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Abstract: One of the key indicators of the quality of service for urban transporta-
tion control systems is the queue length. Even in unsaturated conditions, longer
queues indicate longer travel delays and higher fuel consumption. With the excep-
tion of some expensive surveillance equipment, the queue length itself cannot be
measured automatically, and manual measurement is both impractical and costly
in a long term scenario. Hence, many mathematical models that express the queue
length as a function of detector measurements are used in engineering practice,
ranging from simple to elaborate ones. The method proposed in this paper makes
use of detector time-occupancy, a complementary quantity to vehicle count, pro-
vided by most of the traffic detectors at no cost and disregarded by majority of
existing approaches for various reasons. Our model is designed as a complement to
existing methods. It is based on Gaussian-process model of the occupancy-queue
relationship, it can handle data uncertainties, and it provides more information
about the quality of the queue length prediction.
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1. Introduction

Queue length has been regarded as one of the key parameters in the process of signal
plan design, as estimates of queue length may be used as a part of a criterion that
is minimised by urban traffic control systems that provide coordinated control of
signalised intersections.

The main difficulty of using the queue-length as a part of performance criterion
is the fact that the length is difficult to measure automatically – the automatic
systems are based exclusively on image processing [46, 47].

Numerous studies discuss the problem of modelling the queue development,
see for example [9, 27, 38, 41]. Typical queueing models are for example those of
Akçelik [1], Hensher [12], or Mück [25]. The American Highway Capacity Manual
2000 uses a modified version of Akçelik’s model [37]. These models are derived from
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underlying physical principles of the queue formation and dissipation processes and
include some ad-hoc corrections accounting for the stochastic nature of the queuing
process.

Stochastic properties of queue development are directly taken into account by
Markov chain models [38, 39, 42, 43]. This class of models describes queueing as
a stochastic process with probabilities of queue change being given by probability
distributions.

The third class of models found in literature are black-box models trying to
predict the queue length based on known “training” data. These include autore-
gressive models [13], neural networks [4, 20], combination of neural networks and
fuzzy logic [31], genetic algorithms [10], or neural network constructed with the
help of genetic algorithms [44].

All the models mentioned above compute queue length from vehicle count pro-
vided by upstream detectors. With the exception of [6] and publications of [29]
and [40] (which all concentrate on estimating the total number of vehicles) and [24]
(which estimates the queue tail position by dense sampling the output signal of a
detector loop, reading out the lengths of active pulses), detector time-occupancy
is not used to provide additional information about the queue formation process,
although this quantity is usually provided together with the vehicle count by an
intersection controller.

In our opinion, the reason for disregarding time-occupancy information can
be twofold: First, pure time-occupancy gives us a reasonable measure of queue
length only for limited range of queue tails. If the distance from the detector
to the downstream queue tail is high, the time-occupancy stays low regardless of
the queue length. If the queue tail reaches upstream far behind the detector, the
time-occupancy will be high regardless of the queue length. Second, the occupancy
readings from the detector may be influenced by other parameters of the traffic
flow, as inter-vehicle gaps, vehicle speeds, and their length.

Several papers appeared that try to make use of the time-occupancy measure-
ments for providing additional information about the traffic state at an approach to
a signalised intersection. Authors of [5] combine vehicle count and time-occupancy
measurements with known signal state and a model of vehicle dynamics to estimate
the queue length. Another approach has been taken in [29], where the authors start
with thorough theoretical analysis of the time-occupancy measurements and follow
with a Kalman filter implementation of vehicle count estimator in the follow-up pa-
per [40]. In our publication [30] we presented an empirical time-occupancy based
queue-length model which combines two separate Gaussian-process (GP) models
for the low and high occupancy ranges.

In this paper we present an empirical approach to queue length estimation from
time-occupancy data, that is meant as a complement of the existing methods and
that is able to provide estimation of queue length in the vicinity of a loop detector
based on sparse occupancy measurements.

The paper is further organised as follows: in Section 2 we will briefly discuss
the practical observations that led to the method proposed in the Section 3 of this
article. Section 4 contains a short introduction to GP models that will be used as a
base of the queue length estimation method. This Section also lists the parameters
of the GP model used in the paper. Results of the queue length estimation using
the model and their discussion are presented in Section 5.
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2. Motivation

In the last few years the research group at the Institute of Information Theory and
Automation (UTIA, for its acronym in Czech) developed and tested a state-space
queue length model for urban arteries based on ideas of [14]. This model is an
extension of the models developed by [28] and [6]. All the mentioned models are
based on macroscopic vehicle conservation principles.

