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1. Introduction

Rainfall-runoff (R-R) model is a dynamic mathematical model that transforms
rainfall to the flow at the catchment outlet. The main purpose of the model is
to describe rainfall-runoff relations of a catchment area. Common outputs of the
model are surface runoff hydrographs, which depict relations between discharge Q
and time t. In many countries, R-R models are usually used for predicting surface
runoff within river catchments. One of their inputs is an information about weather
conditions in the near future. These data are provided by numerical weather fore-
cast models, such as ALADIN (Aire Limite, Adaptation Dynamique, Development
International) [5]. However, weather forecast models are affected by errors that
can severely affect precision of the modelling results and the magnitude of the er-
ror depends on a lot of factors such as wind, topography, temperature or humidity.
One of the most sensitive components of the R-R models is the forecast rainfall
intensity. As the rainfall intensity is a key element of rainfall-runoff modelling, we
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have to take uncertainties of the rainfall forecast model into account. Historical
comparison (observed state against forecast) and assessment of rainfall intensity
is one of the main goals of this article. We focused on developing a method that
could provide additional information about rainfall intensity uncertainty to the R-R
models and how to enhance the results of these models based on this information.

Such enhancement is very important for decision support in disaster manage-
ment as it provides probabilistic view on possible scenarios that can happen in the
near future. If the rainfall forecast model underestimates the precipitation rate,
then the rainfall-runoff results will be very optimistic and the disaster management
system will not alert the authorities about the upcoming flood until it is too late.
As we are also developing a flood prediction system called Floreon+ [11, 20] for lo-
cal and regional authorities in the Moravian-Silesian region of the Czech Republic,
the results will be used in the flood warning process. Such deployment demands
high precision and detailed information, but also high availability and fast response
mainly during emergency situations when the flooding is imminent or ongoing.

Overview of similar articles and studies related to the R-R uncertainty modelling
is located in Section 2. Following sections 3 and 4 provide brief introduction to the
R-R process and describe possible sources of uncertainty in its modelling methods.
These sections also describe the Math1D model, our in-house R-R model used for
experiments in this article. Sections 5 and 6 are focused on statistical analysis
of the precipitation forecast errors. Application of the Monte Carlo method for
modelling the forecast error is proposed in Section 7. Section 8 describes parallel
implementation of the proposed modelling method. Results of the experiments and
demonstration of the proposed modelling method are located in Section 9. The last
Section 10 concludes this article and discusses presented results and future research.

2. Related work

Precision of the precipitation forecast generated by a more general ECMWF model
was analysed by Kobold and Sušelj [8]. Precision of the forecast for selected catch-
ments during major precipitation events occurring in Northern Slovenia was anal-
ysed using the forecast as input for the R-R model. This article describes errors
in precipitation forecasts as a major source of possible uncertainty and shows that
the ECMWF model tends to underestimate the real situation by 60% in average.

Analysis of possible uncertainties in the output of regional climate models
(RCM) was performed by Holtanova et al. [6]. The analysis showed that the largest
source of uncertainty in RCM is the driving global climate model and that perfor-
mance of the models differs through different seasons.

Crhová et al. [4] provided another study focused on the performance of the
ALADIN model in the Czech Republic. Study compares the ALADIN model with
thirteen other RCMs. Results of this analysis point out that ALADIN performs
best in the terms of the monthly precipitation forecast totals for Czech Republic.
ALADIN however tends to overestimate precipitation totals according to the study.
This contradicts our results presented later in Section 5, which showed that the
model tends to slightly underestimate the precipitation totals. This could be a
result of a comparably smaller but more recent data set used in our analysis, which

268



Golasowski M., et al.: Uncertainty Modelling in Rainfall-Runoff Simulations

is focused only on a small region of the Czech Republic, while the other study [4]
used historical data between years 1961–1990 for a much larger area.

2.1 Rainfall-runoff uncertainty estimation methods

Montanari [13] recognizes four types of uncertainty modelling methods. The first
type estimates uncertainty by utilizing approximate analytical methods. How-
ever those methods can be difficult to implement in practice due to the fact that
statistical properties of the models and of the system itself tend to be hard to
determine [14, 18].

