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Abstract: Color quantization is an important process for image processing and
various applications. Up to now, many color quantization methods have been
proposed. The self-organizing maps (SOM) method is one of the most effective color
quantization methods, which gives excellent color quantization results. However,
it is slow, so it is not suitable for real-time applications. In this paper, we present
a color importance–based SOM color quantization method. The proposed method
dynamically adjusts the learning rate and the radius of the neighborhood using
color importance. This makes the proposed method faster than the conventional
SOM-based color quantization method. We compare the proposed method to 10
well-known color quantization methods to evaluate performance. The methods are
compared by measuring mean absolute error (MAE), mean square error (MSE),
and processing time. The experimental results show that the proposed method is
effective and excellent for color quantization. Not only does the proposed method
provide the best results compared to the other methods, but it uses only 67.18%
of the processing time of the conventional SOM method.

Key words: SOM, color quantization, image processing

Received: August 21, 2013 DOI: 10.14311/NNW.2015.25.006
Revised and accepted: March 30, 2015

1. Introduction

The purpose of color quantization is to represent the many colors in the original
image with a reduced number of distinct colors and with minimal distortion. True-
color images contain thousands of colors and can contain up to 16,777,216 colors.
More colors representing an image can make a better output to look at.

However, more colors can be a problem for most image-processing applications.
For example, colors can be used for object detection, object extraction, and to
compare features. In image-processing, a single object represented with one color
is an ideal case, but unfortunately, even if it is a single object, it is represented
with many colors, which becomes a serious problem.
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Therefore, image-processing applications such as text detection [36], compres-
sion [43], segmentation [13], content-based searches [14], watermarks [25], and color-
texture analysis [35] perform color quantization as a preprocessing step to reduce
the number of colors.

Color quantization consists of palette design and pixel-mapping phases. The
palette design phase is the selection of colors that represent the original colors, but
with minimal distortion. The pixel-mapping phase is the assignment of each pixel
in the original image to one of the colors in the designed palette. Color quanti-
zation methods perform a clustering process to design the palette by using one of
the clustering algorithms, and perform pixel-mapping with the designed palette.
Therefore, the degree of distortion is determined by the clustering algorithm that
is used for palette design.

A self-organizing maps (SOM)-based color quantization method is one of the
most effective methods. It shows natural output with little distortion. However,
SOM is composed of two layers (the input layer and the competitive layer), fully
connected. Due to the structure and many colors in an image used for SOM
learning, many repetitive computations occur, and it takes too much computation
time.

Recently, MFD-SOM method was proposed [10]. It uses a dynamic learning
rate and neighborhood radius. User-defined constant values tune the learning rate
and neighborhood radius to determine a winner. Also, a new way to update weight
vectors is proposed. However MFD-SOM still needs a lot of time for color quanti-
zation.

Therefore, we propose a new color quantization method using SOM, which we
call color importance–based SOM. The proposed method maintains the results of
the conventional SOM-based color quantization method but is faster.

The proposed method uses sampled data for SOM learning, because the SOM
learning result can be changed by the sequence of training data, and to minimize
repeated learning with similar colors. Also, the proposed method defines the color
importance, and uses it for learning. The color importance dynamically adjusts the
learning rate and neighborhood radius. For example, if the color importance is high
then the learning rate and neighborhood radius are increased. These mechanisms
make SOM learning faster than conventional SOM learning.

This paper is organized as follows. Section 2 explains the existing color quanti-
zation methods. Section 3 describes the color quantization method using color im-
portance–based SOM. Section 4 evaluates the performance of the proposed method
using publicly available images and compares the proposed method to other well-
known methods. Finally, Section 5 presents the conclusions.

2. Related works

Color quantization methods are classified by whether the distribution of colors in
the image is used or not. Image-independent methods generate a palette that is
unconcerned with color distribution [2]. Therefore, these are fast but give poor
results.

By contrast, image-dependent methods generate a palette using color distribu-
tion. These are slower than image-independent methods but give better results.
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Designing the palette in image-dependent methods is equivalent to the clustering
of colors in an image. Therefore image-dependent methods can be classified into
two categories: hierarchical clustering and partitional clustering [2].