The state equation of the UTIA model consists of two components – a queue-
length part, modelling the queue length using vehicle count readings from upstream
traffic detectors, and a linear detector occupancy model that is used to correct the
queue length in cases of near saturation. The parameters of the occupancy model
are being jointly estimated together with the model state, requiring the use of non-
linear Kalman filtering. The current version of the model uses information from
strategic upstream traffic detectors for modelling the queue length. Information
from downstream strategic detectors is used to provide feedback measurements for
the non-linear Kalman filter.

When adopting this model to a smaller urban road network with shorter dis-
tances between traffic signals, the observed queue length estimates provided by the
model were quite unsatisfactory. However, this type of networks is often equipped
also with dilemma-zone detectors, used to extend the green length for an approach
in case of vehicle-actuated control. The measurements provided by these detectors
will be ignored by the model, although they could reasonably improve the queue
length estimate. Hence, we would like to find a mechanism for a dilemma-zone de-
tector to provide additional information about the queue tail development, and to
identify if and when the dilemma-zone detector does not contribute to a reasonable
estimate due to saturation.

Various types of traffic sensors are used to measure traffic flow [16]. Probably
the most common one is an inductive loop detector. This detector is built into the
pavement and consists of one or several wire loops, forming a very simple coil, and
an electronic unit that transmits energy at chosen frequency (typically between 10
kHz to 200 kHz) into the wire loops. Once a metallic object moves over the loop
detector, the inductance of the loop decreases, and the detector signal processing
unit records a change in occupancy of the detector.

An intersection controller then provides detector measurements in discrete time
intervals of length ∆t. This period is typically ranging from 60 s to 300 s dependent
on hardware, in our case ∆t = 90 s. At the end of every measurement interval, the
detector signal processing unit provides typically two measured quantities, vehicle
flow (expressed usually as vehicle count over ∆t) and time-occupancy (usually a
number of “detector active” pulses recorded in ∆t or, more conveniently, a percent-
age of detector activation time in the measurement period ∆t). While the vehicle
count provided by a dilemma-zone detector may give us an estimate of vehicle dis-
tribution over the two parts of the link divided by the detector, the saturation of
the link up to the detector is only observable from the occupancy measurements –
low vehicle counts may be observed for both light traffic and oversaturated traffic
conditions.

Given the nature of time-occupancy measurements, the position of the queue
tail at some distance l from the stop-bar will have different influence on detectors
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Fig. 1 Occupancy-queue length dependency for different detector distances from
the stop-bar and different effective green lengths for fixed green length (32 s out of
80 s cycle) and different detector distances. Simulated in Aimsun [36].

placed at different distances from the stop-bar. As we outlined already, the further
is the detector installed from the stop-bar, the less reliable it will be for estimating
the tail of a short queue – the occupancy changes caused by short queues will
become neglectable with the growing distance of the detector from the stop-bar.
On the other hand, if the queue tail reaches far behind the detector and stays there
over the whole measurement period ∆t, the queue length cannot be measured
anymore for the same reason.

This phenomenon can be easily demonstrated using a traffic micro-simulator.
Results of such a demonstration are depicted in Figs. 1 and 2. As we can see
from the graph in Fig. 1, in the case of a fixed-length green signal, the distance
of the detector from the stop-bar causes vertical shifts in the queue-length vs.
time-occupancy graphs.

However, if we take into account variable lengths of the green signal as a result
of vehicle actuated control mechanisms, the resulting measurements provided by a
detector at a fixed distance from the stop-bar become quite noisy – the maximum
queue length is definitely influenced by the length of the downstream green signal,
and the readings of the detector are influenced by the amount of free flow of vehicles
during the green phase. This is demonstrated in Fig. 2.

There are two other phenomena that can adversely influence the time-occupancy
measurement: The first is the case when queueing vehicles do not activate the de-
tector at all, due to its small size or too large inter-vehicle gap. In order to suppress
this “zero speed-zero occupancy phenomenon” [29], we will further suppose that
the sizes of the detector loops exceed the typical maximum gap between vehicles.
This, according to our observations, is a realistic assumption for urban traffic net-
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Fig. 2 Occupancy-queue length dependency for different detector distances from the
stop-bar and different effective green lengths for fixed detector distance 30m and
different green lengths. Simulated in Aimsun [36].

works. The second phenomenon is the result of different vehicle length. For the
purpose of this paper we will suppose that the vehicle stream consist solely of pas-
senger vehicles. Should this not be the case, the internal logic of the detector signal
processing unit can help by providing also vehicle counts separated according to
vehicle size into several vehicle groups.

