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Abstract: Ant Colony Optimization is a meta-heuristic for solving hard combi-
natorial optimization problems. It is a constructive population based approach
inspired by the social behavior of ants. In our research, we are focused on the par-
allel/distributed computing on massively parallel systems. More precisely, we want
to adjust Max-Min Ant System (one of Ant Colony Optimization algorithms) for
these systems. Traditionally, a matrix is used to store the pheromone information.
If we want to solve large instances, this is a very memory consuming solution. In
this paper, we propose a different approach. We do not use the matrix to store
the pheromone information. Instead, ant trails that are normally incorporated into
this matrix are stored during the computation and just some parts and only in time
when they are really needed are assembled. Proposed solution was implemented
in C++. The implemented solution was tested on large symmetric instances of
Traveling Salesman Problem. In these experiments, we were able to compute re-
sults with a comparable quality and even faster than with the traditional approach
while using only a portion of the original memory.
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1. Introduction

Ant Colony Optimization (ACO) [7] is a class of meta-heuristic algorithms for
solving hard combinatorial optimization problems. It is a constructive population
based approach inspired by the social behavior of ants. It was successfully used
to solve different problems. Traveling Salesman Problem (TSP) [7, Chapter 3]
can be used as an example of such problem. TSP is one of the well-known NP-
hard problems. It seems that there is no exact method to compute a solution
of such problems in a reasonable amount of time. Still, computer scientists and
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programmers frequently encounter such problems and they are often addressed by
using heuristic methods or approximation algorithms.

In our research, we are focused on the parallel/distributed computing on mas-
sively parallel systems. We want to use ACO to solve large problem instances on
supercomputers. Using ACO, we can get good results in a reasonable time, still
there are some obstacles. The quality of a solution strongly depends on many hard
to predict factors. First, randomness is a crucial part of ACO. Hence, different
runs can give different results. Second, the quality of a solution strongly depends
on initial parameters. We do not want to invent a new ACO variant with different
guidelines how to use it, but rather adjust one of existing algorithms. For various
reasons we have chosen Max-Min Ant System (see Section 2).

There are various approaches how to implement ACO algorithms for paral-
lel/distributed systems (a recent survey is in [2]). They address different issues like
granularity or a topology of communication, but still the resulting implementations
are usually tested and used only on relatively small systems with tens of processors.
Moreover, they frequently use a shared memory. Our long term goal is to adjust
ACO for distributed memory systems with thousands of processors.

As an initial step, we address an issue how to efficiently store the pheromone
information. Traditionally, a matrix is used to store this data. This matrix serves
as a shared medium where artificial ants share their data. As a result, every ant
needs it to construct a solution in every iteration. Using the pheromone matrix
is a very memory consuming solution, if we want to solve large instances. For
example, if we use the largest problem from TSPLIB [11] (it is a library of sample
instances including the symmetric TSP) with 85900 cities, then the pheromone
matrix size will be (C++ type double is used for elements in the matrix): 85900×
85900 × 8Bytes ≈ 59GB. This may be too much, considering the pheromone
matrix is not the only information that we need to store. For example Anselm [10]
(a supercomputer of National Supercomputing center IT4Inovations) has nodes
with 64GB of a physical memory. Furthermore, it is shared by 16 computing cores.
Also, we need to update the pheromone matrix after each iteration and the amount
of data that we need to transmit between nodes can be an issue.

In this paper, we propose a different approach. We do not use the pheromone
matrix. Instead, we store the data that are incorporated into this matrix during the
computation and later assemble just some parts and only for moments, when they
are really needed. Thus, we can emulate the original matrix using only a!portion
of the original memory. In addition, because it is smaller, it is easier to distribute
it among computing nodes.

The proposed solution is implemented in programming language C++. It was
tested on symmetric instances of TSP form TSPLIB (see Section 5). In performed
experiments, we were able to compute results with a similar quality in even better
time as with the traditional approach while using only a portion of the original
memory.