Another type of methods focuses on the statistical analysis of errors computed
by comparing simulation results with observed data. Precision of this approach
could be affected by precision of the observed data themselves or by possible un-
reliable behaviour on scenarios that were not present in the initial data set. The
second cause is crucial for simulation result reliability of short-term predictions in
disaster management [14].

The third type of methods uses random sampling of the input space to determine
statistics of the model output. If statistical properties of the input space are known,
then a random sets of the input parameters can be generated and used as input
for simulations. Outputs of these uncertainty simulations can then in turn be used
for further analysis.

This article focuses on utilization of this type of methods while maintaining
time-efficiency for their application in disaster management environment by using
tools and methods available in high performance computing (HPC).

The last type of methods involves random set theory or fuzzy set theory and
tries to see the R-R modelling problem as a possibilistic rather than probabilistic
one [13].

2.2 Methods based on the analysis of model inputs

One of the widely used methods for analysing model inputs is the Generalized
Likelihood Uncertainty Estimation (GLUE) method proposed by Beven and Binley
in 1992 [12].

This method compares performance of different models and different sets of
its parameters by comparing their individual results against observed data. Com-
parison of simulated hydrographs is done using common likelihood measures such
as the Nash-Sutcliffe coefficient [15]. Measure is determined for each time-step
value and then normalized to have the cumulative sum of 1.0. Using cumulative
probabilities as weights, the cumulative distribution function can be constructed
and confidence intervals can be easily derived. This method provides tools for
comparing different modelling solutions and their parameters between each other
[12]. A different method is the Bayesian Forecasting System (BFS) which was ap-
plied by Krzysztofowicz on flood forecasting systems in 1999 [10]. This approach
recognizes two sources of uncertainty. The first source is the hydrological uncer-
tainty, which accounts for parameter lumping, model structure, data errors and
other related sources. The second source is the precipitation uncertainty, that is
defined by precipitation forecast errors. These sources are then combined together
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by the integrator processor which integrates both sources in real-time and produces
probability distribution of predicted R-R model outputs.

Our proposed method models the input forecast data by non-parametric meth-
ods using kernel density estimation. This approach is useful because no prior
knowledge about the forecast error probability distribution is needed and only gen-
eral assumptions about its properties have to made. However, a time-expensive
generation of input data sets and model execution can be seen as a trade-off, as
the resulting confidence intervals are obtained via Monte Carlo simulation with a
considerable amount of iterations. Parallel implementation of this method is de-
scribed later in Section 8 as a possible solution for speeding up the process and
maintaining fast response times of these simulations.

3. Rainfall-runoff process and its simulation

In this section, we introduce some important terms used when discussing the
rainfall-runoff process. An accurate estimate of runoff from rainfall is one of the
most important parts of the flood prediction process. Runoff is usually defined
as water that flows over the soil surface toward the catchment outlet rather than
infiltrating into the soil [1, 19]. Runoff is divided into three components:

• baseflow – runoff from the ground water,

• interflow – water that runs below the soil surface but does not reach the level
of the ground water,

• overland flow – water flows across the soil surface.

The whole rainfall-runoff process is affected by many factors, e.g. basin prop-
erties such as basin size, basin shape, stream meanders, slope, roughness or soil
properties including soil texture and composition. For all parts of the rainfall-
runoff process, different modelling methods are usually used. These methods and
their parameters are able to describe elements of the process with varying levels of
precision.

The purpose of R-R models is to describe the rainfall-runoff process of the
given catchment. The model inputs usually consist of physical parameters (e.g. to-
pography, loss coefficients) and weather conditions (e.g. rainfall intensity) of the
examined area. Standard outputs of the model are surface runoff hydrographs that
are available for every computational unit (sub-basin in the case of semi-distributed
models). In general, we can divide R-R models into three main groups:

• Lumped models describe the catchment as a single value with a single rainfall
input.

• Semi–distributed models are based on a geomorphological approach. These
models are focused on efficient description of the drainage system. The main
computational units are sub-basins.
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• Distributed models divide the whole catchment into fine-grained cells (mostly
regular raster cells) and each cell has its own parameters and inputs. The
computation is then performed for each cell and also depends on the neigh-
bours of the processed cell.

