 for i ∈ {1, . . . ,M} do
6 Differential mutation: Create trial vector vi according to Equation (6);

7 Validate the range of coordinates of vi. Optionally adjust coordinates of vi so,
that it is valid solution to given problem;

8 Perform uniform crossover. Select randomly one parameter jrand in vi and
modify the trial vector using Equation (8);

9 Evaluate the trial vector.;

10 if trial vector vi represent a better solution than target vector xi then
11 add vi to PG+1

12 else
13 add xi to PG+1

14 end

15 end

16 end

The classic DE has shown the ability to solve a wide range of problems. How-
ever, its performance in particular domains strongly relies on the selection of dif-
ferential mutation and crossover operators as well as parameters F and C [25].
A number of self-adaptive DE variants was designed to mitigate this dependence.
Among them, the Self-Adaptive Differential Evolution (SaDE) algorithm has shown
good results for many types of tasks [10,25].
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4.2 Self-Adaptive differential evolution

The SaDE is based on probabilistic selection of trial vector generation strategy
based on historical performance of different strategies, randomization of scaling
factor, F , and adaptation of crossover probability, C.

4.2.1 Selection of trial vector generation strategy

In each generation, G, is for every target vector, xi, selected a trial vector generation
strategy, sk, from a pool of strategies, S = {s1, s2, . . . sK}, with respect to strategy
selection probability pk,G. The strategy selection probability, pk,G, is adapted on
the basis of the number of successes (i.e. number of times a trial vector, vi, is
better solution than target vector, xi) and failures (i.e. number of times vi is
worse solution than xi) of trial vectors generated by sk during a fixed number of
past generations known as learning period, LP . The algorithm stores the successes
and failures of each strategy into success and failure memories (SM and FM),
defined by:

SM =

 ns1,G−LP ns2,G−LP . . . nsK,G−LP

ns1,G−LP+1 ns2,G−LP+1 . . . nsK,G−LP+1

.

.

.
.
.
.

. . .
.
.
.

ns1,G−1 ns2,G−1 . . . nsK,G−1

 , (9)

FM =

 nf1,G−LP nf2,G−LP . . . nfK,G−LP

nf1,G−LP+1 nf2,G−LP+1 . . . nfK,G−LP+1

.

.

.
.
.
.

. . .
.
.
.

nf1,G−1 nf2,G−1 . . . nfK,G−1

 , (10)

where nsk,G−LP and nfk,G−LP stand for the number of successes and failures of
strategy sk, k ∈ {1, 2, . . . ,K} in generation G − LP , respectively. Informally, the
memories represent a floating window of successes and failures of the strategies
during last LP generations.

Strategy selection probabilities are then in each generation, G, G > LP , up-
dated by

pk,G =
Sk,G∑K

k=1 (Sk,G)
, (11)

Sk,G =

∑G−1
g=G−LP (nsk,g)∑G−1

g=G−LP (nsk,g) +
∑G−1

g=G−LP (nfk,g)
+ ϵ, (12)

where ϵ is a small constant (here, ϵ = 0.01) employed to tackle cases with zero suc-
cess rate [25]. Initial strategy selection probabilities are for the first LP generations
set to be equal, i.e. pk,G = 1

K , k ∈ {1, 2, . . . ,K}.
Trial vector generation strategies can include arbitrary combinations of differ-

ential mutation and crossover. The strategies used in this study are summarized
in Fig. 1. The strategies /DE/rand/1/bin and /DE/rand/2/bin have slow conver-
gence but strong exploration capability. /DE/rand-to-best/2/bin has fast conver-
gence, especially for unimodal problems, but tends to get trapped in local optima
and suffers from premature convergence. /DE/current-to-rand/1 is a rotation in-
variant type of DE that has good efficiency for rotated problems [25].
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/DE/rand/1/bin:

vij =

{
vr1j + F (vr2j − vr3j ), if rand(0, 1) < C or j = jrand

xi
j , otherwise

, (13)

/DE/rand-to-best/2/bin:

vij =


xi
j + F (xbest

j − xi
j)+

+ F (vr1j − vr2j ) + F (vr3j − vr4j ), if rand(0, 1) < C or j = jrand

xi
j , otherwise

, (14)

/DE/rand/2/bin:

vti,j =

{
vr1j + F (vr2j − vr3j ) + F (vr4j − vr5j ), if rand(0, 1) < C or j = jrand

xi
j , otherwise

, (15)

/DE/current-to-rand/1:

vi = xi
j + κ(vr2 − xi) + F (vr2 − vr3), (16)

where xbest is the best solution found so far and κ is a random parameter generated
for each trial vector, vi, using κ = rand(0, 1).