This article is structured as follows. In the following section, Max-Min Ant
System and reasons why we use this ACO algorithm are introduced. Then our
Disassembled Pheromone Matrix is described. Section 5 summarizes performed
experiments. The last section contains a conclusion and open problems.
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2. ACO algorithms

There are different ACO algorithms, but they all roughly follow these steps:

int i t e r a t i o n =0;
I n i t ( ) // Set parameters , i n i t i a l i z e pheromone t r a i l s
while ( te rminat ion cond i t i on not met ) {

ConstructAntsSo lut ions ( )
ApplyLocalSearch ( ) // op t i ona l
EvaporatePheromones ( )
UpdatePheromones (Ant∗ chosenAnts )
i t e r a t i o n++;

}

In most ACO algorithms, there is a fixed number of ants. Each of these ants
constructs a tour between given cities. The tour construction process is performed
in each iteration. Each ant is initially placed in a randomly chosen city. Then it
chooses from unvisited cities the best target to travel to. This decision is based on
a combination of heuristic information (computed using distances between cities
in TSP) and the pheromone information. This step is repeated until all cities
are visited. After all ants build their tours, then some chosen ants deposit their
pheromone information. It guides ants in following iterations to potentially better
tours. Usually the global best ant or the iteration best ant is chosen. This process
repeats, until termination conditions are met.

Even if ACO algorithms usually follow this schema, they differ in some details.
The first ACO algorithm is called Ant System and it was introduced by Dorigo in
1992. Since then, a lot of new ACO algorithms were introduced. In [7, Chapter 3],
the following ACO algorithms that are able to solve TSP are mentioned: Ant
System, Elitist Ant System, Ant-Q, Ant Colony System [6], Max–Min Ant System
[13] and Rank-based Ant System. Furthermore, new algorithms are still frequently
introduced.

For our task, we have chosen Max-Min Ant System (MMAS) [13]. It is one
of the standard ACO algorithms. It incorporates main mechanisms and memory
structures that are common to most ACO algorithms. Also, it is one of the most
successful ACO algorithms. Following properties are interesting for our research.

• It does not modify the pheromone information during the tour construction
(unlike Ant Colony System [6]). So, the tours may be easily constructed in
parallel.

• In every iteration, only one ant deposits pheromones into the pheromone
matrix (unlike for example Elitist Ant System).

• It defines minimum and maximum for pheromone values. So, we know bound-
aries for values in the pheromone matrix.

To improve computational results, diversification mechanisms based on a phe-
romone reinitialization are used. There are different strategies, how to implement
this process. The strategy used in MMAS is: If more than 250 iterations have been
executed without the reinitialization of pheromone trails and no improved solution
has been found in last 25 iterations, we reinitialize the pheromone information. For
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MMAS, we initialize pheromone trails between all cities to the current maximum,
like at the beginning of the computation, but we keep the best solution founded so
far.

When faced with large problems (especially for TSP), MMAS uses some lo-
cal optimizations. Usually, it implements a candidate list to reduce a number of
possible cities for the next step in the tour construction. For each city, the candi-
date list contains a given number of nearest neighbors sorted in increasing order.
Ants choose cities from the candidate list until all immediate nearest neighbors are
visited. Only then they are allowed to pick a city outside the list.

Finally, MMAS may be augmented with a local search procedure [1]. Usually,
2-opt, 2.5-opt or 3-opt is used. Local optimizations greatly improve a solution’s
quality in ACO algorithms. They are almost mandatory, if we want to use these
algorithms for large TSP instances.

2.1 Operations with the pheromone matrix in MMAS

As was mentioned before, the matrix is usually used to store the pheromone infor-
mation. The number of rows and columns corresponds to the number of cities for
TSP. We will name this matrix T and we will use τx,y to address an element on
x-th row and y-th column. As was mentioned in the previous section, in MMAS,
lower limit τmin and upper limit τmax are imposed on possible pheromone values
on any arc. For MMAS with the local search, the following values are suggested
in [13].

• τmax = 1/(ρ · Cbest), where Cbest is the length of the tour of the best ant
founded so far and ρ is the parameter for evaporation.

• τmin = τmax/(2 ·N), where N is the number of cities.

While τmin and τmax depend on the best solution, they are updated whenever
a new best solution is found. For MMAS with the local search, suggested ρ is 0.2.

We do the following operations with the pheromone matrix in MMAS.

1. Initialization and reinitialization – at the beginning and after the reinitial-
ization all values in the pheromone matrix are set to τmax.

