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Abstract: For the data sampled from a low-dimensional nonlinear manifold em-
bedded in a high-dimensional space, such as Swiss roll and S-curve, Self-Organizing
Map (SOM) tends to get stuck in local minima and then yield topological defects in
the final map. To avoid this problem and obtain more faithful visualization results,
a variant of SOM, i.e. Dynamic Self-Organizing Map (DSOM), was presented in
this paper. DSOM can dynamically increase the map size, as the training data
set is expanded according to its intrinsic neighborhood structure, starting from a
small neighborhood in which the data points can lie on or close to a linear patch.
According to the locally Euclidean nature of the manifold, the map can be guided
onto the manifold surface and then the global faithful visualization results can be
achieved step by step. Experimental results show that DSOM can discover the
intrinsic manifold structure of the data more faithfully than SOM. In addition,
as a new manifold learning method, DSOM can obtain more concise visualization
results and be less sensitive to the neighborhood size and the noise than typical
manifold learning methods, such as Isometric Mapping (ISOMAP) and Locally
Linear Embedding (LLE), which can also be verified by experimental results.
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1. Introduction

As the combination of vector quantization and nonlinear dimensionality-reduction
mapping, Self-Organizing Map [3] (SOM) can map high-dimensional data onto a
low-dimensional regular lattice of neurons, while preserving the topological rela-
tionship between data points as faithfully as possible, which makes it a popular
clustering, visualization and abstraction tool.
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For the data sampled from a low-dimensional nonlinear manifold embedded in
a high-dimensional space, such as Swiss roll and S-curve, typical manifold learning
methods, such as Isometric Mapping [13] (ISOMAP), Locally Linear Embedding
[7] (LLE) and Laplacian Eigenmap [1] (LE), can discover its intrinsic manifold
structure nicely, but cannot summarize it, which hampers the effective analysis of
mass data sets [11]. Compared with these typical manifold learning methods, SOM
can obtain more concise visualization results due to its vector quantization feature,
which makes it very suitable for visualizing mass data sets. However, when the
nonlinear structure of the data cannot simply be regarded as a perturbation from
a linear approximation, the iterative approach used by SOM has a tendency to
get stuck in local minima and then yield topological defects in the final map [4, 5,
10, 11], which makes SOM not faithfully discover the intrinsic manifold structure
of the data sampled from a low-dimensional nonlinear manifold embedded in a
high-dimensional space [11, 12].

Based on the locally Euclidean nature of the manifold, this paper presents a
variant of SOM, i.e. Dynamic Self-Organizing Map (DSOM). DSOM can dynam-
ically increase the map size, as the training data set is expanded according to its
intrinsic neighborhood structure, starting from a small neighborhood in which the
data points can lie on or close to a linear patch. In this way, DSOM can guide
the map onto the manifold surface instead of getting stuck in local minima, and
then can avoid the topological defect problem and faithfully discover the intrinsic
manifold structure of the data in the end.

The rest of the paper is organized as follows. Section 2 briefly reviews SOM
and the related methods. Section 3 describes DSOM in detail. Section 4 uses
two widely-used data sets to verify the effectiveness of DSOM. Section 5 gives the
conclusion of the paper.

2. SOM and the related methods

SOM consists of a single layer of neurons located on a low-dimensional regular
lattice, usually 1-D or 2-D for visualization. Each neuron i is represented by a
d -dimensional weight vector wi = {wi1, · · · , wid}, where d is the dimensionality
of the data. On each training step, a data point x is selected randomly, and its
best-matching unit (BMU), denoted as c(x), is selected according to the following
rule:

c(x) = argmin
i

||wi − x||. (1)

After that, a neighborhood learning is adopted, that is, the weight vectors of
c(x) and its neighbors, defined by a neighborhood kernel hc(x)·(t) in the lattice, are
updated towards x according to the following rule:

wi(t+ 1) = wi(t) + α(t)× hc(x)i(t)× (x−wi(t)), (2)

where α(t) is the learning rate and hc(x)i(t) is the neighborhood kernel which
usually takes the following form:

hc(x)i(t) = e
−

||pi−p
c(x)||

2

2δ(t)2 , (3)

176



Chao Shao, et al.: Manifold Learning and Visualization Based on Dynamic. . .

where p
c(x) and p

i
are the position vectors of c(x) and its neighbor i in the lattice

respectively, and δ(t) is the width of the neighborhood kernel. To ensure the
convergence, both α(t) and δ(t) should decrease monotonically with time t.

