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Abstract: In this paper, the exponential stability of periodic solutions for inertial
Cohen-Grossberg-type neural networks are investigated. First, by properly chosen
variable substitution the system is transformed to first order differential equation.
Second, some sufficient conditions which can ensure the existence and exponential
stability of periodic solutions for the system are obtained by using constructing suit-
able Lyapunov function and differential mean value theorem, applying the analysis
method and inequality technique. Finally, two examples are given to illustrate the
effectiveness of the results.
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1. Introduction

In recent decades, much attention has been devoted to the studies of artificial
neural networks partially due to the fact that neural networks can be applied to
signal processing, image processing, pattern recognition, control and optimization
problems. The Cohen-Grossberg neural network [3], proposed in 1983, is focal re-
search subject. There are many interesting phenomena in the dynamical behaviors
of Cohen-Grossberg neural network. In the past years, the stability and periodic
solutions problem for a class of Cohen-Grossberg neural networks

dxi(t)

dt
= −αi(xi(t))

hi(xi(t))− n∑
j=1

aijfj(xj(t))−
n∑

j=1

bijfj(xj(t− τij)) + Ii(t)

 ,
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has received much research attention, and many good results related to this problem
have been reported, see [2, 3, 14, 15, 17].

On the other hand, some authors studied neural networks added the inertia
and obtained some results. For example, Li et al. [9] added the inertia to a delay
differential equation which can be described by

ẍ = aẋ− bx+ cf(x− hx(t− τ)).

and obtained obvious chaotic behavior. Liu et al. [12, 13] found chaotic behavior of
the inertial two-neuron system with time through numerical simulation, and gave
that the system will lose its stability when the time delay is increased and will
rise a quasi-periodic motion and chaos under the interaction of the periodic exci-
tation. Wheeler and Schieve [16] added the inertia to a continuous-time, Hopfield
effective-neuron system which is shown to exhibit chaos. They explained the chaos
is confirmed by Lyapunov exponents, power spectra, and phase space plots, this
system is described by

ẍ1 = −a11ẋ1 − a12x1 + a13 tanh(x1) + a14 tanh(x2),

ẍ2 = −b11ẋ2 − b12x2 + b13 tanh(x1) + b14 tanh(x2).

Babcocka et al. [1] studied the electronic neural networks with added inertia
and found when the neuron couplings are of an inertial nature, the dynamics can be
complex, in contrast to the simpler behavior displayed when they are the standard
resistor-capacitor variety. For various values of the neuron gain and the quality
factor of the couplings they found ringing about the stationary points, instability
and spontaneous oscillation, intertwined basins of attraction, and chaotic response
to a harmonic drive. Juhong and Jing [5] considered an inertial four-neuron delayed
bidirectional associative memory model. Weak resonant double Hopf bifurcations
are completely analyzed in the parameter space of the coupling weight and the
coupling delay by the perturbation-incremental scheme. In [4], author investigated
a kinematical description of traveling waves in the oscillations in the networks is
extended of the networks with inertia. When the inertia is below a critical value
and the state of each neuron is over-damped, properties of the networks are qualita-
tively the same as those without inertia. The duration of the transient oscillations
increases with inertia, and the increasing rate of the logarithm of the duration be-
comes more than double. When the inertia exceeds a critical value and the state
of each neuron becomes under-damped, properties of the networks qualitatively
change. The periodic solution is stabilized through the pitchfork bifurcation as
inertia increases. More bifurcations occur so that various periodic solutions are
generated, and the stability of the periodic solutions changes alternately. Further,
stable oscillations generated with inertia are observed in an experiment on an ana-
log circuit. From the above, the inertia can be considered a useful tool which is
added to help in the generation of chaos in neural systems.

Others, Liu et al. [10, 11] investigated the Hopf bifurcation and dynamics of
an inertial two-neuron system or a single inertial neuron mode. Zhao et. al. [18]
investigated the stability and the bifurcation of a class of inertial neural networks.
The authors Ke and Miao [6, 7, 8] investigated stability of equilibrium point and
periodic solutions in inertial BAM neural networks with time delays and unbounded
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delays, and the stability of inertial Cohen-Grossberg-type neural networks with
time delays, respectively.