Hierarchical clustering methods perform color quantization based on a statis-
tical analysis of the color distribution. There are two approaches to hierarchical
clustering. One is the divisive (top-down) approach, which repeatedly subdivides
the initial cluster until K clusters are obtained. The other is the agglomerative
(bottom-up) approach. It starts with N clusters and repeatedly merges the clusters
until K clusters are obtained [2].

Partitional clustering methods typically know the expected number of clusters.
They calculate all the clusters at each iteration, and repeatedly update the clusters
to reduce the differences in the original image.

In other words, hierarchical clustering methods calculate the palette once, but
partitional clustering methods calculate the palette and repeatedly update it to
minimize distortion of the original image. Therefore, partitional clustering methods
give higher quality results, but they need much more computation time.

Tab. I shows various color quantization methods mentioned above.

Image-independent methods • Unconcerned with color dis-
tribution

• Fast, but poor results

Image-dependent
methods

Hierarchical clustering:
median-cut [18],
octree [16],
greedy orthogonal bipartioning
[40],
variance-based method [38],
binary splitting [27],
center cut [26],
RWM cut [44]

• Divide (or merge) initial clus-
ters until K clusters are ob-
tained

• Faster than partitional clus-
tering methods

Partitional clustering
k-means [19–22],
weighted sort-means [7],
fuzzy C-means [3,23,28,33,39],
self-organizing maps [9, 11, 12,
29,30,42],
maxmin [17,41],
k-harmonic means [15],
competitive learning [4, 6, 8, 34,
37],
rough C-means [31],
BIRCH [1]

• Update K clusters repeatedly
• Good results, but slower than
hierarchical clustering meth-
ods

Tab. I Various color quantization methods.

Popularity (POP) [18] POP is one of the simplest methods. First, build a
16×16×16 color histogram using four bits per channel uniform quantization. The
palette color comprises the K most-frequent colors in the color histogram. This
method is fast, but gives poor results.
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Octree (OCT) [16] Octree is a tree structure with up to eight nodes as children.
Because the colors are represented with 8 bits, the octree can represent all colors
in an image within an eight-level tree. At first, color distribution in the image is
represented using octree, which then prunes the nodes until K nodes remain. The
palette colors are chosen from the remaining K nodes. This method is fast and
gives good results.

MedianCut (MC) [18] MC starts by building a 32 × 32 × 32 color histogram
using five bits per channel uniform quantization. It makes cubes that include all of
the histogram and then repeatedly splits the cubes that have the greatest number of
colors until K cubes are obtained. The palette colors are chosen from the centroids
of the K cubes.

Greedy Orthogonal Bipartitioning (GOB) [40] This method is similar to
MC but uses the greatest sum of squared error to minimize the sum of the variances
on both sides. The palette colors are again chosen from the centroids.

Adaptive Distributing Unit (ADU) [4] ADU quantizes the colors using
Uchiyama and Arbib’s clustering algorithm. It starts with a cluster, which is as-
signed as the centroid to the mean of all input data. Each cluster is split when the
amount of data with a minimum distance is above a certain threshold. It continues
splitting until K clusters are obtained. The palette is chosen from the centroids of
the final clusters.

k-means (KM) [19–22] k-means clustering is a well-known clustering method.
It starts withK random clusters. In each iteration, all of the input data are assigned
to the cluster that has the minimum distance within the data. The centroid of the
cluster is calculated as the average of the assigned data, and it is repeated until
the centroid of the cluster does not change. The palette colors are chosen from the
centroids of the final clusters. In this paper, the k-means algorithm described by
Hu and Lee [19] is used.

Weighted Sort-Means (WSM) [7] WSM is an adaptation of the conventional
k-means clustering algorithm for color quantization. This method performs the
data sampling step and sample weighting step, and uses the sort-means algorithm
to reduce computation time.