2. Pheromone evaporation – all values in the pheromone matrix are multiplied
by 1− ρ.

3. Update pheromones – in MMAS, only one ant deposits its’ trail. The phe-
romone deposit τ is computed as τ = 1/C, where C is the length the trail.
If the ant went from x to y in iteration i, then τ ix,y = τ i−1

x,y + τ . Moreover,
the same pheromone deposit is also added to the arc form y to x. So, the
resulting pheromone matrix T is symmetric.

3. Disassembled pheromone matrix

If we look on the pheromone matrix in MMAS and how it changes in time, we can
observe that a lot of its cells contain the same value.
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Let τglobal (a global pheromone deposit) in iteration i be:

τglobal =

{
τmax · (1− ρ)i if τmax · (1− ρ)i > τmin

τmin otherwise
.

Hence, i is the number of iterations from the last restart or if there was no restart,
from the beginning of the computation. In other words, τglobal is the pheromone
deposit in pheromone matrix cells, where no ant deposited its pheromones.

In the first experiment, three tests were executed with three different inputs.
For every test, 1000 iterations were computed. We counted the number of cells
that were equal to τglobal. For input

1 eil51 it was in average 97.85% of entries, for
rat783 99.78% and for pr2392 99.93%. These results can be expected, if we realize
that the number of unique ant trails is limited.

At this point, very inspiring for us was paper [8]. In the paper, a new ACO
algorithm named Population Based ACO (PACO) is introduced. The author’s
motivation is different than ours. They used the new ACO algorithm to solve
dynamic optimization problems where the input instance changes during the com-
putation [9]. In PACO, the pheromone matrix is still used, but no pheromone
evaporation is done. There is a queue where ant trails are stored and there is
a limit for the queue size. Whenever we want to deposit an ant trail into the
pheromone matrix, we add this ant trail into the queue and deposit its pheromone
information into the pheromone matrix. If the queue exceeds the given limit, the
oldest ant trail is removed. Also, its pheromone deposit is subtracted from the
pheromone matrix. From our point of view, the interesting result is that PACO
gives comparable results even if the number of ants in the queue is small (in the
paper experiments, the length five is used).

In our work, we tried to use a similar approach, but we want to use MMAS and
get results as close as possible to an original solution, where the pheromone matrix
is straightforwardly represented as an array.

First, the issue how to store ant trails was addressed. ACO algorithms naturally
produce the trail like a sequence of cities. This is inappropriate for our task. We
need to get a target city from a given starting point quickly. That is why ant trails
are represented like an array, where at a position x is a city index where the ant
went from city x. Moreover, if an ant traversed from x to y, it also boosts the
pheromone information from y to x. Hence, trails in the backward direction are
also stored.

For example, if the trail is: 0, 1, 3, 2, 0 then it is represented as two arrays:
[1, 3, 0, 2] and [2, 0, 3, 1]. Note, that 0 at the index 2 in the first array defines that
the ant went from city 2 to city 0.

Also, the ant pheromone deposit is computed and stored. It is implemented as
class AntTrail.

c l a s s AntTrai l {
// . . .
double pheromoneDeposit ;

long int∗ forwardPath ;

1These inputs were taken from TSPLIB. The number in the name corresponds to the number
of cities.
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long int∗ backwardPath ;
// . . .

} ;

In the following subsections, three variants of Disassembled Pheromone Matri-
ces are introduced (Fixed Size DPM, Dynamic Size DPM, Improved DPM ). They
differ in a precision of emulating the original pheromone matrix. Later, a precise
solution (Sparse Pheromone Matrix) is introduced.

The abstract class Pheromones was introduced and all our solutions extend this
class. It has virtual methods that correspond to basic operations for the pheromone
matrix (they were described in Section 2.1).

c l a s s Pheromones {
// . . .
v i r t u a l void in i tPheromoneTra i l s ()=0;
v i r t u a l double get ( long int i , long int j ) =0;
v i r t u a l void evaporate (void ) =0;
v i r t u a l void updatePheromone (Ant &ant ) =0;
// . . .

} ;

Thus during experiments, the algorithm was the same. We just changed the
type of the instance that emulates the pheromone matrix.

3.1 Fixed size DPM

First, we tried to implement the same pattern like the authors of PACO. We used
a queue with a fixed size – ants. It is implemented as an array of pointers to ant
trails. In attribute globalDeposit, τglobal is stored. Virtual methods (pheromone
matrix operations) are implemented as follows:

• initPheromoneTrails – it simply clears ant trails and globalDeposit is set
to τmax.

