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Abstract: This work presents a Self Organizing Map (SOM) based queue manage-
ment approach against congestion in autonomous Internet Protocol (IP) networks.
The new queue management approach is proposed with consideration to the pros
and cons of two well-known queue management algorithms: Random Early Detec-
tion (RED) and Drop Tail (DT). At the beginning of this study, RED and DT are
compared by observing their effects on two important indicators of congestion: end-
to-end delay and delay variation. This comparison reveals that the performances of
RED and DT vary according to the level of global congestion: under low congestion
conditions, when packet losses caused by congestion are unlikely, DT outperforms
RED; while under high congestion, RED is superior to DT. The SOM based ap-
proach takes into account the variations in the global congestion levels and makes
decisions to optimise congestion avoidance. A centralized observation unit is de-
signed for monitoring global congestion levels in autonomous IP networks. A traffic
flow is generated between each router and the observation unit so as to follow the
changes in the global congestion level. For this purpose, IP routers are specialized
to send packets carrying queue length information to the observation unit. A SOM
based decision mechanism is used by the observation unit, to make predictions on
the future congestion behavior of the network and inform the routers. Routers use
this information to update their congestion avoidance behavior, as their ability to
update their RED parameters is enhanced by the congestion notifications sent by
the observation unit. In this work, multiple simulations are undertaken in order to
test the performance of the proposed SOM-based method. A considerable improve-
ment is observed from the point of view of end-to-end delays and delay variations,
by comparison with DT and RED as used in recent IP networks.
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1. Introduction

Congestion occurs in a network when the capacity of resources (such as buffer
space in a router and link bandwidth) become insufficient, generally as a result
of overload, to meet overall demand [8, 25]. Persistance of congestion increases
the quantity of packet losses, end-to-end delays and delay variations (jitters), on
which most Quality of Service (QoS) requirements have constraints. In order to
satisfy QoS requirements, the problem of congestion demands serious attention.
As described in [25], congestion control and congestion avoidance are two different
approaches used for dealing with congestion: congestion control is a reactive ap-
proach that is applied to already congested networks, while congestion avoidance
is used as a prevention against congestion. In this work, congestion avoidance is
examined under the scope of queue management algorithms and global congestion
behavior of multi-bottleneck IP networks is considered. As explained in [27], main
considerations of this study may be summarized through the following steps:

• presentation of a centralized observation method for monitoring global con-
gestion

• design of an observation unit that collects queue length information from
router output interfaces

• training of a Self Organizing Map (SOM) with the collected queue length
information

• utilization of the SOM to visualize global congestion and to make predictions
on the future of congestion

• generation of a congestion notification traffic to inform routers about the
global congestion level

The new queue management approach, which is proposed as a part of this
work, aims for the treatment of end-to-end delays/delay variations, by controlling
the number of packets queued in router output interfaces. As a result, necessary
updates are performed on the new queue management technique, upon receiving
the congestion notification sent by the observation unit. In this work, a centralized
solution to congestion avoidance problem in the multi-bottleneck environment is
proposed. However it may also be adopted to solve each router’s individual conges-
tion avoidance problem. In fact, providing decentralized solutions for congestion
arising at routers is the main aim of the SOM based approach. Performance of the
SOM based approach is verified by the Opnet Modeler simulation program. Simu-
lation results are used to make comparisons with DT and RED algorithms, which,
in the existing network infrastructure, would be largely used against congestion.
The results of the centralized approach presented in this study, show the potential
of the SOM based approach also for solving the decentralized congestion avoidance
problem.

This paper is organized as follows: Section 2 is a motivation for the reader.
Principles of passive and active queue management are explained here by refer-
encing to well-known algorithms such as DT and RED. Main problem statement,
utilization of SOMs in monitoring tendency of global congestion, definition of some
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parameters used in statistical data analysis and development of the new queue
management approach are all presented in Section 3. In the Section 4, details are
given of simulations investigating the performance of the new queue management
approach and results are discussed. Last section presents concluding remarks.

2. Bottlenecks and queue management

Bottleneck is a general name given to nodes (such as router output interfaces) or
transmission links shared by multiple traffic flows. It is well-known that congestion
problems arise at bottlenecks as a result of heavy traffic load and limitations in
link/queue capacities. For example, congestion is likely to occur at bottleneck
links when the demand of multiple traffic flows sharing the same link goes beyond
the available transmission capacity. Each output interface of a router is also a
potential bottleneck for the network and local congestions may occur at these nodes.
Packets are either queued or dropped at bottlenecks, therefore the management of
queues at bottlenecks is an important challenge. Congestion avoidance, that is
to say, depends on queue management algorithms being employed at bottlenecks.
Queue management may be studied under two main types, as the Passive Queue
Management (PQM) [2] and the Active Queue Management (AQM), which are
explained below with example approaches.

Queue management first originated with the development of PQM algorithms.
The simplest and most widely used of which is DT, whose operation principles
almost characterize PQM. A DT applied queue accepts arriving packets untill the
maximum queue length is reached; at which point all arriving packets are rejected
(dropped) pending sufficient space being gained with transmissions [14].

