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Abstract: The paper presents iterated algorithm for parameter estimation of
non-linear regression model. The non-linear model is firstly approximated by a
polynomial. Afterwards, parameter estimation based on measured data is taken as
the initial value for the proposed iterated algorithm. As the estimation method,
the well-known Least Square Estimation (LSE), artificial neural networks (ANN)
or Bayesian methodology (BM) can be used. With respect to the knowledge of
initial parameters the measured data are transformed to meet best the non-linear
regression criteria (orthogonal data projection). The original and transformed data
are used in the next step of the designed iterated algorithm to receive better pa-
rameter estimation. The iteration is repeated until the algorithm converges into
a final result. The proposed methodology can be applied on all non-linear models
that could be approximated by a polynomial function. The illustrative examples
show the convergence of the designed iterated algorithm.
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1. Introduction

There is a number of problems available to estimate unknown parameters of non-
linear models as common statistical methods are primarily designed for linear equa-
tions. References [8, 7] speak about a non-correct task referring to parameter
estimation of a non-linear regression model. Publications [1, 5] provide a compre-
hensive reference on non-linear regression and non-linear least squares estimation
where unknown coefficients may be estimated from a linearized version of a model.
Some other approaches are based on application of kernel density non-parametric
estimators [9, 12] with guaranteed statistical features [6].

The main idea of the presented approach is not to change the regression model
itself (e.g. its linearization) but to transform the measured data through orthogo-
nal projection. The orthogonal data projection onto non-linear regression function
is strongly dependent on unknown parameters. On the other hand, unknown pa-
rameters must be estimated from the measured data. This logical circle brings
complexity into the designed non-linear estimation algorithm.
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Nevertheless, if the non-linearity of the regression model was approximated by
a polynomial function, the designed iterated algorithm could be newly introduced.
The iterated approach yields into modification of a well-known estimation algo-
rithm, such as Least Square Estimation (LSE), artificial neural networks (ANN),
Bayesian methodology (BM), etc. The presented iteration of these algorithms offers
a better parameter estimation of a polynomial regression model.

The paper is structured as follows. Paragraph 2 defines mathematical back-
ground of the presented approach dealing with the orthogonal data projection and
its application to a polynomial regression model. Paragraph 3 introduces the de-
signed iterated algorithm. Paragraph 4 concerns itself with the theoretical results
and Paragraph 5 explains the application of the designed algorithm by way of two
illustrative examples. Paragraph 6 then concludes the paper.

2. Mathematical background

2.1 Orthogonal data projection

Let us define the non-linear function f (a, x) that depends on unknown parameters
a. The principle of iterated parameter estimation comes from the orthogonal data
projection to the non-linear function as it is shown in Fig. 1.

Fig. 1 Orthogonal data projection in non-linear function.

Let us suppose the availability of the noisy experimental data {xi,e, yi,e} where
i ∈ {1, 2, . . . , N}. It is reasonable to anticipate the noise distortion in both x and
y axes. For ideal situation (without an added noise signal) we may expect data
{x̄i, ȳi} that can be taken as mean values of the experimental data.

The orthogonal projection of the experimental data {xi,e, yi,e} to a non-linear
function f (a, x) depends on the derivation f ′ (a, x̄i) in the point x̄i. Unfortunately,
we know neither the unknown parameters a nor the point x̄i. With respect to
geometry shown in Fig. 1 we can note down the following equation:

f ′ (a, x̄i) =
xi,e − x̄i

yi,e − f (a, x̄i)
. (1)
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A new function related to (1) can be introduced:

χi (x̄i) = x̄i − xi,e + f ′ (a, x̄i) · [yi,e − f (a, x̄i)] . (2)

This function must fulfill the condition

χi (x̄i) ≡ 0 (3)

to guarantee the best orthogonal projection.

2.2 Orthogonal projection for polynomial functions

In this paragraph we suppose that a non-linear function f (a, x) is approximated
in the given interval by the polynomial

f (a, x) ≈ a0 + a1 · x+ a2 · x2 + · · ·+ aM · xM (4)

where the non-linear function approximation is out of the paper’s scope, neverthe-
less, a lot of references are available, e.g. [11] which presents how to estimate the
integer parameter M in (4).