Fuzzy C -means (FCM) [3,23,28,33,39] FCM starts withK clusters. In fuzzy
clustering, each datum has a degree of belonging (membership) to the clusters.
FCM calculates the centroid of the clusters using the degree of belonging and
repeats the calculations until the algorithm has converged. If the image has a large
amount of data, calculating the degrees of belonging takes a lot of time. Therefore,
this method is very slow. In this paper, the FCM algorithm described by Kim et
al. [23] is used.
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Adaptive Resonance Theory 2 (ART2) [24] This method is an unsupervised
learning model and starts with a cluster. ART2 creates new clusters based on
a vigilance test. If the result of the vigilance test is larger than the vigilance
parameter, then ART2 creates a new cluster or assigns the data to a cluster. The
centroid of the clusters is defined as the average of the assigned data, and ART2
continues testing until the centroid of the clusters converge. The palette colors are
chosen from the centroids of the K most-frequent clusters.

Self-Organizing Maps (SOM) [9, 11, 12, 29, 30, 42] SOM is also an unsu-
pervised learning model and uses a one-dimensional self-organizing map with K
neurons. It designates the minimum distance node as the winner node, and then
updates the weights of the winner node and neighbor nodes. It repeats the process
until the sum of the weight change is less than a certain threshold. The palette
color is chosen from the final weights. In this paper, the SOM algorithm described
by Dekker [12] is used.

Fig. 1 Lenna output images. (K = 32).

3. Color quantization using color importance-ba-
sed SOM

We need to consider the features of color distribution in natural images for efficient
color quantization. Initially, one region in an image has similar colors. In other
words, adjacent pixels in an image have similar colors. This means that SOM’s
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learning of sequential pixels is equivalent to the same operation being repeated.
Therefore, more efficient color quantization can be performed by reducing these
repetitive operations. Second, high-frequency colors in an image should be assigned
to many of the colors in the palette in order to reduce distortion of the original
image. This gives a more natural quantization result.

We present an efficient color quantization method using color importance-based
SOM by using the above two features. The proposed method is faster but maintains
the performance of conventional SOM color quantization.

3.1 Training data sampling

SOM learning using all the pixels in an image requires a lot of processing time. As
mentioned above, SOM learning using sequential pixels means similar pixels are
learned repeatedly. Therefore, the proposed method for SOM uses a subset of the
pixels in the image. The proposed method collects the pixels at regular intervals
as training data from one-dimensional image data vector x. It guarantees a variety
of colors are selected and eliminates the repetition. The vector of training data for
t-th iteration, dt, is constructed as

dt = (xt, xt+∆, xt+2∆, . . . ),

where ∆ is the collection interval length. In this paper, the interval is set to 100,
which means that 1% of all the pixels are used in each iteration. The interval
length also sets an upper bound on the number of algorithm iterations, as after ∆
iterations the training data starts to repeat itself, but it usually does not need that
much iterations.

3.2 Color importance

When conventional SOM learns the sampled training data, similar colors tend to
determine the same neuron as a winner, and it updates the weights using the same
learning rate and neighborhood. This raises an issue. Because every color has the
same color importance, the colors are assigned to the palette regardless of the actual
frequency of the colors in the original image. The learning rate and neighborhood
radius should be changed by color importance.

The proposed method defines color importance based on color frequency to
solve this problem. The SOM learning rate and the radius of the neighborhood
are adjusted by color importance. This adjustment speeds up the results of SOM
learning. At first, the proposed method builds the color distribution to define color
importance. It uses a 32×32×32 color histogram using 5 bits per channel uniform
quantization. Color importance is defined by the frequency of the colors in the
color histogram.

3.3 The color importance-based SOM learning algorithm

The learning algorithm for color importance-based SOM is similar to conventional
SOM with two exceptions: how to set the learning rate α, and the radius of the
neighborhood γ [9]. The learning algorithm is described below.
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Algorithm 1 Learning algorithm of color importance-based SOM

Require: image x = (x1, x2, . . . , xN ) as a vector of N pixels, interval ∆, number
of neurons K

Ensure: weight w = (w1, w2, . . . , wK)
Build a 32×32×32 color histogram using 5 bits per channel uniform quantization
c← (c1, c2, . . . , cL), where L is the number of colors in the histogram
i← (i1, i2, . . . , iL), such that ij =