As defined in [3], AQM is a preventive queue management technique that pre-
dicts congestion before it occurs and informs end users to decrease the amount of
traffic and thus prevents packet losses related with buffer overflow. For the pur-
pose of improving queue management and congestion avoidance in the Internet, the
utilization of the RED algorithm is suggested for providing AQM in routers [14].
Maintaining an upper bound on the average queue length, avoiding biases against
bursty traffic and providing a solution for global synchronization are the achieve-
ments of RED that is presented in [7]. In the RED algorithm, marking (dropping)
probability for the new arrival, pa, is calculated as follows [7]:

pa = pb/(1− C · pb),

where pb is the marking probability and C is the number of arrivals since the last
marking (dropping).

The partial expression of pb is given below:

pb =


0, qave < tmin
pmax(qave−tmin)

tmax−tmin
, tmin ≤ qave ≤ tmax

1, tmax < qave

,
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where qave is the average queue length and pmax is the value of packet marking
probability for qave = tmax. The value of qave is updated at packet arrival times by
the following equation:

qave = qavep (1− wq) + wqq,

where qavep is the previous value of the average queue length, q is the current value
of the queue length and wq is the queue weight. Rules for assigning values to tmin,
tmax and wq are also given in [7].

There are some difficulties/drawbacks related with RED implementations. It
is stated in [6] that the performance of RED varies according to the variations in
congestion status, owing to static parametrization. Such variations in the queue
management performance cause an instability observable as oscillations in queue
lengths [3]. In [4], attention is drawn to long jitter (delay variation) characteristic
of RED when traffic is non bursty, and in [1], to its inability to provide high
link utilization and low delay simultaneously during congestion. These weaknesses
of RED have attracted attention among network researchers and various RED
variants are proposed to improve queue management quality. In [19] an adaptive
nonlinear active queue management method has been proposed. Here it has been
argued that the RED performance is greatly affected by the shape of the incoming
traffic and the parameter setting has a substantial influence on the effectiveness
of the RED algorithm. In this work a dynamic parameter estimation model is
offered in the queue management in order to reduce the effect of sensitivity of RED
parameters. In another recent work [24] a control based approach is proposed to
adapt the RED parameters. This work proposes an adaptive predictive congestion
controller and neural based controller in order to predict the dynamics of the queue
management algorithm and claims promising results. In [11] a novel autonomous
adjustment controller is introduced for eliminating the shortcomings of predefined
RED parameters.

The importance of AQM algorithms in TCP/IP networks is explained in [2].
In literature, it is also possible to find the applications of robust control princi-
ples on AQM algorithms. For example, stability of queue lengths is considered in
studies [12] and [13] where controller designs using Proportional (P) control and
Proportional-Integral (PI) control techniques are presented. A robust H∞ con-
troller is developed and its advantages over RED and PI schemes are presented
in [23].

3. SOM and the SOM based approach

In this work, a SOM based AQM approach is proposed by considering the global
congestion behavior of multi-bottleneck networks. The main motivation of the
proposed method is to prevent potential deteriorations in the performance of mul-
tipath routing schemes by predicting the possible congestion in the routers. Here
it focuses on the respective characteristics of congested or uncongested nodes in
autonomous systems to deduce the likelihood of near-immediate congestion, and
on modifying the RED parameters to increase total throughput. When routers are
thus informed (since their interface queues accommodate queue management algo-
rithms), they interpret any variation in global congestion level as a sign of future
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congestion status. Being focused on the global congestion problem in IP networks
has led us to follow the changes in the queues of router output interfaces. The
information gathered from different interfaces is used by a SOM and, in this way,
it becomes possible to deduce the future behavior of global congestion. At this
point, some information about SOMs will be helpfull.

3.1 SOM

SOM is a special method of artificial neural networks, which allows unsupervised
learning scheme to implement a transformation from a high-dimensional space of
input vectors onto a one/two dimensional array of neurons [15–17]. Fig. 1 shows a
SOM configuration and a mapping example. The two dimensional SOM in Fig. 1
is composed of n neurons and each hexagonal neuron is surrounded by at most
6 neighbouring neurons. For preventing visual complexity in the figure, only the
connections for the first neuron are drawn. As seen in Fig. 1, a weight vector
mi = [mi1,mi2, . . . ,mil]

T
is associated with neuron i and an input vector x =

[x1, x2, . . . , xl]
T
is accepted to be virtually connected to all neurons in parallel via

weights mij (i = 1, 2, . . . , n and j = 1, 2, . . . , l), where T stands for the transpose
operation [15]. At the outset, it is necessary to have a sufficiently large collection
of input vectors,with which to produce a SOM to represent this multi-dimensional
data (with a limited number of neurons) and to make classifications on it, as desired.
An initial weight vector is assigned to each neuron and a sample xs is randomly
selected from the collection of input vectors. Then, to find out the neuron which
best represents the selected sample, xs is compared with every mi value. Euclidean
distance, ∥xs −mi∥, is an effective measure of similarity between an input vector
and a neuron. As a result of the comparison based on euclidean distances, the
neuron with the smallest Euclidean distance to the input vector is obtained. We
dub this “winner” neuron as the “Best Matching Unit (BMU)” [15]. After finding
the BMU, weight vectors are updated due to the following formula [17]:

mi(t+ 1) = mi(t) + hci(t) [x(t)−mi(t)] ,

where mi(t) is the weight vector mi at time t, x(t) is the input vector at time t
and hci(t) is the neighborhood function at time t. The update operation for hci(t)
is performed by considering the neighborhood around the BMU [17]:

hci(t) = α(t) exp

(
−∥rc − ri∥2

2σ2(t)

)
,

where
α(t): learning rate factor, 0 < α(t) < 1,
rc, ri: location vectors of neurons c and i, respectively, where c, i = 1, 2, . . . , n,
σ(t): width of the neighbourhood function.