Fig. 1 SaDE trial vector generation strategies.

4.2.2 Randomization of scaling factor

The scaling factor, F , is in SaDE selected for each trial vector randomly from a
normal distribution, N , with mean 0.5 and standard deviation 0.3 [25]:

Fi,G = N (0.5, 0.3). (17)

Scaling factors drawn from such distribution fall in 99.7% of cases into the range
[−0.4, 1.4] allowing for both, exploitation (small F ) and exploration (large F ) [25].

4.2.3 Adaptation of crossover probability

The value of crossover probability is an important problem-dependent parameter
that has a major impact on algorithm performance [25]. Crossover probability
is in SaDE for each generation, G, and each trial vector generation strategy, sk,
generated using

Ck,G =

{
N (0.5, 0.1), if G < LP,

N (Cmk,G, 0.1), otherwise,
(18)

where Cmk,G is the mean of the (normal) random distribution of Cs for strategy
sk in generation G, and LP is the learning period. The values of Ck,G are based
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on the Cm memory, CmM, that stores the crossover probabilities that were used
in the past LP generations for creation of successful trail vectors.

CmM =

C1,G−LP C2,G−LP . . . CK,G−LP

C1,G−LP+1 C2,G−LP+1 . . . CK,G−LP+1

.

.

.
.
.
.

. . .
.
.
.

C1,G−1 C2,G−1 . . . CK,G−1

 (19)

During the first LP generations, Cs are only stored into CmM. Only after that,
when the memory is filled by the first LP Cs used by each strategy, it is used to
generate new, strategy specific, values of the C parameter.

The SaDE algorithm [10,25] is summarized in Algorithm 2.

Algorithm 2: A summary of self-adaptive differential evolution

1 Initialize the population P consisting of M vectors using Equation (5);

2 Initialize trial vector strategy selection probabilities pk = 1
K
, k ∈ {1, 2, . . . ,K};

3 Evaluate an objective function ranking the vectors in the population;
4 while Termination criteria not satisfied do
5 Let G = number of current generation;
6 for k ∈ {1, . . . ,K} do
7 nsk,G−LP = nfk,G−LP = 0;
8 end
9 for i ∈ {1, . . . ,M} do

10 Select trial vector generation strategy, sk,G from the pool of strategies S;
11 Set F = N (0.5, 0.3);
12 Generate Ck,G according to eq. (18);

13 Create trial vector vi according to selected strategy sk,G;

14 Validate the range of coordinates of vi. Optionally adjust coordinates of vi so,
that it is a valid solution to given problem;

15 Evaluate the trial vector vi;

16 if trial vector vi represent a better solution than target vector xi then
17 Add vi to PG+1;
18 Increment nsk,G−LP ;
19 Store Ck,G to CmMk;

20 else
21 Add xi to PG+1;
22 Increment nfk,G−LP ;

23 end

24 if G > LP then
25 for k ∈ {1, . . . ,K} do
26 Update pk,G+1 according to Equation (11);
27 Set Cmk,G+1 to median(CmMk);

28 end

29 end

30 end

31 end

4.3 Parallel differential evolution

Traditional evolutionary algorithms develop only a single population of candidate
solutions. The use of multiple sub-populations is a well-known extension of pop-
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ulational metaheuristics that has been shown useful for both serial and parallel
variants of these algorithms [3, 4]. In general, parallel evolutionary metaheuristics
evolve multiple candidate solutions or populations of solutions side by side. There
are three major parallel evolutionary algorithm variants:

• the farming model performs all operations not requiring the population as a
whole in parallel, e.g. individual evaluation, crossover, and mutation. Opera-
tions involving the population as a whole (e.g. parent selection or migration)
are performed by some main process of the algorithm [4]. This strategy, em-
ploying a single population of candidate solutions, is also called panmixia [3],

• the island (migration) model performs parallel evolution of isolated popula-
tions. The populations meet each other at a certain point of time (i.e. gen-
eration) and exchange alleles according to a certain migration strategy [3,4],

• the diffusion (cellular) model considers individual members of the population
and their neighbors. All individuals in the population are active. They
seek partners among their neighbors to form new solutions. The genetic
information then spreads in a diffusion-like manner. An important factor for
the diffusion model is the structure and shape of the neighborhood [3, 4].