In this paper, we consider the following inertial Cohen-Grossberg-type neural
networks with time delays

d2xi(t)

dt2
=− βi

dxi(t)

dt
− αi(xi(t))(hi(xi(t))−

n∑
j=1

aijfj(xj(t))

−
n∑

j=1

bijfj(xj(t− τij)) + Ii(t)),

(2)

for i = 1, 2, . . . , n, where the second derivative are called an inertial term of system
(2), βi > 0 are constants, xi(t) denotes the states variable of the i-th neuron at the
time t, αi(·) denotes an amplification function; hi(·) is the behaved function, aij
and bij are connection weights of the neural networks; fj denotes the activation
function of j-th neuron at the time t; τij is time delay of j-th neuron at the time
t and satisfies 0 ≤ τij ≤ τ ; Ii(t) denotes the external inputs on the i-th neuron at
the time t.

The initial values of system (2) are

xi(s) = φi(s),
dxi(s)

ds
= ψi(s), −τ ≤ s ≤ 0, (3)

where φi(s), ψi(s) are bounded and continuous functions.

From the viewpoints of mathematics and physics, the system (2) is a class of
nonlinear second-order dynamical system where αi > 0 is a damping coefficient,
then the system (1) can be considered as a model overdamped (i.e. the damp tend
to infinite). But in some practical problems, we need to consider the existence
and stability of the system when it has damping (or low damping). For example,
pendulum equation with dissipation term

d2x(t)

dt2
= −αdx(t)

dt
− βx− γ sin(t),

and forced Duffing equation

d2x(t)

dt2
= −αdx(t)

dt
− x(βx+ γx2) + δ cos(vt),

which have applied background.
This paper is organized as follows. Some preliminaries are given in Section 2. The

sufficient conditions are derived to ensure the existence and exponential stability
of periodic solutions for inertial Cohen-Grossberg-type neural networks in Section
3. Two illustrative examples are given to show the effectiveness of the proposed
theory in Section 4.
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2. Preliminaries

Throughout this paper, we make the following assumptions

H1 For each i = 1, 2, . . . , n, functions αi(x) are differentiable and satisfy |α′
i(x)| ≤

Āi, and 0 < αi ≤ αi(x) ≤ ᾱi for all x ∈ ℜ.

H2 For each i = 1, 2, . . . , n, functions hi(x) are differentiable and satisfy 0 < hi ≤
h′i(x) ≤ h̄i, for all x ∈ ℜ.

H3 For each j = 1, 2, . . . , n, the activation functions fj satisfy Lipschitz condition,
and there exist constant lj > 0, f̄j > 0, such that

|fj(v1)− fj(v2))| ≤ lj |v1 − v2|, |fj(x)| ≤ f̄j ,

for v1, v2, x ∈ ℜ.

H4 For each i = 1, 2, . . . , n, Ii(t) are continuously periodic functions defined on
t ∈ [0,∞) with common period ω > 0, and satisfy 0 < Ii ≤ Ii(t) ≤ Īi.

H5 Let gi(x) = αi(x)hi(x), for each i = 1, 2, . . . , n, there exist constant Ti > 0
and Ki > 0, such that

0 < Ti ≤ g′i(x) ≤ Ki, x ∈ ℜ.

Introducing variable transformation

yi(t) =
dxi(t)

dt
+ xi(t), i = 1, 2, . . . , n,

then (2) and (3) can be rewritten as

dxi(t)

dt
= −xi(t) + yi(t),

dyi(t)

dt
=− (1− βi)xi(t)− (βi − 1)yi(t)

− αi(xi(t))

hi(xi(t))− n∑
j=1

aijfj(xj(t))−
n∑

j=1

bijfj(xj(t− τij)) + Ii(t)


(4)

and 
xi(s) = φi(s),

dxi(s)
ds = ψi(s),

yi(s) = φi(s) + ψi(s),

− τ ≤ s ≤ 0. (5)

Definition 1. Let x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t))

T be an ω- periodic solution of
system (2) with initial value

x∗i (s) = φ∗
i (s),

dxi(s)

ds
= ψ∗

i (s), −τ ≤ s ≤ 0.

380



Yunquan Ke, Chunfang Miao: Exponential stability of periodic solutions. . .

If there exist constants δ > 0 and M > 0, such that for every solution x(t) =
(x1(t), x2(t), . . . , xn(t))

T of system (2) with any initial value

xi(s) = φi(s),
dxi(s)

ds
= ψi(s), −τ ≤ s ≤ 0,

n∑
i=1

|xi(t)− x∗i (t)|2 ≤Me−δt∥φ− φ∗∥2, t > 0,

then x∗(t) is said to be globally exponentially stable, where

∥φ− φ∗∥2 = sup
−τ≤t≤0

n∑
i=1

|φi(t)− φ∗
i (t)|2.