The procedures of BMU detection and weight update are repeated for other ran-
domly selected inputs, untill a desired number of iterations are completed. Each one
of the publications [15] and [10] includes a detailed explanation of building/training
a SOM.
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Fig. 1 Configuration of a SOM.

The SOM algorithm is used in many research areas, such as signal processing,
speech analysis, data communication, etc. For example, in [27], a new approach
has been proposed to define RED parameters in IP networks. [20, 21] are studies
where dynamical properties of an IP network traffic is analyzed with the aid of the
SOM. In [20], real environment measurements of QoS-related parameters, such as
end-to-end delay and packet loss rate are used to train the map; by this way QoS
level of the communication could be estimated. Another work [18], introduces an
adaptive RED algorithm, KRED, which uses Kohonen neural network model to
solve the stability problem in queue lengths. L-RED, which is proposed in [5], is
an example study for the usage of neural networks in AQM: a variant of RED with
prediction ability is introduced for increasing network utilization rate.

In this work, a SOM based AQM approach is proposed and simulations are
performed for testing its performance. This approach depends on the adaptation
of RED to the changes in the congestion level by considering the general effects of
local congestions on the global congestion. SOM architecture is used to study the
tendency of global congestion level and to make future predictions.

3.2 The SOM based approach

Finding a trade off between delay and throughput has been a favorite research
area since both schemes are emphasized in determining QoS requirements for IP
networks. Minimizing delays/delay variations without compromising throughput
is one of the major aims of current queue management algorithms, which basically
amounts to finding a trade off between the pros and cons of PQM and AQM meth-
ods. [4] presents simulation results for the comparison of two queue management
algorithms: DT and RED; [22] explains the advantages of each and foresees posi-
tive results in a combination of the two. Our approach, with the addition of the
global congestion data determined through the SOM algorithm, is to harness the
advantages of both DT and RED. In the routers of an uncongested/low congested
network, DT is the better option for prevention of unnecessary early drops, effective
use network resources, and maximising throughput and link utilization. Conversely,
in cases of high or increasing congestion levels of the network, DT queues suffer
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from full queue and lock out problems, and delays/delay variations increase. The
SOM based approach, uses the advantages of both schemes to improve RED. We
opted to make variations on RED, rather than switching between DT and RED,
to make RED sensitive to global congestion notifications.

At the beginning of this study, a centralized observation unit is designed to pro-
vide communication with all the routers in an autonomous IP network. IP routers
are then specialized for communicating with the observation unit and in order to
make necessary updates in their queue management schemes with respect to the
congestion notifications. The management of queues in router output interfaces
are provided by the SOM based approach. At the beginning, a SOM structure is
produced by following the congestion status of all router queues in a traffic sce-
nario case. Equipped with this congestion information, the trained SOM presents
the future tendency of global congestion. The information provided by the SOM
is then interpreted for making variations on the congestion avoidance algorithms
for router queues. An example autonomous network model featuring our SOM
based approach takes place is shown in Fig. 2. There are a number of routers
providing communication between various source-destination pairs. All routers are
directly connected to an observation unit via a centralized router. The details of
this network model are given in Section 4. The development of the SOM based
approach may be summarized in the following steps (details of Steps 1–6 are ex-
plained in [27]):
Step 1: In order to follow the global congestion status of the network, the sum
of queue lengths on output interfaces of all routers is observed. A list of sums is
produced by using the sum values collected during a period of time,

Sk = q1k + q2k + · · ·+ qfk,

where Sk is the k-th sample among the list of observed sums, qmk is the k-th
sample of the queue length at output interface m (m = 1, 2, ..., f , where f is the
total number of output interfaces).
Step 2: Groups of sums are obtained by taking Z consecutive sum values from the
list produced in Step 1. A window of size Z is shifted by P (P < Z) values each
time a group is produced, such that each group is made to have Z − P common
values with the previous group.

gi =
{
S(i−1).P+1, S(i−1).P+2, · · ·S(i−1).P+Z

}
,

where gi is the i−th group of sums. For example, if Z = 4 and P = 2, then the
groups will be formed as follows:

g1 = {S1, S2, S3, S4} ,

g2 = {S3, S4, S5, S6} ,
...

and so on.

Step 3: Mean, variance, skewness, kurtosis values of each group are obtained to
perform a statistical analysis.
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Mean of gi is obtained by using the following equation, where xij is the j-th
element of gi (where i = 1, 2, ...m):

µi =
1

Z

Z∑
j=1

xij .

Variance of gi is obtained by the following equation:

ϑi =
1

Z − 1

Z∑
j=1

(xij − µi)
2.