The distributed island model is considered one of the best strategies for parallel
multipopulational metaheuristics under which a number of sub-populations evolves
side-by-side independently. The existence of multiple populations introduces next
level of complexity and parallelism into the metaheuristic search and optimization
process. The sub-populations on each island are usually initialized with different
random values and tend to follow different search trajectory and explore different
areas of the fitness landscape [29]. Moreover, the algorithm instances executed on
each island can be differently parametrized in order to exploit a variety of search
strategies at once [4, 29].

Communication strategy and data exchange topology is an important aspect
of distributed multipopulational algorithms [3,13,29]. The topology defines logical
links between the sub-populations [3], i.e the way candidate solutions migrate be-
tween the islands. Common topologies include fully connected and ring topology
(see Fig. 2). Other island model parameters include [3]: migration rate, i.e. the
number of candidate solutions exchanged between islands; migration period (gap),

Fig. 2 Island model of populational metaheuristics with the ring topology [5].
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i.e. the number of generations between migrations; and the migrant selection and
replacement strategy.

The structure of the distributed multipopulational metaheuristic algorithms is
suitable for parallelization on modern multicore and manycore platforms as well as
in the environment of hybrid multi-CPU/GPU high performance computing (HPC)
nodes and clusters of HPC nodes [3]. The structure is highly flexible and can be
mapped to a variety of parallel architectures. Each island can be executed by a
separate CPU thread or hosted on a separate compute node. The evolution of each
island can be further parallelized and each sub-population can be executed using
e.g. the master-slave model or the farming model.

The DE has a number of variants and modifications. They have been devel-
oped and tuned for different application areas. However, no ultimate DE variant,
outperforming all others in all application scenarios, has been found. The situation
has been paraphrased by the “no free lunch“ theorem which states [30] that for any
algorithm, including the DE, any increased performance over one class of problems
is paid for in performance over another class. In another words, any algorithm
performing exceptionally well in one problem (i.e. in one fitness landscape) will
probably perform less well in a different problem characterized by a differently
shaped fitness landscape. This observation encourages experimental evaluation of
different algorithms for various tasks.

5. Experiment

This study investigates the ability of a traditional differential evolution, /DE/rand/1,
self-adaptive differential evolution, and their parallel variants, to perform Sam-
mon’s projection. The evaluation is carried out on a collection of simple data sets
that with a clear structure. This allows to assess the ability of considered algo-
rithms to find a faithful low-dimensional representation of the high-dimensional
data.

5.1 DE for Sammon’s projection

The DE for Sammon’s projection is fairly simple. A projection of n objects to a d-
dimensional space is represented by an n ·d dimensional candidate vector consisting
of the coordinates of the n objects in the lower-dimensional projection space. The
coordinates are randomly initialized and modified by the application of standard
differential mutation and uniform crossover operators, as defined in Section 4.

Four variants of the DE algorithm were considered in this research. Their pa-
rameters are detailed in Tab. I. Fixed parameters were in all cases set on the basis
of extensive initial trials. The parallel variants of the algorithms were setup so that
the total number of candidate vectors in all cases was the same, i.e. the number of
fitness function evaluations within a single generation was for each considered algo-
rithm the same. All investigated DE variants were executed for 5,000 generations,
so that the number of fitness function evaluations was the same as the number of
iterations performed by the heuristic method. All algorithms were used to find
projection of original data sets into two-dimensional space (2D). Because of the
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Algorithm Parameters

heuristic steepest descent algorithm with 500,000 iterations,

DE /DE/rand/1 differential evolution with scaling factor F =
0.1, crossover probability C = 0.5, and population size 100,

SaDE self-adaptive differential evolution with population size 100,

paraDE parallel /DE/rand/1 implementing the island model strat-
egy; 4 islands with population of 25 candidate vectors each,
ring topology, migration rate of 5, and migration gap 10,

paraSaDE parallel SaDE implementing the island model strategy; 4
islands with population of 25 candidate vectors each, ring
topology, migration rate of 5, and migration gap 10.

Tab. I Algorithms and parameters.

stochastic nature of the DE-based methods, all experimental runs were repeated
30 times and presented results are averages over the 30 runs.

5.2 Test data

Several data sets were used in conducted experiments. First five data sets were
randomly generated artificial graphs with selected properties:

Bipartite is a bipartite graph with 5 and 10 nodes in each partition. Each node
in a partition has a connection (edge, arc) to all nodes in the other group.
The graph is symmetric.