Additional categories of models are described in [2, 19].
TheMath1D model is our experimental in-house semi-distributed rainfall-runoff

model that will be used for validating the proposed method. It uses the SCS-CN

method [1] for transforming rainfall to runoff with its two main parameters – ini-

tial abstraction Ia that defines the amount of water in the soil at the start of the
simulation, and curve number CN approximated from the hydrological soil group,
land use and hydrological conditions of the modelled catchments. The contribution
from river segments to a sub-basin outlet is computed using the kinematic wave
approximation parametrized by the Manning’s roughness coefficient N , which ap-
proximates physical properties of the river channel [19].

4. Sources of uncertainty

Depending on whether the model is used for prediction or plain simulation, different
types of uncertainty can be involved. As stated by Montanari in [13], uncertainty
of rainfall-runoff models is a very broad term and there are various types of uncer-
tainty that have to be addressed separately. It could be a result of inaccuracy of
the input data or inaccuracy of the parameters or a design flaw in the model itself.

Possible design flaws of the model itself originate from the approximation of real
world processes. Such approximations are often results of a trade-off between the
required level of accuracy and the amount of resources and time needed for effective
execution of the given modelling method. Aside from the uncertainty produced by
methods and parameters of the model, the input data can also bring inaccuracy to
the results. The observed and forecast precipitation rates along with other weather
conditions (e.g. air temperature, wind speed) are used as input data to the model.
In this article, we only analysed precipitation data as the most important input to
the model. We used observed rainfall as a reference for the analysis of the forecast
model error.

5. Statistical evaluation of the ALADIN model

ALADIN is a numerical model used for short term forecasting of climate situation
over Europe. It is developed by French consortium ALADIN in cooperation with
local meteorological institutions. Its modification for the Czech Republic is devel-
oped in cooperation with the Czech Hydrometeorological Institute (CHMI). The
model is typically used for short term forecast with good results typically within
72-hours period [5].

Its short-term precipitation forecasts are used in the Floreon+ system as an
input to the rainfall-runoff models. The focus of this evaluation is to determine
statistical characteristics of possible deviations between the forecast and observed
precipitation rates.
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Analysis was performed on a database of historical observed and forecast pre-
cipitations stretching over a 5 year period covering years 2007–2012. The data
were predicted and measured at 36 meteorological gauges located on catchments of
the four main rivers located in the Moravian-Silesian region of the Czech Republic.
Observed data were provided by the Czech Odra catchment management office in
the form of hourly precipitation rates. Forecast data were provided by CHMI in
sets generated every 6 hours, where each set contained precipitation forecast for the
next 48-hour period. We performed the statistical analysis using the R statistical
software [16]. Values of the forecast error Sdelta were defined by

Sdelta = So − Sf (1)

as a difference between the observed precipitation rates So and forecast precipita-
tion rates Sf for each hour and each available meteorological gauge.

5.1 Results of the evaluation

Values of selected data set characteristics are presented in Tab. I. Positive median
of the data set shows that the data contained more positive errors than negative
ones, which points to a possible underestimation of the forecasts (this can also
be seen on the scatter plot in Fig. 1). Large standard deviation, which is three
times larger than the average, points to a visible occurrence of positive outliers in
the data set. Minimal value of the error (−9.1mm/h) occurred when the model
predicted 9.1mm/h of rainfall but no real precipitations were observed. On the
other hand, the highest error (38.2mm/h) occurred when no rainfall was predicted
but a heavy rain was observed. High skewness and especially very high kurtosis
can be seen on the histogram in Fig. 2 and shows that errors of the forecast cannot
be possibly described by a Gaussian distribution. This is the reason why robust
statistical methods are often used for the analysis.

Characteristics Value

Data set size 70804
Average (mm/h) 0.5
Lower quartile (mm/h) −0.1
Median (mm/h) 0.1
Upper quartile (mm/h) 0.6
Minimum (mm/h) −9.2
Maximum (mm/h) 38.2
Skewness 6.2
Kurtosis 71.3
Std. deviation (mm/h) 1.6

Tab. I Data set characteristics of the forecast error.
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Fig. 1 Forecast error by observed precipitation rate.