In [9], skewness is described as “an indication of the extent of deviation from
symmetry”. Skewness of gi is obtained by using the following equation:

δi =
1
Z

∑Z
j=1(xij − µi)

3[√
1
Z

∑Z
j=1(xij − µi)2

]3 .
“Kurtosis is the degree of peakedness of a distribution” [9]. Kurtosis of gi is

obtained by the following equation:

κi =
1
Z

∑Z
j=1(xij − µi)

4[√
1
Z

∑Z
j=1(xij − µi)2

]4 .
After normalization, mean, variance, skewness and kurtosis of a group will be

used as the components of an input vector to the SOM, during the training process.
Step 4: A ‘label’ is appended to each input vector, in order to classify the input
with respect to the congestion level it represents. In labelling, the mean value is
considered as an indicator of global congestion level. Tab. I shows the intervals of
meani and the corresponding label values utilized in this study.
Step 5: SOM structure is defined and training is performed to obtain the final
form of the map.
Step 6: The BMU neurons are investigated to describe the congestion behavior of
the network. A neuron is said to be hit when it is chosen as the BMU for an input
vector. The BMU neurons hit by input vectors with the same ‘label’s are grouped
to build regions, such that each region corresponds to a different congestion status.
Step 7: After training, SOM structure is embedded in the centralized observation
unit and it is used to follow the tendency of global congestion. The queue length
information received by the observation unit is used to produce input vectors to
the SOM. The BMU corresponding to the applied input is identified, and the
information about the BMU environment is sent encapsulated in reply packets, from
the observation unit to routers. In addition, an active queue management scheme
is implemented at each router output interface, so that RED parameters (tmax

and pmaxden
, where pmaxden

= 1/pmax) are updated with respect to the congestion
status of the network. The regions of current and previous BMUs are investigated
in each router and a congestion alarm number is generated. If the global congestion
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µi interval label
100 > µi 0

200 > µi ≥ 100 1
300 > µi ≥ 200 2
400 > µi ≥ 300 3
500 > µi ≥ 400 4
600 > µi ≥ 500 5
700 > µi ≥ 600 6
800 > µi ≥ 700 7
900 > µi ≥ 800 8

µi ≥ 900 9

Tab. I Labels assigned to input vectors with different mean values.

status is low, congestion alarm number is 1 and RED parameters (tmax and pmaxden
)

should be changed for preventing unnecessary early drops. In that case, the queue
management scheme will be more like DT. As the global congestion status increases,
congestion alarm number moves from 1 to 4 which provides early drops.

What is outlined in these seven steps may be considered as either a preven-
tive approach for possible congestion in future or a curative treatment to eliminate
current congestion. The steps, in short, represent an important purpose: avoiding
the propagation of congestion, that is to say, minimising the overloaded-queue and
packet-loss problems, occurring at a network node, before effecting the neighbour-
ing nodes.

4. Simulations and results

In order to train the SOM deployed in the central observation unit, it is necessary to
track the global congestion behavior of an autonomous IP network. The proposed
method is described in the following subsection.

4.1 Observation of the variations in the global congestion
level

To obtain data on the congestion behavior of a network, it is necessary to refer
to the queue lengths on router output interfaces. The network model seen in
Fig. 2, is designed with the aid of the OPNET Modeler. The network has five
IP routers (node 8, node 9, . . ., node 12), four client-server pairs (node 0-node 6,
node 1-node 7, node 2-node 4, node 3-node 5) and a centralized observation unit.
Clients, servers and the observation unit are connected to the edge routers by
‘10BaseT’ links with a transmission rate of 10Mbps. The links between routers
are ‘PPP E1’ with a transmission rate of 2.048 Mbps. An ftp traffic is generated
between workstations and servers. In OPNET Modeler, FTP Traffic is provided
by means of 10 FTP Profiles each of which defines an FTP application (FTP
services are supported by the servers named node 4, node 5, node 6, node 7 as
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Fig. 2 Network model for simulation scenarios explained in subsections 4.1 and 4.4.

seen in Fig. 2). Tabs. II–IV present the details of the FTP profiles and the FTP
applications.

In addition to the ftp traffic, there exists a traffic between routers and the obser-
vation unit: IP packets carrying the queue length values are sent to the centralized
observation unit. Each of these special packets originates in one of the routers and
carries information about the output interface and its queue length. In the obser-
vation unit, these packets are received and the queue length values are collected

Start time of the profile Duration of the profile

Name Client-Server Mean Mean

of the pair Distribution outcome Distribution outcome

profile type (seconds) type (seconds)

P1 node 0-node 6 constant 10 constant 20
P5 80 30

newp1 31 48
P2 node 1-node 7 constant 10 constant 20
P6 80 30

newp2 31 48
P7 node 2-node 4 constant 80 constant 30

newp3 31 48
P8 node 3-node 5 constant 80 constant 30

newp4 31 48

Tab. II FTP Profiles used in simulations.
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Repeatability of FTP application

in the profile

Name FTP Application

of the executed within the Distribution type of Mean outcome for

profile profile inter-repetition time inter-repetition time

(seconds)

P1 A1
P5 A5

newp1 newapp1
P2 A2
P6 A6 exponential 300

newp2 newapp2
P7 A7

newp3 newapp3
P8 A8

newp4 newapp4

Tab. III FTP Applications executed within FTP Profiles.