√
frequency of cj/maximum frequency

w← K random values
t← 1
repeat
{process all training pixels in sequence}
dt ← (xt, xt+∆, xt+2∆, . . . ) {generate subset of training pixels}
N ′ ← ∥dt∥ {number of training data}
for j ← 1 to N ′ do
winner← argmin

k=1,...,K
∥dt,j − wk∥2 {determine the winner (nearest) neurons}

γ ← K

2

√
iwinner {calculate the update radius}

α← e−0.25t
√
iwinner + 0.25 {calculate the learning rate}

{update the winner’s weight and its neighbor’s}
for k = winner− γ to winner + γ do

wk ← wk +
α (dt,j − wk)

1 + ∥k − winner∥2
end for
Reduce the importance of iwinner

end for
t← t+ 1

until weights converged

At first, the proposed method initializes the weights with random values. The
weights are updated until they converge. We assumed the weights are converged
when an average of weight variation is less than 0.01.

To update the weights, the proposed method finds the winner node with min-
imum distance, and then the weights are updated using the input values and the
learning rate.

The learning rate α is defined by color importance of the winner, iwinner, and
can be computed as

α = e−0.25t
√
iwinner + 0.25.

It results in the weights converging faster by increasing the high-importance
color’s learning rate. The color importance is defined experimentally. The con-
stants in the definition are set to 0.25. It adjusts the reduced rate for the learning
rate and 0.25 shows good to color quantization.

The weights are updated by following formula.

wk = wk +
α (dt,j − wk)

1 + ∥k − winner∥2
.
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Fig. 2 Mandrill output images.

where k denotes a target node and dt,j is a j-th element in training data dt. It
updates the weights depend on the learning rate α and distance between winner
and target node. The distance and updating value are inversely related.

When the weights of the winner are updated, the weights of the winner’s neigh-
bors are also updated. The neighboring nodes are located within the radius of
neighborhood γ, which is given as

γ =
K

2

√
iwinner.

This results in the high-importance colors being assigned to the palette by increas-
ing the high-importance color’s neighborhood radius.

Algorithm 1 shows the pseudo code of the learning algorithm of the color
importance-based SOM.
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Image Source Resolution Colors

Airplane USC-SIPI Image Database 512 × 512 77,041
Lenna USC-SIPI Image Database 512 × 512 148,279
Mandrill USC-SIPI Image Database 512 × 512 230,427
Peppers USC-SIPI Image Database 512 × 512 183,525
Girl Kodak Lossless True Color Image Suite 768 × 512 44,576
Hats Kodak Lossless True Color Image Suite 768 × 512 34,871
Motocross Kodak Lossless True Color Image Suite 768 × 512 63,558
Parrots Kodak Lossless True Color Image Suite 768 × 512 72,079

Tab. II Information of the test images.

4. Experimental results

To evaluate performance, the proposed method was tested on a set of eight true-
color images commonly used in color quantization papers. Images are shown in
Fig. 3 and information of the test images are described in Tab. II. All of the color
quantization methods were tested on an Intel i7-2640M 2.8 GHz, 8GB machine and
were implemented in C++.

Fig. 3 Test images.

Fig. 1 shows the color quantized results of the Lenna image which is one of the
test images. Compared with other methods, the proposed method generates less
aliasing in the face and hat. Also, the area around the feathers of the hat is very
similar to the original image.
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The performance of the color quantization result was quantified by mean abso-
lute error (MAE) and mean square error (MSE),

MAE
(
X, X̂

)
=

1

HW

H∑
h=1

W∑
w=1

∥∥∥X (h,w)− X̂ (h,w)
∥∥∥
1

MSE
(
X, X̂

)
=

1

HW

H∑
h=1

W∑
w=1

∥∥∥X (h,w)− X̂ (h,w)
∥∥∥2
2

where H and W denote image height and width, respectively,
MAE measures the average magnitude of the errors in the same units as the

data. This means that MAE represents the difference between the original image
and the quantized image. MSE is a quadratic scoring rule that measures the average
magnitude of the error. MSE is more sensitive than MAE to the occasional large
error: the squaring process gives disproportionate weight to large errors.

Tabs. III and IV show the average MAE and MSE of five experimental results for
other well-known color quantization methods. The top two methods are indicated
in bold. Tab. V shows the average processing time of five experimental results. In
this paper, for a more accurate comparison, processing time does not include time
for the pixel-mapping phase, because pixel mapping is required regardless of the
color quantization algorithm. Therefore, processing time is measured as CPU time
for the palette generation phase only.