5.2 Median confidence interval

One of such robust methods of statistical inference is the construction of median
confidence interval of the data set [17]. Using this method, assumptions can be
made about statistical properties of all forecast errors generated by the numerical
model. The 95% median confidence interval MCI is determined by its lower and
upper bounds, which are estimated by the following formula [17]:

MCI =
[

x0.5 − 1.57
(x̂0.75 − x̂0.25)√

n
, x0.5 + 1.57

(x̂0.75 − x̂0.25)√
n

]

, (2)

where x̂0.25, x̂0.5, x̂0.75 are respective p-quantiles and n is size of the input data set.
When we substitute the respective p-quantiles with values from Tab. I to For-

mula (2), we can estimate the bounds of the interval for the used data set as

MCI =
[

0.1− 1.57
(0.6− (−0.1))

√
70804

, 0.1 + 1.57
(0.6− (−0.1))

√
70804

]

(3)

After solving the equation with substituted values, the final value is

MCI =
[

0.095, 0.104
]

(4)

This means that the model generates precise forecasts with a small underesti-
mation of the real precipitation rates and with a very small variance of the error
median.

273



Neural Network World 3/15, 267–286

Fig. 2 Forecast error histogram.

5.3 Analysis of variance

As the forecast error could depend on a station (meteorological gauge) for which
the prediction was generated or on a time offset of the forecast (i.e. difference be-
tween time for which the prediction was made and a time when the prediction was
generated), we performed the analysis of variance of the forecast error. Both of
these dependencies are undesirable as existence of both of them can lead to incon-
sistent forecasts and further difficulties in the uncertainty modelling process. The
dependencies divide the data set into two dependency groups whose members will
be subject to the variance analysis. The first group consists of 36 stations for which
the forecast is computed. The second group consist of 8 individual time intervals
(each 6 hours up to 48 hours in the future) in which the forecast is computed.As
the data does not come from the Gaussian distribution, standard ANOVA methods
cannot be used. We have therefore used a non-parametric Kruskal-Wallis test [3].
We were testing a null hypothesis assuming that no significant variation of the error
median exists between at least three members of the tested dependency group.

Extreme values that are present in the examined data sample can have a sig-
nificant influence on the results of performed statistical tests. As can be seen on
the histogram in Fig. 2, most of the values are evenly distributed around the av-
erage forecast error (0.5mm/h) where a lower quartile of the sample corresponds
to value −0.1mm/h and an upper quartile to value 0.6mm/h. However, extreme
values that can be seen on the scatter plot in Fig. 1 are randomly distributed
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Intensity categories mm/h

Very light 0 – 0.1
Light 0.1 – 3

Moderate 3 – 8
Heavy 8 – 40
Violent > 40

Tab. II Precipitation intensity intervals as used by CHMI [21].

over a range which is several times larger than the interquartile range (the interval
bounded by lower and upper quartile) of the sample. To lower the possible effects
of the extremes on the test, we have executed these tests on a randomly selected
sets of n = 40 observations obtained for each of the examined groups.

The tests proved that statistically significant variance of the forecast error does
not exist between members of both aforementioned dependency groups, therefore
there is no significant dependency of the error on either of the mentioned criteria. In
case of the station dependency, null hypothesis was not rejected based on p-value =
0.560. The precipitation forecast error does not significantly vary between observed
stations. In case of the time offset dependency, null hypothesis was not rejected
based on p-value = 0.465. The forecast error does not significantly vary between
the tested time offsets of the forecast.

5.4 Precipitation intensity intervals

According to the scatter plot in Fig. 1, the forecast error depends on the observed
precipitation intensity. To account for this dependency, the range of the precipi-
tation intensities in the data set was divided into several intervals. Determining
proper size and number of the intervals is a subject of further statistical analysis,
but for the experiments in this article, we used general categorization developed
by the Czech Hydrometeorological Institute [21]. Individual categories of precip-
itation intensity are summarized in Tab. II. We have divided the data set into
five intervals according to the categorization, but two of these intervals were not
included to the analysis. The first category was omitted because it describes very
small rainfall intensities that are hard to observe correctly due to the inherent
error of the meteorological gauges. This would lead to imprecise analysis of the
forecast error. The last category was omitted as well because the data set did not
contain any values for this category. Histograms of data divided into the intervals
are presented in Fig. 3.