Because not only the BMU but also its neighbors are updated towards the
same direction, the weight vectors of neighboring neurons resemble each other [14].
Consequently, the BMUs of similar data points are close to each other in the lattice,
which is the SOM’s topology preserving property. As a nonlinear dimensionality-
reduction method, SOM uses iterative optimization to fit a regular lattice with a
predefined low-dimensional topology to the training data, and thus tends to get
stuck in local minima depending on the initial conditions and yield topological
defects in the final map, especially for highly nonlinear data sets [11, 12].

For the data sampled from a low-dimensional nonlinear manifold embedded in
a high-dimensional space, such as Swiss roll and S-curve, several variants of SOM,
such as M-SOM [11], GDBSOM [10] and ISOSOM [2], were presented to avoid
the topological defect problem and then faithfully discover its intrinsic manifold
structure; however, they need to run a certain typical manifold learning method,
such as LLE or ISOMAP, beforehand to obtain the internal coordinates of data
points on the manifold or geodesic distances between them, so these variants of
SOM have the same practical limits as typical manifold learning methods, for
example, they need a predefined suitable neighborhood size which is difficult to
select efficiently [9].

3. DSOM

As indicated in [10–12], when the structure of the data is linear or almost linear, the
iterative approach used by SOM can easily avoid getting stuck in local minima and
then yield a global or almost global solution. So, for the data sampled from a low-
dimensional nonlinear manifold embedded in a high-dimensional space, to avoid
getting stuck in local minima and then faithfully discover its intrinsic manifold
structure, based on the locally Euclidean nature of the manifold, the map should
be trained first within a small neighborhood, in which the data points can be
ensured to lie on or close to a linear patch, and then the first faithful solution
can be achieved easily. After that, as the training data set is expanded gradually
according to its intrinsic neighborhood structure, the global faithful solution can be
achieved step by step. However, the map has to be trained multiple times, which
makes this method very time-consuming. To enhance the efficiency of this method,
the map size should also be increased, starting from a small map size, synchronously
as the training data set is expanded, which is the thinking of DSOM.

To do this, unlike those variants of SOM described in Section 2, DSOM needs
only to adopt the k -nearest neighbors method (the same as in typical manifold
learning methods) to obtain the neighborhood structure of the data, while not
running the other more time-consuming parts of typical manifold learning methods,
such as shortest path computation and the eigenvalue decomposition.

After obtaining the neighborhood structure of the data, DSOM adopts the two-
order neighborhood of a certain data point (including this data point, its neighbors
and the neighbors of its neighbors) as the first training data set. To ensure that the
first training data set lies on or close to a linear patch, DSOM computes the PCA
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(Principal Component Analysis) reconstruction error of the two-order neighbor-
hood of each data point and selects the one with the minimal PCA reconstruction
error as the first training data set. Formally, let Nk(x) be the set of the neighbors
of data point x (including x itself) in the data space with the neighborhood size
being k, then Nk(Nk(x)) is the two-order neighborhood of data point x, and let
ǫ(X) be the PCA reconstruction error of the data set X, then the first training
data set, denoted as D(0), can be obtained according to the following rule:

D(0) = Nk(Nk(xs)), (4)

where xs = argmin
x

ǫ(Nk(Nk(x))).