• evaporate – globalDeposit and pheromone deposits of ant trails are mul-
tiplied by 1− ρ.

• updatePheromone – a new ant’s trail is stored in the queue and the oldest
one is removed, if the queue current size exceeds the limit.

• get – this function returns the pheromone deposit on an arc between cities
x and y.

double FixedSizeDPM : : get ( long int x , long int y ) {
double r e s u l t = g loba lDepos i t ;

for ( int i = 0 ; i < cu r r e n t qu eu e s i z e ; i++) {
AntTrai l t r a i l = ants [ i ] ;
i f ( t r a i l . c onta in s (x , y ) | | t r a i l . c onta in s (y , x ) ) {

r e s u l t += t r a i l . pheromoneDeposit ;
}

}

i f ( r e s u l t < t r a i l m i n ) r e s u l t = t r a i l m i n ;
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i f ( r e s u l t > t r a i l max ) r e s u l t = t ra i l max ;

return r e s u l t ;
}

Methods initPheromoneTrails and evaporate are very fast, even faster than
if we use the matrix (see Section 5). The method updatePheromone is comparable
with its matrix equivalent. But the bottleneck in speed is method get and this
method is used frequently during the tour construction. To improve its perfor-
mance, we have to look at the tour construction algorithm. As was mentioned in
Section 2, the elementary step is that an ant searches for its next step from the
current location. The pheromone information for arcs connecting this city with
other cities or its nearest neighbors can be precomputed.

This can be done by a slight modification of method get. In this modification,
an array with the size equal to the number of cities is used instead of result. Then
similar operations like before are performed, but for all immediate neighbors. To
compute this data, the array of ants needs to be processed, but just once. Then this
buffer is used during the computation. We need to go through the list of immediate
neighbors twice (the initialization and the checking of τmax and τmin), but MMAS
algorithm goes through the list of immediate neighbors as well to choose a next
step. So the resulting implementation of the tour construction is slower, but only
by a small constant factor.

3.2 Dynamic size DPM

Fixed Size DPM introduces a new parameter to MMAS – the length of the queue.
Like other ACO parameters, it is hard to predict what the optimal value is. More-
over, MMAS after 250 iterations boosts only the global best solution. At this point,
there will be only multiple copies of the same trail in the list. So, our second imple-
mentation extends the previous one, but uses a list with a dynamic size. Then ant
trails are removed, if their pheromone deposits become “insignificant“. Moreover,
when we recognize that some ant trail is already present in the list, we just increase
its pheromone deposit and we do not add the second copy to the list.

In our experiments, we remove trails when their current deposit is smaller than
10%, 1%, 0.01% or 0.00001% of their original deposit.

3.3 Improved DPM

A possible improvement without an additional memory, is to remove only selected
arcs in a trail.

Assume, that we have two ant trails: 1, 2, 3, 4, 1 and 1, 2, 4, 3, 1. At some point
in time, none of those ants alone is able to boosts the pheromone information above
τmin after the evaporation. But if they trails are combined together (arcs: (1,2),
(3,4)), then it is above τmin. If the pheromone matrix is used, then the deposit
of such arcs is in fact removed and τmin is used in the matrix instead. These
evaporated arcs do not affect the solution in further steps. This is not true for our
previous solutions. The pheromone deposit is reduced to τmin, if it is bellow τmin,
but these evaporated arcs are still there and they are used.
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It is relatively easy to detect the described situation and it can be solved by
removing evaporated arcs from stored ant trails. During the process, it is possible
to count the number of removed arcs and remove only ant trails with no arcs. But
from a practical point of view, this is not a good solution. Some short arcs are used
by almost all ants. Pheromones on these arcs never evaporate, so consecutively,
trails that use them are never removed.

That is the reason, why the same approximation as before is used. Ant trails are
removed, if their pheromone deposits are smaller than 10%, 1%, 0.01% or 0.00001%
of their original deposit.