6. Modelling of the precipitation forecast error

Sampling of the model input space cannot be done without certain knowledge
of its statistical properties. In this case it is the probability distribution of the
precipitation forecast error that can be sampled to create time series of the input
precipitation data for each time step and each station. Sets of such generated time
series can then be used as an input to the Monte Carlo algorithm.
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Fig. 3 Forecast error histogram grouped by limits.

6.1 Non-parametric methods for probability density

estimation

A non-parametric approach for estimating the probability density function of the
data set is useful when the probability distribution of examined data does not cor-
respond to any known distribution. The distribution of the data can be estimated
empirically without restrictions coming from the shape and properties of known
probability distributions (such as Gaussian N (µ, σ2)) [22].

Constructing a histogram from the data set is a common way of estimating
a shape of the probability distribution. Individual values from the data set are
divided into bins of given width. Width of each bin corresponds to an interval
of values within the data set. Height of a particular bin is relative to size of the
data set and depends on the number of values that belong to the associated inter-
val. This method is used to obtain a crude visual representation of the probability
distribution. An example of a histogram is presented in Fig. 2. One of the dis-
advantages of the histogram is its finite granularity, which depends on the size of
the data set and on the range of the values. The smaller the bin width is, the
less values can be associated with a given bin. Therefore, some bins can be empty
and discontinuity is introduced to the histogram. Estimation of probability density
f̂(x) in a given point using histogram is mathematically expressed as
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f̂(x) =
np

h · n
(5)

where np is the number of values in one bin, h is the width of the bin and n is the
size of the data set.

6.2 Kernel density estimation

Another non-parametric method is the kernel density estimation [22]. Estimated
probability density functions of the precipitation forecast error for each of the
intensity intervals are shown in Fig. 4. Probability density f̂(x) in a given point is
determined using the kernel density estimation as

f̂(x) =
1

n

n
∑

i=1

w(x − xi, h), (6)

where w is the weighting function, h is the width of the smoothing window (band-
width) and n is the size of the data set.

A weighting function (kernel) is placed over each value of the data set and the
estimated probability density in a given point is then equal to a sum of each of the
overlapping kernels. The kernel itself determines shape of the estimated probability
density and could be represented by basically any function satisfying properties
of a probability density function [22]. The bandwidth parameter h determines
the amount of smoothing applied to the estimated curve. Too large values of
the h parameter can result in over-smoothed estimates that do not reflect small
variations in the real probability density function. On the other hand, small values
of the bandwidth parameter can result in inaccurate density estimation affected by
unnecessary noise and variations [22].

7. Uncertainty modelling using the Monte Carlo

method

The Monte Carlo method is a well-known member of a group of algorithms focused
on stochastic modelling [9]. We use this method for modelling of probabilistic
properties of the R-R model input space. Output of the method is then used for
constructing the confidence intervals (CI) in which the outputs of the model can
occur.

The Monte Carlo approach is quite useful in this case since the input space of the
R-R model is multi-dimensional. Each uncertain parameter (e.g. initial abstraction
mentioned in Section 3) has its own probability distribution and adds another
dimension to the sampled input space. These parameters are set for each sub-basin
and channel of the modelled catchment. In the case of our experimental model of
the Ostravice river, the basin is divided into 49 channels and their contributing sub-
basins each with its own parameters. Besides channel and sub-basin parameters,
the input of the model is largely influenced by the forecast precipitations.

As described in Section 3, the precipitation is represented as a time series of
precipitation rates for each meteorological gauge, where each gauge belongs to a
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Fig. 4 Estimated forecast error density for three precipitation intervals.

particular sub-basin. Our approach presented in this article samples the values
for each time step and each gauge independently from the probability distribution
modelled by the kernel density estimation described in Section 6.

7.1 Sampling of the model input space

The sampling algorithm uses sampled curves obtained by the kernel density esti-
mation. Sampled points of the probability density function curves are converted
to the cumulative distributive function curves and stored in a binary tree. This
tree stores the forecast error value in mm/h and its corresponding probability. A
canonical probability p ∈ (0, 1) is generated using a pseudo-random number gener-
ator and two nearest probability points are selected using the binary tree search.
The resulting forecast error is then interpolated from the two coordinates on the
cumulative probability curve represented by the selected probability points and
their respective forecast errors. This interpolated forecast error is then used for
generating precipitation forecasts affected by certain error.