To ensure that the training data set is expanded according to its intrinsic neigh-
borhood structure and make DSOM less sensitive to the neighborhood size, DSOM
adopts a simple method that new data point and a certain data point in the current
training data set should be in the neighborhood of each other [6]. Formally, let
Dold be the current training data set, then the set of new data points, denoted as
Dnew, can be described as follows:

Dnew = {x|x ∈ Nk(y) ∧ y ∈ Nk(x) ∧ x 6∈ Dold ∧ y ∈ Dold}. (5)

On each expansion of the training data set, the map size is increased according
to the distribution of new data points. In the DSOM, the neurons are located on
a rectangular lattice with four boundaries, and a row or column of new neurons is
added outside the boundary along which the average number of new data points is
maximal. Formally, let NoB(i) be the set of neurons on the i-th boundary where
i can be set from 1 to 4 (representing four boundaries of the lattice), then the sets
of the current training data points and new data points along the i-th boundary,

denoted as D
(i)

old
and D(i)

new respectively, can be described as follows:

D
(i)

old
= {x|c(x) ∈ NoB(i) ∧ x ∈ Dold}, (6)

D(i)
new = {x|x ∈ Nk(y) ∧ y ∈ Nk(x) ∧ x 6∈ Dold ∧ y ∈ D

(i)

old
}, (7)

and then a row or column of new neurons is added outside the b-th boundary where

b = argmax
i

|D(i)
new|

|NoB(i)| , (8)

|D(i)
new| and |NoB(i)| are the number of elements in the sets D(i)

new and NoB(i)
respectively. To make these new neurons close to the manifold surface, we initialize
their weight vectors, denoted as wnewn, according to the following rule:

wnewn = wNoB(b) + λ× (mv(D(b)
new)−mv(D

(b)

old
)), (9)

where mv(D(b)
new) and mv(D

(b)

old
) are the mean vectors of data points in the sets

D(b)
new and D

(b)

old
respectively, and then mv(D(b)

new)−mv(D
(b)

old
) represents the expan-

sion direction of the training data set on the b-th boundary, λ is a little coefficient.
During the first several expansions (decided by a threshold of DSOM which is

denoted as f ) of the training data set, the training data set is still limited within a
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relatively small neighborhood and can still be regarded to lie on or close to a linear
patch, so DSOM can still be run in the same way as SOM, that is, the BMU can
still be selected based on Euclidean distance according to Eq. (1), and the neurons
can still be updated according to Eq. (2).

After that, the training data set can no longer be ensured to lie on or close
to a linear patch, so the BMU shouldn’t be selected based on Euclidean distance
according to Eq. (1) any longer, but based on geodesic distance, because only
geodesic distance is meaningful along the manifold [8]; however, as addressed in [11],
selection of the BMU based on geodesic distance is difficult to realize practically.

To avoid the topological defect problem and then faithfully discover the intrinsic
manifold structure of the data, in the DSOM, the BMU of each data point is selected
according to its neighborhood structure. Concretely speaking, the BMU of data
point x, i.e. c(x), is selected among the neighbors (in the lattice, decided by another
threshold of DSOM which is denoted as r) of the BMUs of the neighbors (in the
data space, decided by the k -nearest neighbors method) of x. Formally, let N′

r
(i)

be the set of the neighbors of neuron i (including i itself) in the lattice with the
neighborhood size being r, then c(x) is selected according to the following rule:

c(x) = argmin
i∈N′

r
(c({y|y∈Nk(x)∧x∈Nk(y)∧y∈Dold}))

||wi − x||. (10)

Based on the locally Euclidean nature of the manifold, only each data point
and its neighbors can be meaningfully regarded to lie on or close to a linear patch.
Similarly, in the DSOM, on each training step with the selected data point x,
only c(x) (the representative of x in the lattice) and its neighbors (in the lattice,
decided by the threshold r too. Due to the SOM’s topology preserving property,
they should lie on or close to a linear patch around x or its BMU c(x) in the final
map) can be updated towards x according to Eq. (2), that is:

wi(t+ 1) = wi(t) + α(t)× hc(x)i(t)× (x−wi(t)), i ∈ N′
r
(c(x)). (11)

Except the neighboring neurons of c(x), the other neurons can no longer be
ensured to lie on or close to a linear patch around x or its BMU c(x), they shouldn’t
be updated in the same way as the above any longer, in the DSOM, they are
updated towards their direct neighbors to c(x) in the lattice respectively according
to the following rule:

wi(t+ 1) = wi(t)

+ α(t)× hc(x)i(t)× (wi1(t)−wi(t))/d1 (12)