3.4 τmax reduction

Even if we remove ant trails based on evaporated arcs, the emulation is not precise.
Similarly to the lower bound, there is a problem with the upper bound. If the
computed pheromone information on some arc exceeds τmax, then contributing
arcs from stored ant trails should be reduced to give together τmax. To implement
such reduction, we need to be able to modify the pheromone deposit for each of
arcs in stored ant trails. A possible solution can be an additional array, where
we store something like pheromone reduction coefficients. The better solution
that precisely emulates the pheromone matrix is introduced in Section 4. So,
for Dynamic Size DPM and Improved DPM, we have solved just one, the most
frequent situation when the pheromone deposit exceeds τmax. That does not require
additional memory.

After some number of iterations, only so far the best ant’s trail is updated.
Its update is bigger than its evaporation. Hence, this pheromone deposit grows in
time. If it exceeds τmax during the computation, it is reduced to τmax. We will
refer to this extension as τmax reduction.

4. Sparse pheromone matrix

The last pheromone structure implements a similar idea like a sparse matrix. We
want to store only cells where values are affected by some ant. While previous
pheromone structures only imprecisely emulate the pheromone matrix, Sparse Phe-
romone Matrix (SPM) precisely represents all values from the original pheromone
matrix. The basic idea is, that we store only values that are different from τglobal.
From previous experiments, we assume that there is only limited number of such
cells.

Let aj is the pheromone deposit of a chosen ant from iteration j. Then ajx,y is
the pheromone deposit on the arc between cities x and y. It is defined as

ajx,y =

{
aj if the ant went from x to y, or from y to x;
0 otherwise.

Let i denote a number of iterations from a last restart or from the beginning.
The pheromone deposit τ ix,y between cities x and y is computed as

τ ix,y = τmax · (1− ρ)i +
i∑

j=1

ajx,y · (1− ρ)i−j .
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Now, it is sufficient to compute
∑i

j=0 a
j
x,y · (1− ρ)i−j for every arc to precisely

reconstruct the pheromone matrix. It is important to mention, that most of arcs
are never visited. The value for these arcs is zero and thus no value is stored. To
store nonzero values in SPM, a hash map is used for each city. We have used a
hash map in order to search values in logarithmic time.

To get the precise emulation of the original pheromone matrix, we need to
enforce τmax and τmin boundaries. The pheromone deposits grow only when some
ant deposits its pheromone trail. During the update, we can simply check τmax

constraint and if the current value exceeds τmax, it is reduced to τmax (similarly as
in Section 3.4). For τmin, we check every computed τ ix,y and if it is bellow τmin, then
τmin is used instead. Moreover, all values that contributed to this computation,
can be safely removed while they evaporated bellow τmin (as in Sectoin 3.3).

In addition, (1 − ρ)i is not computed in every iteration. The value from the
previous iteration is used and it is multiplied by (1− ρ).

5. Experiments

The implemented solutions were tested on large symmetric instances of TSP from
TSPLIB. The second frequently used matrix is a distance matrix. It contains
distances between cities. Its size is similar to the size of the pheromone matrix.
But for example for asymmetric TSP, it is a part of the problem description and
different techniques must be used to address the issue with its size. Potentially,
we can divide it and distribute it among computing nodes, but this enforce us to
use some kind of a data parallelism. For example in [5], they used such technique
to solve some platform dependent issues while implementing ACO on GPUs. For
large distributed memory systems, we have not found a variant that implements a
real data parallelism. Such task may be very challenging. When we use symmetric
instances, we can store only cities positions and compute distances when they
are needed. Still, data parallelism of ACO for distributed memory systems is an
interesting task for a future research.

Our implementation is written in C++ using object oriented programming and
it closely follows guidelines from the book [7]. We were also guided by the software
package ACOTSP [12]. It is freely available GNU General Public License. In fact,
we have used some parts (mainly functions implementing the local search) in our
code. We want to parallelize it using Kaira [3] (a tool that we are developing) in the
future. The implemented source codes are freely available at Kaira’s homepage [4].

There is a randomness integrated into every ACO algorithm. Thus, results can
be different even if the setting is the same. Unless stated otherwise, experiments
were executed ten times and presented results are average values obtained during
these executions. The initial MMAS parameters were set to their default values as
suggested in [7] (number of ants = 25, number of nearest neighbors = 20, α = 1,
β = 2, ρ = 0.2, 3-opt for local search).