As expected, the hierarchical clustering methods (POP, MC, OCT, GOB) are
faster, but generally, color quantization results are poor. POP, the simplest algo-
rithm, is fastest, but quantization results are also the poorest. MC requires similar,
or more, processing time than POP, and its results are better. OCT needs from
2.3 to 3.1 times more processing time than POP. Experimental results show GOB
is one of the most effective methods. GOB gives the smallest distortion among the
hierarchical clustering methods. It takes linear time and is also fast.

On the other hand, the partitional clustering methods (KM, FCM, ADU, ART2,
SOM, and PM [the Proposed Method]) are slow, but the results are better. As
stated above, the hierarchical clustering methods start with an initial N clusters
and repeatedly merge or subdivide until K colors are obtained. By contrast, the
partitional clustering methods calculate all the clusters in each iteration, and re-
peatedly update the clusters. Therefore, they typically take more processing time,
but the generated palette tends to contain a greater variety of colors than a palette
generated by the hierarchical clustering methods. If there are many similar col-
ors in the palette, it generates the results without a variety of colors and makes
them unnatural. Therefore, as shown in Fig. 2, even if MAE and MSE are similar
(K = 128, MAE = GOB 17.0; SOM 16.7; PM 16.9, MSE = GOB 153.2; SOM 149.1;
PM 149.7), the partitional clustering methods give more natural results than the
hierarchical clustering methods. Nevertheless, KM, ADU, FCM, and ART2 require
too much processing time, so they are inappropriate for use in applications.

However, not only does the proposed method provide the best results from
among the color quantization methods, but it also only needs the processing time
that is available in real-time applications. That means the proposed method makes
better quality results than the conventional SOM method, and minimizes the dis-
tortion between the original image and the quantized image. Plus, it gives more
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natural results even though it requires only 67.18% of the processing time of the
conventional SOM method.

When comparing the proposed method with GOB, which is the most efficient
algorithm for the processing time, the proposed method gives better results, but
about 3 to 8 times the processing time is required. However, SOM methods do not
need to repeat learning when there is new, similar input. They can just update
the existing learned results. This process does not require a lot of time. On the
other hand, the results from GOB cannot be updated, and it needs to create a
new palette for every input. This characteristic of SOM should allow it to obtain
faster and better results than GOB in the applications that require repeated color
quantization.

In addition, hierarchical methods require a certain amount of time to obtain
results. However, SOM methods can adjust the processing time and the quality of
the results. This means that depending on system performance and requirements,
the proposed method is available in a variety of environments by changing the
learning termination condition.

5. Conclusions

In this paper, we propose a new color quantization method using color impor-
tance–based SOM. It improves on the conventional SOM color quantization method.

The proposed method defines color importance using the frequency of colors,
and dynamically adjusts the learning rate and the radius of the neighborhood based
on color importance. In other words, the proposed method uses color importance
to speed up SOM learning.

To evaluate the performance of the proposed method, we quantified MAE, MSE,
and processing time on a set of eight true-color images commonly used in color
quantization papers. The lower MAE and MSE values mean there is less distortion
of the original image. The proposed method has the lowest MAE and MSE with
most of the test images, as shown in Tab. III and Tab. IV. So, we conclude the
proposed method minimizes the distortion of the original image. Also, the proposed
method is the fastest among the partitional clustering color quantization methods,
as shown in Tab. V. It takes only 67.18% of the conventional SOM processing time.
Therefore, the experimental results prove that the proposed method is effective for
color quantization.

In this paper, the most important thing is color importance. We defined
color importance, and used it to improve the conventional SOM color quantiza-
tion method. Therefore, if there is a more effective method for defining color
importance, then it makes for a more effective color importance–based quantiza-
tion method than the proposed method. Color importance is currently defined
by using color frequency, but the distance between pixels, clustering, component
analysis, and so on, can also be used. The processing time for color quantization
will slightly increase, but it will be able to reduce MAE and MSE by calculating
more effective color importance. Therefore, for future work, we will study how to
improve the definition of color importance.
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