Circle is a circular graph with 20 nodes. Each node has a connection to its closest
left and right neighbor.

Complete is a complete graph with ten nodes.

Petersen is the well known Petersen graph - a pentagram in a pentagon. It was
constructed in 1898 by Julius Petersen as the smallest bridgeless cubic graph
with no three-edge-coloring [14]. The test graph contains ten nodes and 15
edges.

Tree is a tree graph with height 3 and four child nodes connected to each parent
node. In total, it contains 21 nodes and 20 edges.

The other three data sets are well-known small social networks. All of them were
downloaded from the UC Irvine (UCI) Networks Data repository [8].

Dolphins is an undirected social network of frequent associations between 62 dol-
phins in a community living in Doubtful Sound, New Zealand [20].
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Karate is a social network of friendships among 34 members of a karate club at a
US university in the 1970 [31].

Les Miserables is a co-appearance network describing the interactions between
characters in the novel Les Miserables by Victor Hugo. In this graph, the
nodes represent characters, and the edges connect any pair of characters that
appear in the same chapter of the book. The weights of the edges correspond
to the number of such co-appearances [17].

For Sammon’s projection, each graph is represented by a distance matrix. In the
presented experiments, a standard graph distance, based on the sum of weights of
arcs of the shortest path connecting every two vertices, is used. Because all test
graphs are strongly connected, all distances are defined.

All these graphs have no direct spatial representation, just the topological con-
nections between nodes. Therefore, their visualisations is a projection into defined
dimension. In all cases, the distance between nodes is taken as a distance mea-
sure. We do not need any further processing of these distances such as inversion
or normalization.

Visualization of these graphs using the standard heuristic method for Sammon’s
projection is depicted in Fig. 3.

5.3 Results and discussion

The results of conducted experiments are summarized in Tab. II and Tab. III,
respectively. Tab. II shows the error of the best projection found by each algorithm
and Tab. III shows the error of the average projection found during 30 runs of the
metaheuristic algorithms. In each table, the best results (i.e. projection with lowest
error) are typed in bold. Tab. II clearly demonstrates that the DE has found the
best solution for 3 graphs, the SaDE for 6 graphs, and the paraSaDE for 7 out of 8
test graphs. Interestingly, the parallel version of the traditional DE, paraDE, was
less successful than pure DE with a single population. The best projections, found
by the metaheuristic algorithms, had for all graphs lower error than the ones found
by the heuristic algorithm.

heuristic Sequential version Parallel version
graph method DE SaDE paraDE paraSaDE

bipartite 0.1738470 0.1630710 0.1630710 0.1631370 0.1630710
circle 0.0195238 0.0170726 0.0170573 0.0183828 0.0170573
complete 0.1098950 0.1098800 0.1098800 0.1098990 0.1098800
dolphins 0.0478276 0.0627928 0.0437652 0.1513750 0.0437968
karate 0.0553847 0.0563546 0.0542477 0.0697328 0.0542097
lesmis 0.0773000 0.1034190 0.0730517 0.5128820 0.0722459
petersen 0.1191370 0.1135110 0.1135110 0.1135710 0.1135110
tree 0.0649591 0.0621328 0.0621303 0.0627946 0.0621303

Tab. II Sammon’s stress of the best projections found by each algorithm.
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E = 0.173847

(a) Bipartite.

E = 0.0195238

(b) Circle.

E = 0.109895

(c) Complete.

E = 0.0478276

(d) Dolphins.

E = 0.0553847

(e) Karate.

E = 0.0773

(f) Lesmis (Les Miserables).

E = 0.119137

(g) Petersen.

E = 0.0649591

(h) Tree.

Fig. 3 Sammon’s projection of test graphs in 2D projection space obtained by the
heuristic method.

Tab. III summarizes for each graph the average error of projections found by
each algorithm in 30 experimental runs. The parallel version of the SaDE algo-
rithm, paraSaDE, comes clearly best also in this statistics. Average projections
found by the paraSaDE algorithm featured the lowest error for 5 out of 8 test
graphs. In the case of two graphs (complete, karate), none of the investigated
metaheuristic methods has found projections with average error lower than the
error of the projections found by the heuristic method. It can be also seen that the
average error of projections found by SaDE and paraDE were in some cases signif-
icantly worse (i.e. larger) than those found by SaDE, paraDE, and the heuristic
method. Together with the results shown in Tab. II, it suggests that paraSaDE is
the best of investigated algorithms. In the best case, it outperforms the heuristic
method and is equal or better than other investigated DE-based algorithms (with
a single exception for the graph dolphins).