In our first experiment, the average and maximum number of trails for Dynamic
Size DPM and Improved DPM were measured. For SPM, the average and maxi-
mum number of stored cells were measured. As the input, pr2392 from TSPLIB
was used and 2000 iterations were computed. The results of the first experiments
summarize Tab. I.
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Matrix Type Number of trails
(when a trail become insignificant) Average Maximum

Improved DPM (0.00001%) 17.49 64
Improved DPM (0.01%) 11.33 38
Improved DPM (1%) 6.00 21
Improved DPM (10%) 3.71 11
Dynamic Size DPM (0.00001%) 23.45 63
Dynamic Size DPM (0.01%) 14.27 38
Dynamic Size DPM (1%) 6.08 21
Dynamic Size DPM (10%) 3.94 11

Number of cells
Average Maximum

Sparse Pheromone Matrix 3031 5440

Tab. I The average number of trails and cells for pr2392.

Based on the first experiment, we can observe that the number of trails remains
very small and it does not depend on the number of iterations. The amount of used
memory depends on the number of stored trails. Thus, the needed memory grows
linearly with the number of cities, while for the matrix, this grow is quadratic.

In the next experiment, we focus on a quality of computed solutions. Three
instances from TSPLIB with an increasing size were chosen and 2000 iterations were
performed in every configuration. A length of the best path and a time needed to
compute these iterations were measured. Tab. II summarizes obtained results.

As we can see, all implemented structures become faster than the traditional
matrix solution for larger instances. The tour construction is slower, the pheromone
update is very similar, but evaporating and the matrix initialization are much faster
in our approaches. Their complexity (considering the number of cities as the input
length) is in Θ(1) or Θ(n) for the initialization of SPM, while for the matrix it is
in Θ(n2). This operation makes the difference for larger instances. Also as can be
expect, the solutions that use more ant trails are slower.

Interesting is also the quality of founded solutions. They all ended up with
a similar solution quality (considering the overall improvement). Versions emu-
lating the pheromone matrix less precisely were sometimes even better than the
traditional matrix variant. But for some stronger conclusions we performed too few
experiments. Some local optimizations may be for example driving the convergence
for the less precise solutions or the reason is the suboptimal initial setting.

Based on these experiments, we can conclude that removing ant trails when
their pheromone deposit is smaller than 0.01% of their original deposit is a good
strategy, while it produced reasonable results in a good time. But the optimal value
for this parameter can be different especially for instances with different sizes. If
we want to incorporate a problem size into this parameter, we can use for example
τmin.

The pheromone deposit of an ant is computed as τ = 1/C, where C is the
trail length. Trails are removed if their current deposit is 0.01% of their original
deposit. Thus, its value is 0.0001 · 1/C. Based on definitions from Section 2.1 can
be observed:
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Name rat783 pcb1173 pr2392
Optimal solution 8806 56892 378032

Length Time (s) Length Time (s) Length Time (s)

Pheromone matrix 8811 36.13 56927 63.00 379122 155.68
Improved DPM
(0.00001%)

8810 42.34 56915 67.07 378981 143.34

Improved DPM (0.01%) 8808 40.20 56922 61.82 379093 139.30
Improved DPM (1%) 8809 39.01 56947 61.32 378974 137.66
Improved DPM (10%) 8809 37.42 56934 59.20 378938 130.10
Dynamic Size DPM
(0.00001%)

8808 42.52 56927 66.32 379203 145.93

Dynamic Size DPM
(0.01%)

8808 41.10 56899 63.78 378842 133.56

Dynamic Size DPM (1%) 8809 38.55 56907 62.04 378942 135.63
Dynamic Size DPM
(10%)

8807 37.77 56945 60.48 379000 129.18

Fixed Size (50) 8807 46.61 56949 72,55 379507 157.09
Fixed Size (25) 8807 42.24 56925 66.29 378966 136.57
Fixed Size (10) 8810 38.97 56966 60.65 379032 135.37
Fixed Size (5) 8810 37.30 56949 57.20 379184 130.54
Sparse Pheromone Ma-
trix

8807 41.82 56934 62.48 379178 140.17

Following experiments use τmax reduction.
Improved DPM
(0.00001%)

8807 43.16 56931 66.42 379127 148.57

Improved DPM (0.01%) 8809 40.76 56919 63.64 378595 140.90
Improved DPM (1%) 8809 38.83 56928 61.77 378869 138.96
Improved DPM (10%) 8810 38.26 56919 60.55 378795 135.25
Dynamic Size DPM
(0.00001%)

8810 41.75 56897 67.90 379035 143.35

Dynamic Size DPM
(0.01%)

8807 44.55 56911 64.56 378785 135.67

Dynamic Size DPM (1%) 8811 38.79 56932 61.15 379172 136.66
Dynamic Size DPM
(10%)

8806 38.32 56973 59.92 378791 132.94

Tab. II Results given by implemented pheromone structures and their performance.

