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Abstract: Air transportation between Europe and the U.S. is becoming more and
more significant. It can only hardly be replaced by other means of transporta-
tion, since its biggest advantages include speed and reliability. Air transportation
forecasting is important for planning the development of airports and related infras-
tructure, and of course also for air carriers. Therefore, it is important to forecast
the number of flights between selected airports in Europe and the U.S. and the
number of transported persons. A gravity model is usually used for this forecast-
ing. Determination of coefficients which significantly affect results of the formulas
used in the gravity model is crucial. Coefficients are, as a rule, computed by an
iterative algorithm implementing the gradient method. This technique has some
limitations if the state space is inappropriate. Moreover, the exponent parameter
in the formula is obviously fixed. We have chosen the new method of differential
evolution to determine the gravity model coefficient. Differential evolution works
with populations similarly to other evolution algorithms. It is suitable for solv-
ing complex numerical problems. The suggested methodology can be helpful for
various airlines to forecast demand and plan new long-haul routes.
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1. Introduction

Aviation-related planning and services need to continuously be improved so that
operations can be more efficient and profitable. Commercial air transportation is
important in connecting people and businesses in the world.

Transatlantic long-haul flights fly regularly from Europe to North America,
South America, the Far East and Australia, Africa and vice versa, already since
the beginning of commercial aviation in 1939.

This paper describes the possibilities of current data analysis methodology,
which can help identify the main factors that influence passenger demand for the
transatlantic route network.
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Passengers obviously demand airlines operating on the most direct routes, with
comfortable aircrafts and inexpensive tickets. The required reliability and safety of
flights is also gradually on the rise. Airlines should follow these trends and try to
enhance passenger’s experience and achieve a high level of passenger satisfaction.

Aviation as a specific branch of industry is very dynamic. Positive external
factors include, for example, technological development, development of infrastruc-
ture and Air Traffic Management (ATM). Negative factors include, for example,
capacity limits, airport congestion, oil crisis, global airline deregulation, terrorist
attacks and political instability.

Route forecasting is one of the numerous decision support tools created by air-
lines and represents a critical part of profitable network planning. Especially the
identification and forecasting of a new market and associated revenue can poten-
tially lead to an increase of the profit of the respective airline. This could lead
to increased passenger demand from the new market. Airline route decisions can
be made simply based on an individual’s judgment based on experience, but this
becomes more difficult when the number of routes as well as the size of the airline
increase. Then it is necessary to choose an appropriate model to forecast demand
and plan new routes.

The number of passengers which travel between airports in a specific time in-
terval is usually estimated using the gravity model. The parameters (also referred
to as constants) of this model are frequently calculated with iterative algorithms
implementing the gradient method.

The gravity model predicts movement of persons, information and goods be-
tween cities, or even between continents. Hence these models measure intensity of
relations between 2 objects (small relations between small objects, large relations
between large ones). In terms of traffic network management, the gravity models
are used for managing the impact of technical and economic parameters of the
individual traffic network sections.

In air transportation forecasting, there exists a gravity model for analyzing
passenger demand, described by Chang [2]. The formula is:

Tij =
C·P i ·Aj

f(dij)
, (1)

where:

Tij represents the number of trips produced in country i (origin) and
attracted to country j (destination) as the force between the masses,

C is a constant,
Pi represents the production factors of country i,
Aj represents the attracting factors of country j,
dij is the distance between country i and country j.

This article uses a modified gravity model with Cheu’s gravity model formula
[3], in which the Eq. (1) is rewritten into the specific form:

Tij = aibj
POPi · BUSj

DISxij
, (2)

where:
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POPi is the population of origin airport i,
BUSj is the business or attractiveness of destination airport j,
DISij is the distance between the airport of origin i and the destination j

and it is used as the impedance of travel between i and j,
Tij is the predicted number of flights between origin airport i and desti-

nation j,
ai is an airport specific trip production constant,
bj is an airport specific trip attraction constant.
ai, bj and the exponent x are parameters of the model and they need to be

calibrated.