In the average case, paraSaDE was able to find a better projection than the
heuristic method for 6 out of 8 graphs. However, it should be noted that for one
graph (petersen), the traditional DE has found a better projection than paraSaDE.
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heuristic Sequential version Parallel version
graph method DE SaDE paraDE paraSaDE

bipartite 0.1738470 0.1630950 0.833844 0.2557920 0.1630890
circle 0.0195238 0.0271613 0.193350 0.0614484 0.0170573
complete 0.1098950 0.1099760 0.179209 0.1410750 0.1101930
dolphins 0.0478276 0.2886970 3.209840 1.0919900 0.0469729
karate 0.0553847 0.0862950 6.373620 1.4604100 0.0566264
lesmis 0.0773000 0.6068490 6.276180 2.5381100 0.0758365
petersen 0.1191370 0.1148880 1.092510 0.1229040 0.1158580
tree 0.0649591 0.0638157 1.059430 0.2364170 0.0621303

Tab. III Sammon’s stress of average projections found by each algorithm.

E = 0.163071

(a) Bipartite.

E = 0.0170573

(b) Circle.

E = 0.10988

(c) Complete.

E = 0.0437968

(d) Dolphins.

E = 0.0542097

(e) Karate.

E = 0.0722459

(f) Lesmis (Les Miserables).

E = 0.113511

(g) Petersen.

E = 0.0621303

(h) Tree.

Fig. 4 Sammon’s projection of test graphs in 2D projection space obtained by SaDE.

Both mentioned algorithms have for the graph petersen found on average a better
projection than that generated by the heuristic method.

Visual illustrations of the projections obtained by the most successful algorithm,
SaDE, are shown in Fig. 4. The visualization clearly demonstrates that the char-
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acteristic properties of the original data, e.g. the regular structure of the complete
and bipartite data sets, were preserved also in the projection space. The visual-
ization of the bipartite graph also shows how the minimization of the Sammon’s
stress causes that the points from the original partitions are grouped together and
the graph is symmetric. The change in the layout of the petersen graph is only
subtle (we note that the projection error considers only relative distances between
the points, not their absolute position).

6. Conclusions

This article investigated the ability of four variants of a well-known metaheuristic
real-parameter optimization method, the differential evolution, to perform Sam-
mon’s projection of data. This non-linear projection method is an important tool
for efficient analysis of real-world data and graphs. Due to its ability to pre-
serve data dependencies and generally properties of the data from the original
high-dimensional space, it is a suitable method for processing of data with high
dimensionality and large volume. The low-dimensional projections, retaining the
important topological properties of the original data, can be further investigated
by the means of traditional analytical, machine learning, and pattern recognition
methods that are often not feasible for application in the original high-dimensional
spaces.

Sammon’s projection is realized by a minimization of an error (penalty) func-
tion. In this work, a set of bio-inspired metaheuristic methods from the wide family
of differential evolution was used to minimize this function. In particular, tradi-
tional, self-adaptive, and parallel (multipopulational) DEs were implemented and
evaluated. The algorithms were compared to each other and also to a well-known
heuristic method for Sammon’s projection based on the steepest descent principle.
A thorough empirical evaluation on a series of simple but clearly structured data
sets has shown that a parallel, self-adaptive, DE can deliver the best projections
in terms of the projection error, E, for most investigated data sets.

This a promising result, especially with regard to the constantly increasing
availability and affordability of parallel multicore and distributed platforms, float-
ing point accelerators, libraries, and development tools. It suggests, that parallel
computing can be used not only to speed-up execution and/or increase the di-
mensionality of processed data, but also to find qualitatively better Sammon’s
projections of existing data sets with lower values of the error function.
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E. Cantú-Paz, J.A. Foster, K. Deb, L.D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer,
R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A.

385



Neural Network World 4/15, 369–386

Potter, A.C. Schultz, K.A. Dowsland, N. Jonoska, J. Miller, eds. Genetic and Evo-
lutionary Computation (GECCO 2003), Chicago, IL. Lecture Notes in Computer Science
(series title). Berlin, Heidelberg: Springer, 2003, 2723, pp. 1136–1147, doi:
10.1007/3-540-45105-6 122.

[17] KNUTH D.E. The Stanford GraphBase: A Platform for Combinatorial Computing. Read-
ing, MA: Addison-Wesley, 1993.
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