Inter-request time for

FTP file transfer FTP file size

Name of the

application Distribution Mean outcome Distribution Mean outcome

type (seconds) type (bytes)

A1 constant 0.01 constant 1000
A2 0.01 1000
A5 constant 0.003 constant 1000
A6 0.003 1000
A7 0.003 1000
A8 0.003 1000

newapp1 constant 0.1 constant 1
newapp2 0.1 1
newapp3 0.1 1
newapp4 0.1 1

Tab. IV Properties of FTP file transfer.

(together with the receipt time). DT (FIFO mechanism with disabled RED criteria
and a buffer size of 300 packets) is used as the queue management scheme in the
routers. Finally, the information received by the observation unit is used to train a
SOM. In our network model, there are 25 router output interfaces. Data groups are
produced by taking 50 consecutive sum values (each of these values is the sum of
queue lengths at 25 interfaces). A window of size 50 (Z = 50) values is shifted by 5
(P = 5) values each time a group is produced, therefore each group is made to have
45 common values with the previous group. Mean, variance, skewness, kurtosis of

149



Neural Network World 2/15, 139-160

Fig. 3 A magnified part of the trained map with hit and frequency values.

each group are found and normalized due to variance criteria. Normalized values
of µi, ϑi, δi, κi are used to form an input vector, which will be used to train SOM.
‘label’s are assigned to input vectors, in order to label them with respect to the
congestion level they represent.

By the end of this step, data vectors (1× 4) are produced to be used as inputs
for the SOM. Each input vector has an appended label value which represents the
level of global congestion. Input vectors are used during the training process.

Training is performed by the help of the SOM Toolbox for MATLAB [26]. The
end-product of the training is a SOM and a codebook matrix. In this work, the
map size of the trained SOM is chosen as 20× 20 with 400 neurons; the codebook
matrix is composed of codebook vectors of size 1 × 4. A neuron is said to be hit
when it is chosen as the BMU for an input vector. In our proposed method, not
only the hit values but also the frequencies of the hits are taken into consideration
while studying the congestion behavior. The trained map is shown in Fig. 3, where
the information carried by a neuron is presented as follows:

hit1(f1)
hit2(f2)

...
hitn(fn).
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This representation shows that the neuron is hit for n different labels (hit1, hit2,
. . ., hitn). The frequency values in paranthesis, f1, f2, . . . , fn, show the number
of hits for that label. A weighted averaging technique is used to represent each
neuron by a single label value:

(hit1) · f1 + (hit2) · f2 + . . .+ (hitn) · fn
f1 + f2 + . . .+ fn

The result of the above equation is rounded up to obtain the average label value
of each neuron. The SOM obtained in this subsection will be used in Scenario 3.

The performance of our new queue management approach is verified through
a number of simulations. Under each simulation case, three different scenarios
are generated: in Scenario 1 and Scenario 2, the performances of DT and RED
are tested, respectively; in Scenario 3, the SOM based approach is used for queue
management and simulation results are obtained in order to make comparisons with
Scenario 1 and 2. The details about these scenarios are explained in the following
subsections.

4.2 Scenario 1 (DT)

In this scenario, DT (FIFO mechanism with disabled RED criteria and a buffer
size of 300 packets) is used as the queue management scheme in the routers. The
network model in Fig. 4 is used for simulation. Unlike Fig. 2, the network model in
Fig. 4 does not have an observation unit to collect queue length information from
the routers.

4.3 Scenario 2 (RED)

In this scenario, RED is used as the queue management scheme in the routers. The
values of RED parameters are as follows:
• tmin = 100 packets,
• tmax = 200 packets,
• pmaxden

= 1
pmax

= 10,

• wq = 2−9.
As in Scenario 1, the network model in Fig. 4, is used for simulation of Scenario 2.

4.4 Scenario 3 (SOM based approach)

The resulting SOM structure described in subsection 4.1 is used in the simulation
of Scenario 3. At specific times, the vector of mean, variance, skewness, kurtosis
values is applied as an input to the previously obtained SOM. Euclidean distance
of this vector to each SOM codebook vector is calculated. The neuron whose
codebook vector is the most similar to the input vector -with the smallest euclidean
distance- is the BMU for this input. Fig. 3 shows the hit and frequency values of
the neurons on the SOM. A weighted averaging technique is used to represent each
neuron by a single label value. Fig. 5 shows the SOM with new label values. For
estimating future congestion status, the congestion regions (R1, R2 and R3) shown
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Fig. 4 Network model for Scenarios 1–2.

in Fig. 5 are carefully examined. These regions differ from one another by the level
of congestion they represent:

• Neurons with average label values 0 and 1 (dark gray neurons in Fig. 5) are
grouped to form region R1. R1 represents the network status with no global
congestion problem.

• Neurons with average label values between 2 and 5 (white neurons with label
values in Fig. 5) represent R2, which is the region between R1 and R3.

• Neurons with average label values greater than or equal to 6 (light gray
neurons in Fig. 5) are grouped to form region R3. R3 represents the status,
where the congestion problem is in need of serious attention.

• Neurons with no hit values (empty white neurons in Fig. 5) are ineffective in
updating RED parameters. If one of these neurons is chosen as the BMU,
RED parameters keep their previous values.