The initial value x is set to 2 and parameters ai, bj are computed via an iterative
algorithm [3, 12], as follows:

Assume all ai = 1,

calculate all bi using bj =

[
n∑

i=1

aiPOPi

DISxij

]−1

, (3)

calculate all ai using ai =

 n∑
j=1

bjBUSj
DISxij

−1

, (4)

calculate Tij = aibj
POPiBUSj

DISxij
for all i and j. (5)

Steps (3), (4) and (5) are repeated until ai, bj and Tij converge. The result of
the application of a gravity model is a demand matrix T (Tij is one of elements
of this matrix). In this paper, parameters used in gravity model are determined
using the method of differential evolution.

Differential evolution is a relatively new type of evolutionary algorithms (since
1994). There are many algorithms that are classified as evolutionary, for example
Genetic Algorithms, Ant Colony Optimization, Scatter Search, Immunology Sys-
tem Method. Each algorithm is suitable for solving a certain class of problems.
Hence it is important to test and decide for which set of problems the algorithm is
applicable and which approach fits best to the respective task.

The algorithm of differential evolution is demonstrated on the real flight pre-
diction problem applied to six European airports as origins and six U.S. airports
as destinations.

2. Differential evolution

Differential evolution (DE) is one of many evolutionary techniques. It was created
by R. Storn and K.V. Prince in the nineties [6, 12]. It is suitable for numerical
optimisation problems. Basic advantages of differential evolution are:

– simplicity,

– heterogeneity of representation (integers, float numbers),
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– running time of the algorithm,

– independence of parent quality – three parents are selected for reproduction
randomly [6, 9],

– good ability to find an extreme,

– efficiency of non-linear problem solving with boundaries.

2.1 Description of the DE algorithm

Similarly to other evolutions algorithms, DE works with populations, where a pop-
ulation is a set of individuals in simulation time t and each individual is one solution
of the problem. The principle of population creation and parameter setting is sim-
ilar to other evolutionary techniques. The population can be represented as an
NP ×D matrix, where NP is population size and D is the dimension (the number
of parameters of the individual).

In other words, columns of the matrix are individuals, and each individual is a
one-dimensional vector having D components. Each individual within the popula-
tion is marked as Ji (i = 1 . . .NP). The quality of each individual is estimated by
the calculation of the fitness function, which measures also the individual’s suit-
ability for subsequent evolution (the result of the fitness function is called CV –
cost value).

Parameters and terminology

The algorithm of differential evolution is parameterized by the following parame-
ters:

– Crossover threshold CR – the probability of noisy vector selection. Each
component of the testing vector is set to the component of a noisy vector
with probability CR and to the component of the parent r4 otherwise. The
recommended value is CR ∈ ⟨0.8− 0.9⟩ [6].

– The size of the population (the count of individuals in the population) NP ,
with a recommended value of NP ∈ ⟨2D, 100D⟩ where D is the dimension of
the individual.

– Mutation constant F is used as multiplicative constant in the noisy vector
creation process. The recommended value is F ∈ ⟨0, 2⟩ [6].

– Maximum count of iterations MAX ITERATION – the number of evolution
cycles after which the algorithm stops.

The algorithm can be described as follows:

Generate initial generation randomly

iteration = 1;

while (iteration <MAX ITERATION)

{
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Apply reproduction cycle;

Store best individual (solution);

Iteration = iteration+1;
}

Reproduction cycle

The individual is represented as a vector with D components. Denote each com-
ponent as xj = 1 . . .D;xij is the j-th component of the i-th individual.

A noisy vector is a vector v = (v1, . . . , vD) and the “testing” vector is zv =
(zv1, . . . , zvD).

For each individual Ji in population (i = 1 . . .NP).
{
Select randomly 4 parents r1, r2, r3, r4 from the population other than Ji
// noisy vector v creation
for j =1 to D do vj = xr3,j + F (xr1,j − xr2,j);

// testing vector zv creation
for j = 1 to D do
if (rand() < CR) zvj = vj ; else zvj = xr4,j ;

//calculate a fitness value CV of testing vector
fit = fitness(zv);
if (fit(zv) is better than fit(Ji))
copy zv into interpopulation into i position;
else
copy original individual Ji into interpopulation into i position
}
Replace population by interpopulation.