τmax · ρ =
1

Cbest

τmax = 2 ·N · τmin

Considering C in equations above is approximately the same as Cbest then

0.0001 · 1/C =
1

10000 · C
≈ ρ · τmax

10000
=

ρ · 2 ·N
10000

· τmin

For tested instances, the trails were removed when their deposit was approxi-
mately from 3% of τmin (for rat783 ) to 9% of τmin (for pr2392 ). Further on, the
limit 5% of τmin is used for trails removing. Also, the τmax reduction improved the
quality of results. So, it is used.

In our last experiments, two large instances from TSPLIB were solved. Not
only results are presented, but also the progress of computations. While it is
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a computationally demanding task, just one run for each test was performed. In
the first experiment, input usa13509 was used for selected pheromone structures.
in the experiment, imprecise solutions are compared to the original matrix. During
the experiment, 10 000 iterations were computed. Fig. 5 summarizes the results.
All implementations ended up with similar paths lengths. The progress during
the computation was only a slightly different. The computation took 32 646s for
Dynamic Size DPM, 34 708s for Improved DPM, and 41 403s for the matrix.

Finally, the fastest solution – Dynamic Size DPM was used to compute 3 000
iterations for the largest input from TSPLIB – pla85900. It took approximately
30 hours and Fig. 5 captures the progress of the computation.

Fig. 1 The progress of computations for implemented pheromone structures for
input usa13509.

The last two experiments, the solutions were far from the optimum. We believe
that the reason is initial settings of parameters. They were based on experiments
on relatively small instances [13] and they seem inappropriate for large instances.
This can also be an interesting problem for further research.

6. Conclusion and open problems

In this paper, we explored the idea, if we really need to store the pheromone
information in a matrix. Using the matrix is the most common solution for ACO
algorithms. For larger instances, such matrix can be huge. Moreover, only a limited
number of cells contain relevant data. The paper presents a different option. For
MMAS, only ant trails and some additional information are stored. They are used
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Fig. 2 The progress of computations for the largest problem from TSPLIB –
pla85900.

to compose only necessary values of the pheromone matrix and only when they are
really needed during the computation.

We do not argue about theoretical aspects, we simply follow the guidelines for
MMMAS from [7] and various options how to implement this idea are presented.
Results of practical experiments show that presented structures can successfully
emulate the original pheromone matrix and they give reasonable results while using
a considerably less memory. For problem instances with thousands of cities, only
tens of ant trails need to be stored to get similar results. Moreover, our solution
becomes even faster with an increasing problem’s size.

Based on our experiments, we can conclude that Dynamic Size DPM with τmax

reduction and 0.5% of τmin as a limit and Sparse Pheromone Matrix are the best
candidates to store the pheromone information. For Dynamic Size DPM it is easy
to determine (or limit) the needed memory. It produces reasonable results and
it was the fastest variant. Sparse Pheromone Matrix is the only variant precisely
emulating the original matrix. Moreover, it is even faster for large instances. The
needed memory depends on an input instance and may be different for different
executions.

Our motivation for this task was the adjustment of MMAS for massively parallel
systems with the distributed memory. For the parallelization in the distributed
memory environment, a huge pheromone matrix presents an issue, because it is
not easy to distribute and update such a large structure. Also an interesting topic
for future research can be a fact, that during the experiments our disassembled
solutions gave sometimes even better results than the original pheromone matrix.
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[3] BÖHM S., BĚHÁLEK M., MECA O., ŠURKOVSKÝ M. Kaira: Development environment
for MPI applications. In: Proceedings of the 35th International Conference on Application
and Theory of Petri Nets and Concurrency, Tunis, Tunisia. Springer International Publishing,
2014, pp. 385–394, doi: 10.1007/978-3-319-07734-5 22.
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