+ α(t)× hc(x)i(t)× (wi2(t)−wi(t))/d2, i 6∈ N′
r
(c(x)),

where i1 and d1 are the direct neighbor along the row of i to c(x) and their distance
along the row in the lattice, and i2 and d2 are the direct neighbor along the column
of i to c(x) and their distance along the column in the lattice. If i and c(x) lie on
the same column, the second part of the right side of Eq. (12) will be omitted; and
if i and c(x) lie on the same row, the third part of the right side of Eq. (12) will
be omitted.
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Consequently, DSOM can be described briefly as follows:

1) Obtain the neighborhood structure of the data using the k -nearest neighbors
method with a predefined neighborhood size k, as typical manifold learning
methods do;

2) Obtain the first training data D(0) according to Eq. (4);

3) Specify the number of rows and columns of neurons in the lattice at first,
denoted as r1(0) and r2(0) respectively;

4) Initialize all the weight vectors with small random values;

5) Specify three parameters described in the above, i.e. f, r and λ;

6) Specify the initial learning rate α(0) and the initial width of the neighborhood
kernel σ(0);

7) j = 0; t = 0;

8) While D(j) is not the whole data set or the stop condition is not met

a) Select a data point x from D(j) randomly;

b) If j ≤ f

Select c(x) according to Eq. (1);

Else

Select c(x) according to Eq. (10);

End

c) For each neuron i

If j ≤ f

Update wi(t) according to Eq. (2);

Else

If i ∈ N′
r
(c(x))

Update wi(t) according to Eq. (11);

Else

Update wi(t) according to Eq. (12);

End

End

End

d) t = t+ 1;

e) Decrease α(t) and σ(t);

f) If D(j) is not the whole data set and the stop condition is met

i) D(j + 1) = D(j) ∪Dnew according to Eq. (5);
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ii) Add a row (i.e. r1(j + 1) = r1(j) + 1) or column (i.e. r2(j + 1) =
r2(j) + 1) of new neurons according to Eq. (8);

iii) Initialize the weight vectors of new neurons, i.e. wnewn, according
to Eq. (9);

iv) j = j + 1; t = 0;

End

End

On each expansion of the training data set, new data points should be trained
first several times (e.g. 10 times in the below experiments) to alleviate the imbal-
ance among the training steps of all the data points.

4. Experimental results

In the experiments, we use two widely-used data sets, i.e. Swiss roll and S-curve
with the randomly selected 2000 data points, out of which n = 500 representative
data points are selected using the K -means method in Matlab v7.0 toolboxes, as
shown in Fig. 1(a) and Fig. 1(c) (their intrinsic manifold structures are shown in
Fig. 1(b) and Fig. 1(d) respectively, represented in black and gray). Some snapshots
during the map formation process of DSOM on these two data sets are shown in
Fig. 2 and Fig. 3 respectively, from which we can see that the map of DSOM can
be guided onto the manifold surface instead of getting stuck in local minima, and
then can avoid the topological defect problem in the end (as shown in Fig. 6(a)
and Fig. 7(a)).
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Fig. 1 Two data sets in the experiments.
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Fig. 2 Some snapshots during the map formation process of DSOM on Swiss roll

(k = 8).
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Fig. 3 Some snapshots during the map formation process of DSOM on S-curve

(k = 16).

To verify the effectiveness of DSOM, we run SOM, DSOM, ISOMAP and LLE
with different neighborhood size k on these two data sets. In the experiments, the
parameters of SOM are specified as follows: the number of rows and columns of
neurons are set to 10 and 30 respectively, α(t) = 0.9 × 0.999t, σ(t) = 30× 0.999t;

and the parameters of DSOM are specified as follows: r1(0) = r2(0) = ⌊
√

|D(0)|

3
⌋,

α(t) = 0.9×0.999t, σ(t) = r1(0)×0.999t, f = 5, r = 2, λ = 0.2. The stop condition
on each expansion of the training data set in the DSOM is the same as that in the
SOM, in which the maximal number of iterations and the minimal error are set to
100000 and 0.00001 respectively. Besides these parameters, DSOM, ISOMAP and
LLE have an additional parameter, i.e. the neighborhood size k, which is listed in
the caption of the corresponding figure.