Note: Function rand() generates a random value between 0 and 1 with uniform
distribution.

2.2 Application of differential evolution to the specific
issue

DE was tested on a task with six departing airports in Europe and six destination
airports in the U.S.

2.2.1 Airport selection

The process of selecting airports for future development of demand forecasting
methodology was conducted by a qualitative method. First, the judgment method
was used to investigate six airports in the U.S.: New York (JFK), Boston (BOS),
Chicago (ORD), Miami (MIA), Los Angeles (LAX) and San Francisco (SFO). A
few airports in Europe that have competing flights with Prague and passengers
from Prague usually take connecting flights from Prague via these cities to the
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U.S.: Vienna, Frankfurt, Paris, London, Amsterdam, Copenhagen, and Zurich,
supported by market analysis from Prague Airport, worldwide statistics and current
situation of PRG.

IATA code European Airports
AMS Amsterdam Airport Schiphol
BUS Budapest Liszt Ferenc Inter. Airport
CDG Charles De Gaulle Airport
FRA Frankfurt am Main Airport
LHR Heathrow Airport
PRG Vaclav Havel Airport Prague
VIE Vienna International Airport
ZRH Zurich Airport

Tab. I Final result of selection of European airports.

IATA code European Airports
BOS Logan International Airport
JFK John F. Kennedy International Airport
LAX Los Angeles International Airport
MIA Miami International Airport
ORD Chicago O’Hare International Airport
SFO San Francisco International Airport

Tab. II Final result of selection of U.S. airports.

2.2.2 Input data

There are two types of variables:

– Dependent (predicted) variable is the number of passengers (passenger trips)
on an airport-pair route during a set period (typically).

– Independent variables are related mainly to two factors [11]:

– Geo-economic factors / economic activity,

– Geographical factors / location impacts.

Based on availability of historical data and previous research [2], ten variables
are statistically significant in determining passenger flows between airport pairs
(Tab. VI).

Data collection – demand data, supply data (airline schedules), economical (or
geo-economical) data.

Demand data were obtained based on the total number of passengers travelling
from Prague Airport to the various U.S. airports in 2011, and the same also applies
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Code Dependent variables Description
PAX Number of passengers Number, one-way from European

to U.S. airports
Code Independent variables Description
POP Population Number, in 2011
UER Unemployment rate % , in 2011
DIS Distance Distance between two selected

cities, in air miles
TPAX Total passengers of the airport Total passengers handled in 2011
NIPC National income US$ (per capita) of the destination

city in 2011
BUS Business Total number of companies in the

destination city in 2007

Tab. III Defined variables.

Fig. 1 Part of the process of estimation of passenger demand from the supply
data. Data was mainly collected from available sources on the Internet, such as
US DOT, U.S. Department of Commerce, Airports Council International or ACI,
Boeing, ICAO, IATA and so on. The rest had to be estimated based on statistics,
predictions and by indexing.

to geo-economic data. Supply data were collected to fill up the missing demand data
that were not obtainable, especially for trips originating from European airports
other than Prague Airport.

For the purpose of this research, the supply data of the direct flights was
obtained from Expedia [13] and collected in two distinct periods: the summer
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timetable (August 2012) and winter timetable (March 2013) of the airlines. For
each flight between a defined airport pair, the following data were collected on
a daily basis (for one week in the defined period): operated airlines, co-shared
airlines, operated aircraft and their capacity based on configuration of the seats.

The biggest challenge of this research was the collection and estimation of the
annual passenger demand from the detected European airports to the selected
U.S. airports. All existing scheduled flights between defined airport-pairs had to
be collected from available flight databases, an extra sheet in Excel was created
for each airport-pair and passenger demand was estimated based on load factors
(operated aircraft and flight frequencies).

After completing a database of required data, index methods were used on
the core database of input data for further simulation. Additionally, the required
statistics data such as population, unemployment rate, total annual passengers of
the origin and destination airports, national income and number of companies was
collected for future modelling and demand estimation.