3. Main results

In this section, we will derive some sufficient conditions which can ensure the
existence and exponential stability of periodic solutions for the system (2).

Theorem 1. For system (2), under the hypotheses H1-H4, then xi(t),
dxi(t)
dt are

bounded, i = 1, 2, . . . , n, t ≥ 0.

Proof. It follows from (2) that

d2xi(t)

dt2
= −βi

dxi(t)

dt
− sgn(xi(t))αi(xi(t))· (6)

·

hi(xi(t))− n∑
j=1

aijfj(xj(t))−
n∑

j=1

bijfj(xj(t− τij)) + Ii(t)


= −βi

dxi(t)

dt
− sgn(xi(t))αi(xi(t))

·

hi(xi(t))− hi(0)+hi(0)−
n∑

j=1

aijfj(xj(t))−
n∑

j=1

bijfj(xj(t− τij))+Ii(t)


≤ −βi

dxi(t)

dt
− αihi|xi(t)|+ ᾱi

|hi(0)|+
n∑

j=1

|aij |f̄j +
n∑

j=1

|bij |f̄j + Īi

 .

From (6), we can obtain

|xi(t)| ≤ C1e
λ1t + C2e

λ2t +
ᾱi

αihi

|hi(0)|+ n∑
j=1

|aij |f̄j +
n∑

j=1

|bij |f̄j + Īi

 , (7)

where λ1,2 =
−βi±

√
β2
i −4αihi

2 , C1, C2 are any real constants.
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Since βi > 0, we have Re(λ1) < 0, Re(λ2) < 0, formula (7) shows that all
solutions xi(t) to (2) are bounded for i = 1, 2, . . . , n, t ≥ 0.

On the other hand, from (2) we also can obtain

dxi(t)

dt
= e−βit

dxi(0)

dt
− e−βit

∫ t

0

eβisαi(xi(s))[hi(xi(s))−
n∑

j=1

aijfj(xj(s))

−
n∑

j=1

bijfj(xj(s− τij)) + Ii(s)]ds, i = 1, 2, . . . , n. (8)

From the above we can see, xi(t) are bounded, we may assume that |xi(t)| ≤ Ri,
Ri > 0 are constants, i = 1, 2, . . . , n. From (8), we have

|dxi(t)
dt

| ≤ |ψi(0)|+ ᾱi

h̄iRi + |hi(0)|+
n∑

j=1

|aij |f̄j +
n∑

j=1

|bij |f̄j + Īi

 . (9)

Formula (9) shows that all solutions dxi(t)
dt are bounded for i = 1, 2, . . . , n, t ≥ 0.

Theorem 2. Under the hypotheses H1-H5, if βi −Ki > 0 and

−2− Ti + βi + ĀiĪi + Āi

n∑
j=1

f̄j [|aij |+ |bij |] +
n∑

j=1

ᾱj [|aji|+ |bji|]li < 0,

2− βi − Ti + ĀiĪi + Āi

n∑
j=1

f̄j [|aij |+ |bij |] + ᾱi

n∑
j=1

[|aij |+ |bij |]lj < 0,

for i = 1, 2, . . . , n, then system (2) has one ω-periodic solution, which is globally
exponentially stable.

Proof. Let x̄(t) = (x̄1(t), x̄2(t), . . . , x̄n(t))
T be an solution of system (2) with initial

value

x̄i(s) = φ̄i(s),
dxi(s)

ds
= ψ̄i(s), −τ ≤ s ≤ 0,

x(t) = (x1(t), x2(t), . . . , xn(t))
T be an solution of system (2) with initial value

xi(s) = φi(s),
dxi(s)

ds
= ψi(s), −τ ≤ s ≤ 0.

Let

φ∗
i (s) = φi(s) + ψi(s), φ̄∗

i (s) = φ̄i(s) + ψ̄i(s), −τ ≤ s ≤ 0,

ȳi(t) = x̄i(t) + x̄′i(t), zi(t) = xi(t)− x̄i(t), vi(t) = yi(t)− ȳi(t).
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From (4), we can obtain

dzi(t)

dt
= −zi(t) + vi(t),

dvi(t)

dt
= −(1− βi)zi(t)− (βi − 1)vi(t) + αi(xi(t))

[
n∑

j=1

aij(fj(xj(t))− fj(x̄j(t)))

+
n∑

j=1

bij(fj(xj(t− τij))− fj(x̄j(t− τij)))

]