As seen in Fig. 3, there are a few neurons which represent a special case: they
are hit not only by inputs with labels less than 6, but also by inputs with labels
greater than 6, which means that they represent characteristics of more than one
region. When one of these neurons are chosen as the BMU, mean value in the
input vector is taken into consideration for updating RED parameters. Scenario 3
provides the estimation of RED parameters. The queue management scheme used
in this scenario is a RED variant whose parameters are given in Tab. V, where
K stands for congestion alarm number and it takes integer values between 1 to 4.
The value of K varies proportionally to the global congestion level. If the network
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Fig. 5 Self organizing map with regions.

is highly congested (or tends to be so), K becomes 4; as congestion level decreases
(or tends to decrease), K also decreases. In Scenario 3, a movement towards region
R2 is considered as a sign of increasing/decreasing congestion. For example, a
movement from R1 to R2 indicates an increase tendency of the congestion level
and a movement from R3 to R2 shows the tendency to decrease. RED parameters
are updated by estimating the future global congestion level. As seen in Tab. V,
the value of tmin is kept constant while tmax and pmaxden

values are changed with

Region of Region of K tmin tmax pmaxden

previous BMU current BMU
R1 R1 1 100 295 1000
R1 R2 2 100 290 1000
R1 R3 4 100 200 10
R2 R1 1 100 295 1000
R2 R2 previous value 100 previous value previous value

R2 R3 4 100 200 10
R3 R1 1 100 295 1000
R3 R2 3 100 205 10
R3 R3 4 100 200 10

Tab. V BMU regions and RED parameters for Scenario 4.
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respect to BMU movements in the SOM. tmax and pmaxden
are evaluated due to the

following formula:

tmax =

{
200 + (Kmax −K) · si, K > Kmax/2
295− (K −Kmin) · sd, K ≤ Kmax/2

,

pmaxden
=

{
10, K > Kmax/2
1000, K ≤ Kmax/2

,

where Kmax is the maximum value of the congestion alarm number (as seen in
Tab. V, Kmax = 4); Kmin is the minimum value of the congestion alarm number
(as seen in Tab. V, Kmin = 1); si is the amount of an increment step in tmax (here,
si = 5); sd is the amount of a decrement step in tmax (here, sd = 5).

The network model which is used for the simulation of Scenario 3 is shown in
Fig. 2. As seen in Tab. V, the greatest values assigned to tmax and pmaxden

are 295
and 1000, respectively. These values are used when the BMU exists in R1, meaning
low/decreasing congestion, and the queue management scheme is forced to operate
like DT. When the current BMU is in region R2, region of the previous BMU is
considered in order to determine the tendency of congestion: if the previous region
was R1, the congestion level tends to increase, so the value of tmax is decreased to
290 from 295 to encourage packet drops; conversely for R3, where the congestion
is likely to decrease, tmax is increased to 205 from 200 to improve the number of
queued packets since the congestion is likely to decrease. When the current BMU
exists in R3, the congestion level is high/increasing and the smallest values are
assigned to tmax and pmaxden

. These are the values used for the RED parameters
in Scenario 2.

A number of simulations have been performed as a part of this study. In this
section, the average of the simulation results are presented in Fig. 6–Fig. 11. Each
figure has 2 graphs and each graph is composed of 3 curves: the curves obtained
for Scenario 1: DT (thin solid line), for Scenario 2: RED (dashed line) and for
Scenario 3: SOM (thick solid line). The graphs present the results of various
statistics: ftp traffic sent, ftp traffic received, throughput, end-to-end delay, end-
to-end delay variation. The reason for plotting the graphs of two global statistics,
sent and received traffic, is to observe throughput. In single bottleneck networks, it
is easier to capture the throughput of the link. However, the throughput in multi-
bottleneck networks, like the one which is modeled in this work, is calculated by the
ratio of traffic received to traffic sent through the network. In this work, the figure
for throughput results, Fig. 7, is plotted by using the periodically calculated ratio
values. Duration of each simulation is 110 sec, where [0–80] sec. is the time interval
when the global congestion level is low, while [80–110] sec. is the interval of highly
congested traffic. When the performances of RED and DT are compared, it is seen
that DT performs better (with less delay/delay variation) under low congestion;
while RED is preferrable to DT under high congestion.

The results of the SOM based approach show that it is possible to minimize
delay/delay variation, under varying congestion conditions. In the interval [0–80]
sec., the SOM based approach performs comparably with DT while in the interval
[80–110] sec., its performance is as good as RED’s. The summation results for end-
to-end delays are shown in Tab. VI while the improvement percentages of RED
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and the SOM based approach against DT are seen in Tab. VII. The results for
delay variations are given in Tab. VIII and Tab. IX. These tables show clearly
how the SOM based approach combines the advantages of RED and DT in order
to provide a solution for QoS requirements related with delays. Additionally, the
improvements in minimizing delays and delay variations do not cause a decrease in
throughput, as seen in Fig. 7.
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Fig. 6 (a) FTP Traffic sent in the network, (b) FTP Traffic received in the network
(Scenario 1 (thin solid line), Scenario 2 (dashed line), Scenario 3 (thick solid line)).
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Fig. 7 Throughput (found by calculating the ratio of FTP Traffic received in the
network to FTP Traffic sent in the network), (Scenario 1 (thin solid line), Scenario
2 (dashed line), Scenario 3 (thick solid line)).
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Fig. 8 Moving average of end-to-end delay measured between (a) node0 and node6,
(b) node1 and node7 (Scenario 1 (thin solid line), Scenario 2 (dashed line), Sce-
nario 3 (thick solid line)).
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Fig. 9 Moving average of end-to-end delay measured between (a) node2 and node4,
(b) node3 and node5 (Scenario 1 (thin solid line), Scenario 2 (dashed line), Sce-
nario 3 (thick solid line)).