Specific values are provided in tables bellow:

BUSi (no.of companies) POPj (population)
BOS 49 667 AMS 780 559
JFK 944 129 CDG 11 800 000
LAX 450 108 CPH 1 213 822
MIA 85 146 FRA 691 518
ORD 255 502 LHR 14 900 000
SFO 105 030 ZRH 390 082

Tab. IV Parameters BUSi, POPj. Source: [12].

D(mi) BOS JFK LAX MIA ORD SFO
AMS 3 450 3 630 5 560 999 999 4 110 5 460
CDG 3 440 3 620 5 650 4 580 4 140 5 570
CPH 999 999 999 999 999 999 999 999 4 260 999 999
FRA 3 660 3 840 5 790 4 820 4 330 5 680
LHR 3 250 3 440 5 440 4 410 3 940 5 350
ZRH 3 730 3 920 5 920 4 870 4 430 5 820

Tab. V The distance matrix D (elements DISij) as gravity model input. Source:
[12].

2.2.3 Searching parameters of gravity model using DE

DE is used to determine the following parameters of the gravity model: coefficients
ai and bj , i = 1 . . . n, j = 1 . . .m and exponent x in Cheu’s formula [3], where:

n is the number of rows in DIS (PAX) = number of origins airport,
m is the number of columns in DIS (PAX) = destination cities.
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P BOS JFK LAX MIA ORD SFO Qi pax

AMS 89 122 300 857 122 187 0,001 102 908 59 937 675 012

CDG 72 724 573 733 275 051 139 624 150 323 180 817 1 392 271

CPH 0,001 0,001 0,001 0,001 69 867 0,001 69 867

FRA 80 266 401 663 94 956 82 361 245 730 204 670 1 109 646

LHR 414 737 1 500 386 357 313 247 136 521 369 255 257 3 296 198

ZRH 65 191 203 929 54 665 100 697 68 727 63 776 556 985

Dj pax 722 040 2 980 569 904 172 569 818 1 158 923 764 457 7 099 979

Tab. VI The matrix P of estimated number of passengers (elements PAXij).
Source: [12].

The individual is a vector with dimension equal to D = n +m + 1, where the
meaning of components is: the first n components are ai coefficients, the next m
components are bj coefficients, and the last component is the exponent x.

The structure of an individual is: length D = n+m+ 1

a1 a2 . . . . an b1 b2 . . . . . . bm x

Fig. 2 Structure of chromosomes.

If the initial population is generated, then random values are usually generated
within a given interval in DE. When a reproduction cycle is executed, new values of
the testing vector are tested for membership in the permissible interval (this tests
if they are valid; the boundaries are based for example on physical constrains).
In our application, the initial individuals are generated randomly with boundaries
which are derived from recommended initial values by the iteration method used
in gravity model:

x is generated from the range of x ∈ ⟨1, 3⟩,
ai, bj are generated from the range of ai, bj ∈ ⟨0, 3⟩.

During reproduction cycles, the test is not performed to verify if the DE can find
optimal parameters outside of recommended range in the classical gravity model.

Fitness function calculation

An estimation of matrix T is calculated for each individual using parameters ai, bj ,
x. The known P matrix is divided by the value 200 (average number of passengers
per flight) and the number of flights is calculated. The fitness function is total
square root error:

FIT =
n∑

i=1

m∑
j=1

(Tij − PAXij/200)
2
. (6)

DE searches for a minimum value of the fitness function.

Parameters of algorithms:

Algorithm parameters are as follows:
Size of population: N = 1, 000.
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Maximum number of iterations MAX ITERATIONS = 10.000 – the algorithm
stops if the count of iterations is 10,000.

Crossing threshold CR = 0.8; the value is derived from the recommended value in
the literature [6, 9].

Mutation constant F = 1.

The final solution is the best solution over all generations.

3. Results of DE

Results are provided for the data presented above (Tab. VI).