3. Proposed model

Our queue model is inspired by [6] who used log-exponential S-curve fit to experi-
mental data to provide point estimates of vehicle count within an urban traffic
network link. The chosen approximation, though, did not work well for us in cases
approaching saturation.

The queue length model of [14] does not behave well for high-occupancy situa-
tions as well and it also provides a point estimate only. While it uses a linear
dynamic first-order formula for queue-occupancy relationship, our experiments in-
dicate that the additional information provided by the dynamic part of the model
does not bring significant improvements to the results obtained and the model can
be expressed as static. This is consistent with findings of [6] or [24].

We could use other models that can be found in literature, but we would like
to have a mechanism for assessment of the quality of the model prediction – the
model is meant as a complement of a physically-based model of [14]. One of the
possibilities of such assessment would be to evaluate the interval estimates of queue
length rather than point estimates, provided by existing models.
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We will therefore express the general model of queue length ξ and its standard
deviation σξ, measured by a detector in some distance ∆ from the stop-bar, as a
static relationship

[ξ, σξ] = f∆(o, g), (1)

where o ∈ 〈0, 1〉 denotes the measured time-occupancy and g is the green length in
seconds. Fixing the distance from the stop-bar means that we will have to provide
separate models f∆ for different detector distances from the stop-bar.

The relationship between the queue-length, time-occupancy and green signal
length described by Eq. (1) is quite elaborate. Hence, we will build our model as
a black-box model, with parameters trained from a set of training data. As one of
our requirement is that the model has to provide interval estimates of the modelled
variable, our choice is the Gaussian-process model. Modelling with GP models is
introduced in more detail in the next Section.

4. Gaussian-process models

GP model is an example of a flexible, probabilistic, nonparametric model with
uncertainty predictions. It fits naturally in the Bayesian modelling framework in
which instead of parameterising a model of a non-linear input-output mapping
function f(x), a prior belief in the form of prior probability distribution is placed
directly on the space of possible functions f(x) which could represent the mapping
from input vector x to output y. Its use and properties for modelling are reviewed
in [3,18,32,33]. In our particular case we will build a static model where the input
vector x will be composed of time-occupancy and green length and the output y

will correspond to the estimated queue length.
The model of the nonlinear input-output mapping is called the GP model as

the output of the GP model is by prior belief considered to be GP.
GP is a stochastic process and is a generalisation of the Gaussian probabil-

ity distribution. It can be viewed as a collection of random variables f(xi) with
joint multivariate Gaussian distribution: p(f(x1), . . . , f(xn)) = N (µµµf ,ΣΣΣf ), where
N (·, ·) stands for Gaussian distribution determined with mean value µµµf and, as we
deal with a multivariate distribution, covariance matrix ΣΣΣf .

A single element of the covariance matrix

Σfpq = Cov(yp, yq) = C(xp,xq)

holds the covariance between values of functions yp = f(xp) and yq = f(xq) which
are expressed as values of some covariance function C that works on the input
data xp and xq and has the property of generating a positive definite covariance
matrix [32]. Thus, to completely specify a GP, the mean µµµf (usually assumed to
be zero) and the covariance function C(xp,xq) have to be given.

A common choice for C is

C(xp,xq) = v1 exp

[

−
1

2

D
∑

d=1

wd(xdp − xdq)
2

]

+ δpqv0, (2)

where θθθ = [w1, . . . , wD, v1, v0]
T are the parameters of the covariance functions,

called hyperparameters, v0 is estimated noise variance, v1 is the estimate of the
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vertical scale of variation, D is the input dimension, xdp and xdq are d-th compo-
nents of input vectors xp,xq and δpq = 1 if p = q and 0 otherwise. The covariance
function given by Eq. (2) is composed of two parts: the Gaussian or squared ex-
ponential covariance function for the modelling of system function, that is the first
summation term of two in Eq. (2), and the covariance function for the modelling
of noise, that is the second summation term in Eq. (2). The noise, in our case, is
presumed to be white and therefore it can be represented with constant variances
v0 on the diagonal of covariance matrix, which is achieved with δpq. Other forms
of covariance functions C suitable for different applications can be found in [32].