The equation (2) can be easily rewritten for polynomial functions as follows:

χi (x̄i) = x̄i − xi,e ++
(
a1 + 2 · a2 · x̄i + 3 · a3 · x̄2

i + · · ·+M · aM · x̄M−1
i

)
·

·
(
yi,e − a0 − a1 · x̄i − a2 · x̄2

i − · · · − aM · x̄M
i

)
(5)

It is evident that the equation (5) is 2M-1 polynomial of an unknown variable x̄i.
The coefficients of this polynomial could be computed by using experimental data
{xi,e, yi,e} and the parameters {a0, a1, . . . , aM}. We can now assume that we have
an up-to-date parameter estimate {â0, â1, . . . , âM} at our disposal which could be
estimated by means of the measured data {xi,e, yi,e}. A number of algorithms for
parameter estimation is available, e.g. Least Square Estimation (LSE), Bayesian
methodology, etc. [10]. However, these algorithms do not expect noise distortion
in both x and y axes and due to non-linearity the accuracy of parameter estimation
is not accurate enough. On the other hand, such imprecise estimation can be used
as an initial value for the presented iterated method.

The solution of the equation (3) represents the roots of the 2M-1 polynomial
(5). This task is feasible because there is a number of numerical algorithms to
tackle this problem. Numerical methods give us a set of different roots. It should
be mentioned that equation (3) has at least one real root as it is a polynomial of
the odd order.

The next step of this methodology is selecting the best root of the polynomial (5)
that will represent the appropriate transformed data {x̄i, ȳi} where ȳi = f (â, x̄i).
Let us define the following two conditions for an appropriate root selection:

• the selected root must be real,

• the selected root must fulfil the condition of minimal length between trans-
formed and measured y-values |ȳi − yi,e|.

These two conditions guarantee that the transformed data {x̄i, ȳi} will satisfy the
subsequent processing of the designed iterated algorithm.
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3. Iterated estimation algorithm

Referring to the mathematical background given in the previous paragraph we shall
try to design the numerical algorithm in the following three steps:

A. Initial step Let there be N -samples of the measured data {xi,e, yi,e}.
The estimation algorithm (LSE, artificial neural networks, Bayesian approach,

etc.) is applied to estimate the initial parameters {â0, â1, . . . , âM} of the polynomial
model:

yi,e ≈ â0 + â1 · xi,e + â2 · x2
i,e + · · ·+ âM · xM

i,e. (6)

B. Data transformation We take actual the estimated parameters {â0, â1, . . . ,
âM} together with the available experimental data {xi,e, yi,e} and use them in an
numerical algorithm for finding the roots of a polynomial (different possible variants
of unknown data x̄i):

x̄i − xi,e +
(
â1 + 2 · â2 · x̄i + 3 · â3 · x̄2

i + · · ·+M · âM · x̄M−1
i

)
·

·
(
yi,e − â0 − â1 · x̄i − â2 · x̄2

i − · · · − âM · x̄M
i

)
≡ 0. (7)

As there are real or complex roots of a polynomial (7) available we select the most
appropriate one with respect to the two conditions introduced in paragraph 2.2.

This part of algorithm yields into the transformed data {x̄i, ȳi} where ȳi =
f (â, x̄i).

C. Iterated estimation of parameters We compute a new data set {xi,a, yi,a}
as an average of transformed and measured data,

xi,a =
xi,e + x̄i

2
, (8)

yi,a =
yi,e + ȳi

2
. (9)

The new iteration of the estimation algorithm (LSE, Bayesian approach, etc.) is
applied on average data {xi,a, yi,a} to estimate the new parameters {â0, â1, . . . , âM}
of the polynomial model:

yi,a ≈ â0 + â1 · xi,a + â2 · x2
i,a + · · ·+ âM · xM

i,a. (10)

The newly estimated parameters {â0, â1, . . . , âM} are used as a new input into the
data transformation procedure (phase B).

Continual repetition of the actual data transformation (phase B) and the pro-
cedure of a new parameter estimation (phase C) results in iterated estimation
algorithm of model parameters.

4. Discussion

If the noise signal is only added to the function f (a, x) (no distortion in x-
coordinate) the iterated algorithm will not aid well and iterations will theoretically
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show similar results. With the noise added to the x-coordinate the transformed
noise signal strictly depends on x-values.

The initial estimate de facto supposes no added noise to the x-coordinate. The
subsequent iteration tries to correct the non-linear dependence on x-values so the
new estimation has either to improve, or in the worst case remain the same. Thus
the algorithm converges into improved estimated values of unknown parameters.

It is evident that a step-by-step correction of non-linearity yields gradually into
a final orthogonal data projection presented in Fig. 1. This means that corrections
of the parameter estimates get lower and lower. As soon as the correction between
the current and the last parameter estimate becomes lower than the predefined
value (stopping criteria) the algorithm is stopped.