As described at the beginning of this section, the input space of the R-R does
not consist only of the input precipitation but also of a number of other parameters,
some of which will be incorporated in the modelling process due to their possible
uncertainty and large influence on the model output.

In case of the Math1D model we have incorporated uncertainty of the following
parameters – the CN number (SCS-CN method), initial abstraction for the sub-
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basins and the Manning’s roughness coefficient (N) for river channels. Values of
these parameters are usually estimated by an expert or obtained by a calibration
process.

Input space of these parameters in our method can be described by known
probability distributions and their parameters. Experiments with values sampled
from different probability distributions and results obtained by their sampling are
summarized in Section 9.

7.2 Statistical analysis of the results

Rainfall-runoff simulation is performed for each generated set of input parameters
and precipitations and the resulting hydrographs are gathered for quantile selec-
tion. Results of the Monte Carlo simulations form a three-dimensional discrete
function of modelled river discharges. The first dimension specifies a time step,
the second dimension specifies a catchment channel and the third one specifies
individual Monte Carlo iterations.

Several uncertainty hydrographs with different probabilities are created for each
river channel. Single uncertainty hydrograph with specified probability p is formed
by selecting p-percent quantiles from the Monte Carlo results for each time step of
the simulation.

8. Parallelization strategy

Due to a significant computational demand of the proposed method, we have cre-
ated a scalable parallel implementation of the modelling algorithm to ensure that
the results can be provided in a short time frame by running it on a high perfor-
mance computing cluster. This parallel implementation was created using the Mes-
sage Passing Interface (MPI) and the OpenMP standard. The requested number
of Monte Carlo samples is divided into chunks, which are then distributed among
all available MPI processes. The Math1D model itself uses OpenMP threads for
parallelization of convolution in a part used for estimating the base flow.

In the initialization phase of the algorithm, MPI processes are created with the
initial model configuration. One master process generates all parameter sets for
each of the Monte Carlo samples and distributes them in chunks to the respective
slave processes. OpenMP threads are used for generating the value sets for each pa-
rameter. The total number of Monte Carlo samples is divided into chunks and each
thread generates a chunk of the input space samples. When all sets are generated
and distributed, each process performs its own number of Monte Carlo iterations.
After each process finishes processing its own chunk, the resulting hydrographs are
gathered to the master process. The master process then performs the selection of
requested quantiles.

Scalability of this approach is expected to be quite good since the individual
Monte Carlo samples are independent of each other and the biggest part of the
communication between nodes is done in the barrier part, where the results are
gathered to a master process. The biggest portion of the execution time is used for
running R-R simulations while sampling of the input space and quantile selection
takes only a fraction of the whole execution time.
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Fig. 5 Simulation of the precipitation forecast uncertainty using 30000 Monte Carlo

iterations.

9. Experiments

Rainfall-runoff simulations were performed for a catchment area of the Ostravice
river located in the Moravian-Silesian region of the Czech Republic. Simulations
were executed with hourly precipitation data from a selected 7-day time frame. In
the first 5 days, observed data were used only with parameter uncertainty applied.
In the last 2 days, rainfall ALADIN forecast is used and its uncertainty is modelled
by the methods described in previous sections.

The time period of the data is between 12–19 May 2010, during which a major
rainfall event occurred in the modelled catchment and its influence on the water
flow is clearly visible. Different line types in the output hydrographs show quan-
tiles selected from the simulation output. All hydrographs show simulated water
discharge on the catchment outlet located in the city of Ostrava.

9.1 Uncertainty of the ALADIN forecasts

The following simulations were performed using estimated probability distribu-
tion of the precipitation forecast. The boundary between observed precipitations
(5 days) and forecast precipitations (2 days) in output hydrographs is marked by
a black vertical line.