4.1 Identification of a GP model

For a given problem, the hyperparameters in θθθ are learned using the data at hand.
Consider a matrix composed ofN D-dimensional input vectorsX = [x1,x2, . . . ,xN ]
and a vector of output data y = [y1, y2, . . . , yN ]T. Based on the data (X,y), and
given a new input vector x∗, we wish to find the predictive distribution of the cor-
responding output y∗. Unlike with other models, e.g. parametric models or models
formed by combinations of basis functions, there is no model parameter determi-
nation as such, within a fixed model structure. With this model, most of the effort
consists in determining the parameters of the covariance function. This is done
in the Bayesian context by maximisation of the logarithm of marginal likelihood
p(y|X) which for the Gaussian prior probability distribution is

L = log(p(y|X))

= log

(
∫

θθθ

p(y|θθθ) p(θθθ|X) dθθθ

)

= −
1

2
log(| K |)−

1

2
yTK−1y −

N

2
log(2π)

(3)

where K is the N ×N training covariance matrix. Each element of K is calculated
with the covariance function (2), i.e. K = [C(xp,xq)] and p, q = 1, . . . , N . See
[32] for more details about GP model selection in the Bayesian context and the
computational implementation.

The computation of the logarithm of marginal likelihood and, depending on
used optimisation algorithm, its derivatives necessary for the optimisation involves
the computation of the inverse of the N ×N covariance matrix K at every itera-
tion, which can become computationally demanding for large N . In each iteration
of the optimisation, elements of K, that is C(xp,xq) change with the change of
hyperparameters θθθ.

Nevertheless, the number of parameters to be optimised is small (D + 2, see
Eq. (2)), which means that optimisation convergence towards optimal values might
be faster as it would be in the case of large number of parameters. Small number
of parameters that is proportional to the number of regressors means also that the
“curse of dimensionality” [15, 26] is decreased (the curse of dimensionality occurs
when an increase of model dimensions causes nonlinear increase in the number of
parameters and is commonly met in the application of various machine learning
methods).
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4.2 Regression calculation

The described approach can be easily utilised for regression calculation. Based on
training inputs collected in X a covariance matrix K of size N ×N is determined.
As already mentioned, the aim is to find the distribution of the corresponding
output y∗ at some new input vector x∗.

For a new test input x∗, the predictive distribution of the corresponding output
y∗, over cases in the training set (X,y), is p(y∗|(X,y),x∗) and is Gaussian, with
mean and variance

µ(y∗) = k(x∗)T K−1 y, (4)

σ2(y∗) = κ(x∗)− k(x∗)TK−1 k(x∗),

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the N × 1 vector of covariances be-

tween the test and training cases, and κ(x∗) = C(x∗,x∗) is the covariance between
the test input elements themselves. Vector k(x∗)T K−1 in (4) can be interpreted
as a vector of smoothing terms which weights the training outputs collected in y

to make a prediction at the test point x∗.
In our particular case xi = [oi, gi], where oi is the detector occupancy and gi

is the effective green length of the signal. The corresponding component of the
output vector y is the queue length ξi measured for the given oi and gi.

4.3 Utility of GP models

The reasons to select modelling with GP models are small amounts of data relative
to the number of selected regressors, data corrupted with noise and measurement
errors and the need for prediction confidence intervals. If there is not enough data
or it is heavily corrupted with noise, even the GP model cannot perform well, but
in that case the inadequacy of the model and the training data is indicated through
higher variance of the predictions.

The utility to provide the prediction confidence intervals made GP models at-
tractive for modelling case studies in various domains like chemical engineering [17]
and process control [23], biomedical engineering [8], biological systems [2], envi-
ronmental systems [11], power systems [21] and engineering [22], motion recogni-
tion [45], etc., to list just a few. We believe that this utility makes it interesting
also for use in the domain of traffic modelling and its applications.

We should note that there is no assumption that complete signals measured in
a traffic process will have Gaussian distribution. The Gaussian prior probability
distribution is put over the space of input-output mapping functions meaning that
every predicted output data point that is made by GP model has Gaussian distri-
bution. This implies that every prediction of queue length that is made has some
most likely value and the less likely values are equally possible on both sides of the
most likely value. This is, by our convenience, not unrealistic.