Scenario 1 Scenario 2 Scenario 3
Client-Server (DT) (RED) (SOM)
node0-node6 471.6366 387.0474 369.4892
node1-node7 471.5646 388.1737 370.9732
node2-node4 473.3798 359.7726 330.4746
node3-node5 472.2996 360.5875 328.5377
TOTAL 1888.8806 1495.5812 1399.4747

Tab. VI Sum of end-to-end delay values (in seconds) measured between client-
server pairs and the overall sum.
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Fig. 10 Moving average of end-to-end delay variation measured between (a) node0
and node6, (b) node1 and node7 (Scenario 1 (thin solid line), Scenario 2 (dashed
line), Scenario 3 (thick solid line)).
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Fig. 11Moving average of end-to-end delay measured between (a) node2 and node4,
(b) node3 and node5 (Scenario 1 (thin solid line), Scenario 2 (dashed line), Sce-
nario 3 (thick solid line)).

Congestion avoidance method Improvement percentage [%]
RED 20.82

SOM based approach 25.91

Tab. VII Improvement percentages of RED and the SOM based approach, against
DT, in end-to-end delays.

5. Conclusion

In the literature of data communication networks, there exist numerous studies
on developing congestion avoidance algorithms and queue management schemes.
RED and DT are two of the most famous and widely cited queue management ap-
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Scenario 1 Scenario 2 Scenario 3
Client-Server (DT) (RED) (SOM)
node0-node6 384.7935 386.6607 333.6449
node1-node7 390.6685 385.4089 337.1229
node2-node4 275.4269 244.7331 226.5750
node3-node5 275.4535 247.7059 227.1142
TOTAL 1326.3424 1264.5086 1124.4570

Tab. VIII Sum of end-to-end delay variation values (in seconds) measured between
client/server pairs and the overall sum.

Congestion avoidance method Improvement percentage [%]
RED 4.66

SOM based approach 15.22

Tab. IX Improvement percentages of RED and the SOM based approach, against
DT, in end-to-end delay variations.

proaches. At the beginning of this study, the performances of RED and DT are in-
vestigated under dynamically changing congestion conditions in a multi-bottleneck
network. From the perspective of minimizing delays/delay variations, the results
of comparison show how hard it was to prefer one approach to the other. The
performance of RED was inferior to DT, in low/decreasing congestion conditions,
owing to its early drop mechanism and static threshold values. Conversely, full
queue and lock out problems made DT less effective than RED at minimising
delays/delay variations in high/increasing congestion conditions. Development of
a new queue management approach is inspired by the advantages/drawbacks of
RED/DT implementations in multi-bottleneck networks. In this study, the new
queue management scheme is offered by using SOM based approach in order to
combine the advantageous features of both RED and DT methods.

In order to follow the variations in the global congestion level of an IP network,
a centralized observation unit is presented. Since the queue lengths at router out-
put interfaces are important indicators of congestion, IP routers are specialized to
inform the observation unit about the changes in their queue lengths by sending
information packets. The information collected by the observation unit is used to
train a SOM. After training, SOM structure is embedded in the observation unit,
ready to determine the tendency of global congestion level. Besides monitoring
global congestion level, the observation unit also notifies the routers about the ten-
dency of congestion behavior. IP routers are improved to accept the notifications
from the observation unit and manage their queue lengths with respect to the SOM
based approach. OPNET Modeler is used not only for building network models
with improved IP routers and the centralized observation unit but also for making
simulations. Simulations play an important role in testing the performance of SOM
based approach and making comparisons with RED and DT. The performance of
the SOM based approach is verified through a number of simulations and the aver-
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age of results is presented in this paper. Simulation results show that, SOM based
approach presents a considerably improved performance on minimizing end-to-end
delays and delay variations. Drawbacks of RED/DT are successfully eliminated
without causing a decrease in throughput. Hence, our approach merits attention
for providing congestion avoidance in multi-bottleneck IP networks.

The focus of this particular study has been the development and utilization of
the SOM based approach in a centralized manner. This is not to imply, however,
that the area of interest for this approach is limited to centralized congestion avoid-
ance. The approach may also be adopted for decentralized congestion avoidance,
whereby, each router considering the tendency of global congestion may manage
its interface queues independently. Decentralized congestion avoidance with the
SOM based approach is the topic of a future study, towards which this work is the
first and essential step, and its results promising for the success of the SOM based
approach.

References

[1] ATHURALIYA S., LOW S.H., LI V.H., YIN Q. REM: Active queue management. IEEE
Network Magazine. 2001, 15, pp. 48-53, doi: 10.1109/65.923940.