The visualization results of SOM on Swiss roll and S-curve are shown in Fig. 4
and Fig. 5 respectively, from which we can see that there are topological defects in
the final maps (as shown in Fig. 4(a) and Fig. 5(a)), and then SOM cannot faithfully
discover their intrinsic manifold structure (as shown in Fig. 4(b) and Fig. 5(b),
where only the BMUs are displayed and colored in black and gray, according to
the positions of data points, which are mapped onto them, in the corresponding
manifolds, which can represent the manifold structures spanned by these BMUs,
the same below).
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(a) SOM’s neurons in the data space
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(b) SOM’s neurons in the lattice

Fig. 4 Visualization results of SOM on Swiss roll.
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(b) SOM’s neurons in the lattice

Fig. 5 Visualization results of SOM on S-curve.

To verify whether DSOM can faithfully discover the intrinsic manifold structure
of the data like ISOMAP and LLE, we run DSOM, ISOMAP and LLE on Swiss roll
and S-curve (with the optimal neighborhood size [9]), and the visualization results
are shown in Fig. 6 and Fig. 7 respectively. As shown in Fig. 6(a) and Fig. 7(a),
the maps are guided onto the manifold surfaces and there are no topological de-
fects in the final maps. Consequently, DSOM can faithfully discover their intrinsic
manifold structure (as shown in Fig. 6(b) and Fig. 7(b)) like ISOMAP (as shown in
Fig. 6(c) and Fig. 7(c)) and LLE (as shown in Fig. 6(d) and Fig. 7(d)), which can
be measured by residual variance to a certain extent; however, the goodness of the
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Fig. 6 Visualization results of DSOM, ISOMAP and LLE on Swiss roll (k = 8).
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Fig. 7 Visualization results of DSOM, ISOMAP and LLE on S-curve (k = 16).
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map of DSOM cannot be measured by residual variance like ISOMAP and LLE,
because the neurons of DSOM are fixed on a regular low-dimensional lattice like
SOM, regardless of the distances between them. In addition, DSOM can obtain
more concise visualization results than ISOMAP and LLE, because the number of
neurons in the DSOM is less than that of data points.

To verify whether DSOM is sensitive to the neighborhood size like ISOMAP
and LLE, we also run DSOM, ISOMAP and LLE with different neighborhood size
k on Swiss roll and S-curve, and the visualization results are shown in Fig. 8,
Fig. 9, Fig. 10 and Fig. 11 respectively, from which we can see that DSOM can
be less sensitive to the neighborhood size than ISOMAP and LLE, because DSOM
can still faithfully discover their intrinsic manifold structure when the neighbor-
hood size is too large, such as k = 10 and k = 12 for Swiss roll (as shown in
Fig. 8(b) and Fig. 9(b)), and k = 18 and k = 20 for S-curve (as shown in Fig. 10(b)
and Fig. 11(b)), but ISOMAP and LLE can’t do this yet (as shown in Fig. 8(c),
Fig. 8(d), Fig. 9(c), Fig. 9(d), Fig. 10(c), Fig. 10(d), Fig. 11(c) and Fig. 11(d)).

−10 −5 0 5 10 15
0

20

40

−15

−10

−5

0

5

10

15

(a) DSOM’s neurons in
the data space

5 10 15 20 25

−6

−4

−2

0

2

4

6

8

10

12

(b) DSOM’s neurons in
the lattice

−20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

(c) ISOMAP

−4 −3 −2 −1 0 1 2 3
1

1

1

1

1

1

1

1

1

1

(d) LLE

Fig. 8 Visualization results of DSOM, ISOMAP and LLE on Swiss roll (k = 10).
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Fig. 9 Visualization results of DSOM, ISOMAP and LLE on Swiss roll (k = 12).

−1 −0.5 0 0.5 1
0

5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a) DSOM’s neurons in
the data space

2 4 6 8 10 12

−1

0

1

2

3

4

5

6

7

8

(b) DSOM’s neurons in
the lattice

−5 0 5
−4

−3

−2

−1

0

1

2

3

(c) ISOMAP

−2 −1 0 1 2 3
1

1

1

1

1

1

1

1

1

1

(d) LLE

Fig. 10 Visualization results of DSOM, ISOMAP and LLE on S-curve (k = 18).
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Fig. 11 Visualization results of DSOM, ISOMAP and LLE on S-curve (k = 20).