The selected quantiles in the simulation on Fig. 5 tend to have higher values
than the original simulation. This is caused by the underestimation of the forecast
model that was identified in Section 5. Generated samples for the Monte Carlo
simulations followed this identified distribution and provided more precise estima-
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Fig. 6 Simulation of the Manning’s coefficient uncertainty using 30000 Monte

Carlo iterations with uniform distribution, 20% deviation.

tion of the resulting river discharge. This discovery could be also applied directly
to the standard simulations without uncertainties by directly increasing the value
of forecast precipitations by the median of the forecast error.

9.2 Schematization parameters

Next experiment was focused on the simulation of selected model parameters. How-
ever, used probability distributions are based only on expert assumptions and not
on real data. The main purpose of this simulation is to look at possible effects of
predictable changes of the parameter values on the simulation output. Results of
this experiment are shown on Fig. 6–9.

9.3 Scalability of the parallel implementation

Parallel implementation of the simulation method was executed on different number
of nodes with different number of iterations. Duration of individual experiments is
presented in Tab. III. Experiments were executed on the Anselm supercomputer
operated by IT4Innovations [7] consisting of 209 compute nodes, each running
one MPI process with 16 OpenMP threads available. Saturation occurs when the
simulation is executed on approx. 100 nodes at which point the overhead of MPI
processes takes longer than the actual computation of small chunks of Monte Carlo
samples.

Individual runs of the model are independent of each other and most of the MPI
communication occurs at the beginning of the simulation during scattering of the
input data chunks to running processes and at the end during gathering of the final
results. Variations of the speed-up factor can be attributed to different utilization
of the internal cluster network and variations in the run-time environment during
execution of the experiments.
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Fig. 7 Simulation of the CN curve number uncertainty using 30000 Monte Carlo

iterations with uniform distribution, 20% deviation.
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Fig. 8 Simulation of the Manning’s coefficient uncertainty together with precipi-

tation forecast using 30000 Monte Carlo iterations with uniform distribution, 20%

deviation.

10. Conclusion and future work

The main focus of this article was to present a method for modelling possible un-
certainties in the rainfall-runoff model inputs. Precipitation forecast was identified
as one of the main sources of possible errors in the R-R models, so we performed a
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Fig. 9 Simulation of the CN number, Manning’s coefficient and precipitation fore-

cast uncertainty using 75000 Monte Carlo iterations with uniform distribution of

the parameters, 20% deviation.

statistical analysis of the precipitation forecast produced by the numerical model
ALADIN. Slight underestimation of the predicted rainfall was evident from the
data set, where average forecast error was 0.5 mm/h. The 95% median confidence
interval of the data set was estimated as [0.095, 0.104].

This statistical analysis was then used to create a method for estimating the
probability distributions of the forecast error by using kernel density estimation for
several categories of rainfall intensity. These distributions describe the uncertainty
of the forecast and can be used to model the input space for stochastic uncertainty
modelling methods. Monte Carlo method was used to sample and run multiple
rainfall-runoff simulations from the modelled input space. These results are then
processed and analysed to provide additional information about possible flooding
scenarios and their probability.

Even though the proposed method increases the precision and provides addi-
tional information to emergency committees, it is computationally intensive and
can take a long time to execute. Fortunately the method can be effectively paral-
lelized and deployed on an HPC cluster to significantly decrease the time needed
for its computation. In this environment, the method can be used for decision
support in disaster management even during critical situations.

Categorization of rainfall intensities was done to decrease the variance of the
results for predefined intensity intervals, but the number of samples in each of
these categories was significantly different. We would like to create a different cat-
egorization that will take the number of samples in each category into account.
This categorization could lead to even better precision of the method as each cat-
egory would be described by its specific probability distribution. Although only
precipitation forecast error distribution was estimated, the proposed method can
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Iterations Nodes Time (s)

10000

2 1981
4 977
8 685
16 409
32 167
64 116
100 114
128 112

20000

4 1773
8 1127
16 564
32 319
64 203
100 176
128 171

60000

8 3266
16 1743
32 949
64 584
100 431
128 404

Tab. III Duration of experiments executed on different number of cluster nodes.

be used to simulate uncertainty of other model parameters as well. But without
exact knowledge of their respective probability distributions or data that can be
used to identify these distributions, only expert estimations can be made.
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