[2] ATIQUZZAMAN M., ZHENG B. Active Queue Management in TCP/IP Networks. In: M.
HASSAN, R. JAIN, ed. High Performance TCP/IP Networking: Concepts, Issues, and
Solutions. U.S.A.: Pearson Prentice Hall, 2004, pp. 281-307.

[3] AWEYA J., OUELLETTE M., MONTUNO D.Y. A control theoretic approach to active
queue management. Computer Networks. 2001, 36, pp. 203-235.

[4] BONALD T., MAY M., BOLOT J.-C. Analytic Evaluation of RED performance. In: Pro-
ceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (IEEE INFOCOM 2000), Tel Aviv, Israel: IEEE, 2000, pp. 1415-1424,
doi: 10.1109/INFCOM.2000.832539.

[5] ENHAI L., YAN L., RUIMIN P. An improved random early detection algorithm based
on flow prediction. In: Proceedings of Second International Conference on Intelligent Net-
works and Intelligent Systems (ICINIS 2009), Tianjin, China: IEEE, 2009, pp. 425-428, doi:
10.1109/ICINIS.2009.115.

[6] FENG W.-C., KANDLUR D.D., SAHA D., SHIN K.G. A self-configuring RED gateway.
In: Proceedings of the Conference on Computer Communications (IEEE INFOCOM 1999),
New York, U.S.A.: IEEE, 1999, 3, pp. 1320-1328, doi: 10.1109/INFCOM.1999.752150.

[7] FLOYD S., JACOBSON V. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking. 1993, 1(4), pp. 397-413, doi: 10.1109/90.251892.

[8] GEVROS P., CROWCROFT J., KIRSTEIN P., BHATTI S. Congestion control mecha-
nisms and the best effort service model. IEEE Network Magazine. 2001, 15, pp. 16-26, doi:
10.1109/65.923937.

[9] HAWKINS C.A., WEBER J.E. Statistical Analysis: Applications to Business and Eco-
nomics. New York: Harper & Row Publishers, 1980.

[10] HAYKIN S. Neural Networks: A comprehensive foundation. U.S.A.: Prentice Hall, 1999.

[11] HO H.-J., LIN W.-M. AURED – Autonomous random early detection for TCP con-
gestion control. In: Proceedings of the Third International Conference on Systems and
Networks Communications (ICSNC 2008), Sliema, Malta: IEEE, 2008, pp. 79-84, doi:
10.1109/ICSNC.2008.22.

[12] HOLLOT C.V., MISRA V., TOWSLEY D., GONG W.-B. Analysis and design of controllers
for AQM routers supporting TCP flows. IEEE Transactions on Automatic Control. 2002,
47, pp. 945-959, doi: 10.1109/TAC.2002.1008360.

159



Neural Network World 2/15, 139-160

[13] HOLLOT C.V., MISRA V., TOWSLEY D., GONG W.-B. On designing improved controllers
for AQM routers supporting TCP flows. In: Proceeding of the Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications Societies (IEEE INFOCOM 2001), An-
chorage (Alaska), U.S.A.: IEEE, 2001, 3, pp. 1726-1734, doi: 10.1109/INFCOM.2001.916670.

[14] INTERNET ENGINEERING TASK FORCE (IETF). RFC 2309: Recommendations on
queue management and congestion avoidance in the Internet [online]. Written by BRADEN
B., et al. April 1998. Available from: https://tools.ietf.org/html/rfc2309.

[15] KOHONEN T. The Self-Organizing Map. In: Proceedings of the IEEE, 1990, 78(9), pp.
1464-1480, doi: 10.1109/5.58325.

[16] KOHONEN T. Things you haven’t heard about the self-organizing map. In: Proceedings of
the IEEE International Conference on Neural Networks 1993, San Francisco, CA: IEEE,
1993, 3, pp. 1147-1156, doi: 10.1109/ICNN.1993.298719.

[17] KOHONEN T. The self-organizing map. Neurocomputing. 1998, 21, pp. 1-6.

[18] LOCHIN E., TALAVERA B. Managing network congestion with a Kohonen-based RED
queue. In: Proceedings of IEEE International Conference on Communications (ICC 2008),
Beijing, China: IEEE, 2008, pp. 5586-5590, doi: 10.1109/ICC.2008.1047.

[19] MANASA S. ANLRED: A Robust AQM Mechanism for Congestion Avoidance. International
Journal of Computer Applications. 2013, 81(15), pp. 1-9, doi: 10.5120/14196-2259.

[20] MASUGI M. QoS mapping of VoIP communication using self-organizing neural network.
In: IEEE workshop on IP operations and management (IPOM 2002), 2002, Dallas, Texas,
U.S.A.: IEEE, pp. 13-17, doi: 10.1109/IPOM.2002.1045749.

[21] MASUGI M., TAKUMA T. Multi-fractal analysis of IP network traffic for assess-
ing time variations in scaling properties. Physica D. 2007, 225, pp. 119-126, doi:
10.1016/j.physd.2006.10.015.

[22] PATEL S., GUPTA P., SINGH G. Performance Measure of Drop Tail and RED Al-
gorithm. In: Proceedings of International Conference on Electronic Computer Tech-
nology (ICECT 2010), Kuala Lumpur, Malaysia: IEEE, 2010, pp. 35-38, doi:
10.1109/ICECTECH.2010.5479996.
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