To verify whether DSOM is sensitive to the noise like ISOMAP and LLE, we
also run DSOM, ISOMAP and LLE with different neighborhood size k on noisy
Swiss roll and noisy S-curve, with zero-mean normally distributed noise added to
each data point of the corresponding data set, where the standard deviation of
the noise is chosen to be 2% of smallest dimension of the bounding box enclosing
the data [13]. The visualization results are shown in Fig. 12, Fig. 13, Fig. 14 and
Fig. 15 respectively, from which we can see that DSOM can be less sensitive to
the noise than ISOMAP and LLE, because DSOM can still faithfully discover their
intrinsic manifold structure when k = 8 and k = 12 for noisy Swiss roll (as shown
in Fig. 12(b) and Fig. 13(b)) and k = 16 and k = 20 for noisy S-curve (as shown in
Fig. 14(b) and Fig. 15(b)), but ISOMAP and LLE cannot do this yet, even when
k = 8 for noisy Swiss roll (as shown in Fig. 12(c) and Fig. 12(d)) and k = 16 for
noisy S-curve (as shown in Fig. 14(c) and Fig. 14(d)).
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Fig. 12 Visualization results of DSOM, ISOMAP and LLE on noisy Swiss roll

(k = 8).
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Fig. 13 Visualization results of DSOM, ISOMAP and LLE on noisy Swiss roll

(k = 12).
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Fig. 14 Visualization results of DSOM, ISOMAP and LLE on noisy S-curve

(k = 16).
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Fig. 15 Visualization results of DSOM, ISOMAP and LLE on noisy S-curve

(k = 20).

As described above, the goodness of the map of DSOM should be better than
that of SOM, as shown in Fig. 4(a) and Fig. 6(a), which can be measured by the
reconstruction error, as listed in Tab. I. However, the reconstruction errors of
DSOM are a bit larger than that of SOM on S-curve and noisy S-curve, the reason
for which is that the number of neurons of DSOM are much smaller than that of
SOM on S-curve and noisy S-curve, i.e. 98 for DSOM vs 300 for SOM, and then a
neuron of DSOM represents much more data points and naturally produces larger
reconstruction error than SOM (by contrast, the number of neurons of DSOM are
a bit smaller than that of SOM on Swiss roll, i.e. 210 for DSOM vs 300 for SOM).

data set
Swiss roll
(k=8)

S-curve
(k=16)

noisy Swiss roll
(k=8)

noisy S-curve
(k=16)

DSOM 761.662 38.140 1009.501 39.034
SOM 2159.165 33.815 1755.952 37.065

Tab. I The reconstruction errors of DSOM and SOM on different data sets.

5. Conclusion

To avoid getting stuck in local minima and then faithfully discover the intrinsic
manifold structure of the data, this paper presents a variant of SOM, i.e. Dy-
namic Self-Organizing Map (DSOM), in which the map size can be increased syn-
chronously as the training data set is expanded according to its intrinsic neighbor-
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hood structure. Based on the locally Euclidean nature of the manifold, DSOM can
guide the map onto the manifold surface and then faithfully discover the intrinsic
manifold structure of the data. In addition, DSOM can automatically determine
the number and distribution of neurons in the final map. So DSOM has better
visualization capabilities than SOM for the data sampled from a low-dimensional
nonlinear manifold embedded in a high-dimensional space.

Compared with other variants of SOM, such as M-SOM, GDBSOM and ISO-
SOM, DSOM needs only to adopt the k -nearest neighbors method to obtain the
neighborhood structure of the data, while not running the other more time-consuming
parts of typical manifold learning methods, such as shortest path computation and
the eigenvalue decomposition. In addition, compared with typical manifold learn-
ing methods, such as ISOMAP, LLE and LE, DSOM can obtain more concise
visualization results and be less sensitive to the neighborhood size and the noise.
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