Another assumption of GP modelling as we presented it is that noise that
corrupts data is equal for all input data and has Gaussian distribution. When this
is not the case, the data can be transformed in the form that will be better modelled
by the GPs. More details about these transformations, called also GP warping, can
be found in [19,34,35], where both the case of heteroscedastic data, i.e., data with
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variable variance, and the case of non-Gaussian noise are dealt with. The basic
principle is that input and output data are transformed via a monotonic function
to match the assumption of Gaussian noise. The form of both the covariance
matrix and the nonlinear transformation are learnt simultaneously under the same
probabilistic framework. The obtained model predictions need to be transformed
back to be comparable with measured data.
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Fig. 3 Modelling example with GP model. Upper figure shows original function
f(x), training points and predictions of GP model shown as their mean value µ

with 95% predictive confidence band µ ± 2σ, lower figure shows absolute value of
difference between model predictions and real function e and 95% tolerance band
(2σ) of GP model predictions.

4.4 Illustrative example

This example is aimed to demonstrate the utility of modelling with GP models on
a simple example. Twelve samples are taken from the function

y = f(x) = x+ sin 1.2x (5)

to which a white noise with mean value 0 and variance 0.01 was added. Input-
output data points from these samples were used as estimation data for a GP
model. We presume that the modelled function is smooth and stationary so that
the covariance function (2) mentioned above can be used.
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After optimisation of hyperparameters, the predictions were calculated from
obtained GP model. The original function (5), training data and predictions in the
chosen range are depicted in Fig. 3.

It can be seen from 95% tolerance band around the mean values of model
predictions on Fig. 3 that variance of the model output is narrow and close to the
variance of estimation data noise in the region populated with estimation data and
it increases with the distance from this region. It can be clearly seen from the
example that GP model does not only give the prediction of values, but also the
corresponding confidence intervals. Therefore, where there was not enough data for
modelling the GP model does not perform well, but this is indicated with higher
variance of model predictions which are not to be trusted in this region.
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Fig. 4 Test network model. The marked detector at intersection 5.601 has been
used for measurements.

5. Results

As it is not possible for us to conduct deliberate experiments in real-world traffic,
in order to demonstrate the behaviour of the proposed GP model, one day of traffic
was simulated on a simple network (part of our Zlič́ın test site, see Fig. 4) using the
Aimsun micro-simulator [36] that, once calibrated, should be able to closely mimic
the real traffic [7]. The results shown in this section were obtained using data from a
single detector placed at the distance of 32 metres (approximately 5-6 vehicles) from
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the stop-bar. This distance was selected as an average distance of dilemma-zone
detectors in Prague. The traffic demand data used the simulation were real-world
measurements from our test site at Prague-Zlič́ın. In order to generate enough
training data even for less likely green lengths, we decided to mimic the behaviour
of the vehicle-actuated traffic signal control by varying the duration of the green
signal from 10 to 55 seconds in a 90 second cycle. Every 90 seconds of the simulation
the maximum queue length, the relative green length, and detector measurements
were stored, resulting in 960 samples of data consisting of green length, occupancy,
and maximum queue length. This approach corresponds to the common traffic
engineering practice in Prague where measurements are collected every 90 seconds.

The simulated measurements were then divided into two groups for model cross-
validation. From the original 960 measurements, 254 training and 706 validation
data samples were selected, using stratified sampling of a 2D histogram of queue
lengths versus measured occupancy. The size of the queue length bin was 2 vehicles,
the size of occupancy bins was set to 4%. As the process of GP model learning (3)
requires a repetitive inverse of the training covariance matrix, the number of 254
training samples was selected by hand as a limit providing the tuned covariance
function in an acceptable time on our hardware — in this case, at most 4 measure-
ments were randomly selected as training data from every non-empty histogram
bin.

The variance of data in our case is far from being uniform in the range where
we would like to model the relation between occupancy, green length and queue
length: Measurements become more noisy as the lane reaches the point of satura-
tion. Consequently, the estimation data needed transformation — warping — as
mentioned in Section 4.3. In our case the selected monotonic function was

f(t) = t+ a1 tanh(b1(t+ c1)) a1, b1 ≥ 0, (6)

where t denotes target data and a1, b1, c1 are constants.
Figs. 5 and 6 show the performance of the model for its own training data.

We can see that the model captures well the relationship between the occupancy,
green length and the queue length, expanding the prediction confidence interval
towards the higher occupancy regions where the measured data exhibit higher
variance. The visible cluster of measured values near the peak occupancy at Fig. 5
can be explained by the operation mode of our demonstration – the intersection
was repetitively driven into the saturated state and out of it, providing the most
measurements in the high occupancy-long queue region.