Original results

DE found the following optimal parameters of the gravity model:

a1 = 3362.88

a2 = 418.21

a3 = 138.32

a4 = 6899.30

a5 = 679.16

a6 = 6296.69

b1 = 2964.49

b2 = 777.79

b3 = 2991.06

b4 = 4221.19

b5 = 1798.43

b6 = 9359.23

x = 4.24

This table contains input data for the fitness function (6) – distance matrix
PAXij (Tab. V) divided by 200.

P BOS JFK LAX MIA ORD SFO
AMS 446 1504 611 0 515 300
CDG 364 2869 1375 698 752 904
CPH 0 0 0 0 349 0
FRA 401 2008 475 412 1229 1023
LHR 2074 7502 1787 1236 2607 1276
ZRH 326 1020 273 503 344 319

Tab. VII Input data – matrix P (elements PAXij/200).

This is a demand matrix Tij as a side result of DE. The matrix contains pre-
dicted numbers of flights calculated by (5) using parameters a1, . . . , a6, b1, . . . , b6,
x evolved by the DE.
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The absolute differences between predicted numbers of flights Tij and input
data PAXij/200 are provided in Tab. IX.

Relative differences between predicted number of flights Tij and input data
PAXij/200 are calculated by:

Rdiff =
Tij − PAXij/200

PAXij/200
· 100[%]. (7)

BOS JFK LAX MIA ORD SFO

AMS -14.4 1.9 -24.6 5316194889.2 10.1 21.2

CDG 99.6 1.6 -41.2 -24.6 37.4 -30.6

CPH 374849975.5 1517622728.7 561290114.6 272835137.9 -91.2 455016898.4

FRA 34.4 9.3 48.5 -0.5 -32.8 -45.4

LHR -8.7 -1.1 9.0 2.5 0.2 19.6

ZRH -21.4 1.5 20.8 -59.9 12.2 -18.7

Tab. X Relative differences in %.

The input data for flights between the Copenhagen Airport (CPH) and the
airports in Boston (BOS), New York (JFK), Los Angeles (LAX), Miami (MIA),
and San Francisco (SFO), and for flights between Amsterdam Airport (AMS) and
Miami Airport (MIA) were not obtained and thus the outputs are not relevant. In
Tab. VII, this is indicated with “o”.

The results provided in Tab. X (relative differences in %) for the airports spec-
ified above are not valid. They are presented here only for informational purposes.
Graph at Fig. 3 shows how the fitness function (total square root error) evolved.

population/generation

Fig. 3 Evolution of the fitness function.
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4. Conclusion

The results obtained using the DE methods are more credible. Take, for example,
the number of flights between Amsterdam (AMS) and New York (JFK), which is
otherwise stated to amount to 100,416 per year, which represents 275 flights per
day, and this number appears to be unrealistic.

Parameters obtained Parameters obtained
by the DE by the iterative algorithm [12]
a1 3362.88 a1 16.147
a2 418.21 a2 15.462
a3 138.32 a3 111.577
a4 6899.30 a4 16.046
a5 679.16 a5 14.897
a6 6296.69 a6 16.318
b1 2964.49 b1 0.000002
b2 777.79 b2 0.000002
b3 2991.06 b3 0.000002
b4 4221.19 b4 0.000002
b5 1798.43 b5 0.000001
b6 9359.23 b6 0.000002
X 4.24 x 2

Tab. XI Parameters obtained by the DE and by the iterative algorithm.

The above-stated calculations demonstrate how the values of constants ai and
bj , i = 1 . . . n, j = 1 . . .m and exponent x can be calculated using the differential
evolution method.These constants depend on a number of aspects of the given
location and it is the method of their calculation using differential analysis that
enables their calibration using the data entered.

Entered data were adopted from [12]. Presented results obviously differ from
those published in [12] as DE is used instead of an iterative algorithm. Comparison
can show that the predicted demand matrix T calculated with parameters searched
via DE is more accurate.

If we compare the modified results with values that have been calculated without
using the method of differential evolution, it is evident that they vary considerably.
However, the original results have not yet been used in practice for the forecast of
development of air transportation between specified destinations. The method of
differential evolution may bring new knowledge for processing of air traffic forecasts.
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