5. Illustrative examples

In this paragraph the designed algorithm is shown on two illustrative examples
with predefined polynomial dimension (chosen parameter M). The first example
demonstrates the convergence of the iterated algorithm for one-dimensional case,
the second applies to a more complex non-linear regression model.

We will study the convergence of the iterated estimation process for an exam-
ple where the non-linear model is not a polynomial. The theoretical analysis of
parameter M estimation or practical recommendation obtained e.g. by numerical
experiments will be presented.

Example 1: Let us define the quadratic non-linear model

yi = a · x2
i (11)

with the parameter a = 0.1 and the following added noise-signals

yi = ȳi + ey,i, (12)

xi = x̄i + ex,i. (13)

We suppose independent noises with following parameters:

ey,i ≈ N (0, 10) , (14)

ex,i ≈ N (0, 5) . (15)

Taking into account all the above mentioned information we can rewrite the non-
linear model as follows:

ȳi = a · (x̄i + ex,i)
2
+ ey,i. (16)

First of all, the model (11) is used to generate 100 equidistant data {x̄i, ȳi}from
the interval ⟨0, 15⟩(shown as a continuous line in Fig. 2) and then the noise signals
are added to simulate the noisy data {xi, yi} (printed as ‘*’ points in Fig. 2).

The convergence of the iterated parameter estimation algorithm is demon-
strated in Fig. 3. Fig. 4 presents the error comparison (quality of estimation
algorithm) between classical LSE (initial LSE estimation) and the newly devel-
oped iterated LSE algorithm. It is evident that the new iterated LSE algorithm
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Fig. 2 Generated Ideal (continuous line) and Noisy Data (printed as ‘*’ points).

Fig. 3 Iterated Algorithm of Parameter Estimation.

can eliminate the error signal better, the error function (after 20 iterations) being
more equally distributed – relative to the first (initial) estimate.

Considering a hundred of different realizations of Iterated LSE algorithm pre-
sented in Fig. 5 we can achieve the following performance parameters: the mean
value of estimated parameter â = 0.0989and a standard deviation σâ = 0.0132.

416



Sv́ıtek M.: Iterated non-linear regression

Fig. 4 Error Comparison between Classical (error signal printed as ‘*’) and Iterated
LSE Algorithms (printed as ‘+’).

Fig. 5 Different realizations of Iterated LSE algorithm for algorithm performance
assessment.

Example 2: Let us define a more complex non-linear model

yi = a · x2
i + b · x3

i (17)

with parameters a = 5, b = −3 and added noise-signals

ey,i ≈ N (0, 5) , (18)
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ex,i ≈ N (0, 2) . (19)

We generate 100 equidistant data {x̄i, ȳi} from the interval ⟨0, 15⟩ (shown as a
continuous line in Fig. 6) and then the noisy data {xi, yi} (printed as ‘*’ points in
Fig. 6).

Fig. 6 Generated Ideal (continuous line) and Noisy Data (printed as ‘*’ points).

The convergence of both estimated parameters is shown in Fig. 7. This ex-
ample proves the numerical feasibility and practical applicability of the presented
methodology.

Fig. 7 Iterated Algorithm of Parameter Estimation.
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If we perform 100 of different realizations of Iterated LSE algorithm under
similar conditions we can compute the following statistical parameters: the mean
value of estimated parameters â = 4.654 b̂ = −2.9632 and standard deviations
σâ = 1.1768 σb̂ = 0.1040.

6. Conclusion

The goal of the paper was to present the basic idea and a new approach to the
estimation of a non-linear regression model. In past a lot of approximation al-
gorithms were designed to tackle non-linear problems. Such algorithms tried to
more or less linearize the non-linear regression function. Our approach is different.
We do not attempt to linearize the non-linear model itself but to design the data
transformation with respect to the non-linear model.

It was proven on illustrative examples that such approach is numerically feasi-
ble and the new transformed data match the non-linear model even if the initial
parameters are not exact. Suitable combination of the original (measured) and
the transformed data can converge into better precision of an unknown parameter
estimation.

The presented method can easily be extended to other estimation procedures,
such as Bayesian methodology, artificial neural networks, etc. The approach will
be similar, i.e. these methods can be used for the first estimation of unknown
parameters and then implemented in the proposed transformation of the measured
data. Combination of row and transformed data can then be used as average data
for the next estimation procedure.

The presented iterated method will be further developed in the future research.
In mathematical area the algorithm’s performance parameters should be derived.
From the numerical point of view the algorithm for multi-dimensional polynomial
models will be tested. We believe that a modified iterated algorithm can also be
used for solving other non-linear regression problems as well as it can contribute
to further development of the complex dynamical systems [14, 4, 3, 13, 2].
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