The behaviour of the model for the validation data set is shown in Figs. 7 and 8
and two cuts – Fig. 9 for low green lengths and in Fig. 10 for high green lengths. We
can see that in this case the observed variance in the training data (due to detector
saturation and uncertainty in measurements, where certain occupancy value may
correspond to different queue lengths, see Figs. 5 and 6) results also in predictions
with high variance. This is the correct result as the quality of measured data does
not permit better queue length prediction.

Looking at the confidence interval for queue length in Figs. 9 and 10 we can
also observe that if the maximum queue length estimates are close to zero, the
confidence interval predicted by the GP model may contain negative values. This
is the nature of the estimation process as GP models can not use truncated Gaussian
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Fig. 5 Model prediction on training data. Circles denote the training data, the
middle surface is the mean prediction and the upper and lower gray surfaces limit
the 95% confidence interval.
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Fig. 6 Another view of the model prediction on training data. Circles denote the
training data, the middle surface is the mean prediction and the upper and lower
gray surfaces limit the 95% confidence interval.
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Fig. 7 Model prediction on validation data. Circles denote the validation data, the
middle surface is the mean prediction of the model and the upper and lower gray
surfaces limit the 95% confidence interval.
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Fig. 8 Another view of model predictions on validation data. Circles denote the
validation data, the middle surface is the mean prediction of the model and the
upper and lower gray surfaces limit the 95% confidence interval.
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Fig. 9 Cut along the line g = 25 s through the graph on Figs. 7 and 8. Stars denote
selected validation occupancy-queue length pairs for which the green length falls in
the range g ∈ 〈20, 30〉 s, dashed line denotes the predicted mean value, and the gray
filled area limits the 95% confidence interval.
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Fig. 10 Cut along the line g = 50 s through the graph on Figs. 7 and 8. Stars
denote selected validation occupancy-queue length pairs for which g ∈ 〈45, 55〉 s,
dashed line denotes the predicted mean value, and the gray filled area limits the
95% confidence interval.
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distributions and in such a case the confidence interval lower bound can be clamped
at zero. This clamping corresponds in fact to adding prior knowledge “queue length
can not be negative” to the model.

6. Conclusions

We have presented an empirical static model for determining queue length from
sparse time-occupancy data and green signal length measurements, based on GP
modelling framework. Due to the large differences in the variance of the observed
data, the presented version of the model uses a warping technique to transform the
data into a form suitable for GP. This allows us to use a single static model for the
relevant range of parameters.

The presented model is based on simulated data as we do not have access to
equipment that would allow us to measure the queue directly.

Experimental results confirm that occupancy measurements may provide rea-
sonable queue length estimates for unsaturated conditions on the detector and
that the GP-based model can identify situations where the occupancy measure-
ments will not provide reasonable estimate due to detector saturation. The effect
of rising queue length on standard deviation of its estimate is similar to the observa-
tions of [39] for an intensity-based model. As our model is meant to complement an
existing intensity-based estimator, we will in the latter case ignore the information
provided by the GP model, although we may use the knowledge of detector satura-
tion e.g. to set a lower bound on the queue length provided by an intensity-based
queue length estimator.

The main advantage of using a GP model over other similar modelling ap-
proaches is that it provides the confidence interval of the model predictions, which
is valuable additional information – results provided by different models may or
may not prove good in practice, but the confidence interval reflects the uncertainty
of the predictions due to, for example, lack of representative data, or due to un-
certainty in the original training data set. Prediction confidence intervals can be
calculated also when using other regression based methods, but with predictions of
GP models this information is already inherently available.

Many possible extensions to this model can be developed: The model is uni-
modal, relying on the fact that the observed traffic stream is fairly homogeneous.
Should this not be the case, more elaborate version could be developed, taking into
account also different vehicle classes and their lengths. Also, the model is static,
meaning that it does not make use of information about traffic dynamics, as some
of the intensity based approaches do [6]. If a higher sampling rate could be achieved
(for example, 5 or 10 seconds instead of current 90 seconds) the dynamic behaviour
of the queueing process could be possibly captured by a dynamic model. Such a
model would provide better estimates and improve the reliability of the estimates
in the region of detector saturation. Finally, some of the ideas provided by [29]
and [24] may be used to combine the sparse time-occupancy measurements with
other information about the traffic on an approach to a signalised intersection.
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