+(αi(xi(t))− αi(x̄i(t)))

[
n∑

j=1

aijfj(x̄j(t)) +
n∑

j=1

bijfj(x̄j(t− τij))− Ii(t)

]

−[αi(xi(t))hi(xi(t))− αi(x̄i(t))hi(x̄i(t))].
(10)

Since functions αi(x) and hi(x) are differentiable, using differential mean value
theorem, we have

αi(xi(t))− αi(x̄i(t)) = α′
i(ξi)zi(t),

αi(xi(t))hi(xi(t))− αi(x̄i(t))hi(x̄i(t)) = gi(xi)− gi(x̄i) = g′i(ξ̄i)zi(t),

where ξi and ξ̄i lie between xi and x̄i.

Since 0 < Ti ≤ g′i(x) ≤ Ki, if βi −Ki > 0, then βi − g′i(ξi) ≥ βi −Ki > 0, and
0 < βi − g′i(ξi) ≤ βi − Ti.

From (10) we get

dz2i (t)

dt
= −z2i (t) + zi(t)vi(t). (11)

dv2i (t)
dt

= −(1− βi)zi(t)vi(t)− (βi − 1)v2i (t)

+vi(t)αi(xi(t))[
n∑

j=1

aij(fj(xj(t))− fj(x̄j(t)))

+
n∑

j=1

bij(fj(xj(t− τij))− fj(x̄j(t− τij)))]

+vi(t)(αi(xi(t))− αi(x̄i(t)))[
n∑

j=1

aijfj(x̄j(t))

+
n∑

j=1

bijfj(x̄j(t− τij))− Ii(t)]− vi(t)[αi(xi(t))hi(xi(t))− αi(x̄i(t))hi(x̄i(t))]

= −(1−βi)zi(t)vi(t)−(βi−1)v2i (t)+vi(t)αi(xi(t))[
n∑

j=1

aij(fj(xj(t))−fj(x̄j(t)))

+
n∑

j=1

bij(fj(xj(t− τij))− fj(x̄j(t− τij)))] + α′
i(ξi)zi(t)vi(t)[

n∑
j=1

aijfj(x̄j(t))

+
n∑

j=1

bijfj(x̄j(t− τij))− Ii(t)]− g′i(ξ̄i)zi(t)vi(t). (12)

From (11) and (12), we can obtain

383



Neural Network World 4/14, 377-394

1
2
d(z2i (t) + v2i (t)))

dt
≤ −z2i (t) + [βi − g′i(ξ̄i)]zi(t)vi(t)− (βi − 1)v2i (t)

+ᾱi[
n∑

j=1

|aij |lj |zj(t)|+
n∑

j=1

|bij |lj |zj(t− τij)|]|vi(t)|

+Āi[
n∑

j=1

|aij |f̄j +
n∑

j=1

|bij |f̄j + Īi]|zi(t)||vi(t)|

≤ −z2i (t) + [βi − Ti]
(z2i (t) + v2i (t))

2 − (βi − 1)v2i (t)

+ᾱi[
n∑

j=1

|aij |lj
(z2j (t) + v2i (t))

2 +
n∑

j=1

|bij |lj
(z2j (t− τij) + v2i (t))

2 ]

+Āi[
n∑

j=1

|aij |f̄j +
n∑

j=1

|bij |f̄j + Īi]
(z2i (t) + v2i (t))

2

≤ 1
2 [−2− Ti + βi + Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ĀiĪi]z
2
i (t) +

1
2 [2− βi − Ti

+ᾱi

n∑
j=1

lj(|aij |+ |bij |) + Āi

n∑
j=1

f̄j(|aij |+ |bij |)

+ ĀiĪi]v
2
i (t) + ᾱi

n∑
j=1

|aij |
2 ljz

2
j (t) + ᾱi

n∑
j=1

|bij |
2 ljz

2
j (t− τij). (13)

We consider the Lyapunov function:

V (t) =

n∑
i=1

z2i (t) + v2i (t)

2
eεt + ᾱi

n∑
j=1

|bij |
2
lj

∫ t

t−τji

eε(s+τji)z2j (s) ds

 (14)

ε > 0 is a small number.
Calculating the upper right Dini-derivative D+V (t) of V (t) along the solution

of (10), using (13) we have

D+V (t) =
n∑

i=1

{εz
2
i (t) + v2i (t)

2 eεt + 1
2
dz2i (t)
dt

+ v2i (t)) e
εt

+ᾱi

n∑
j=1

|bij |
2 lj [z

2
j (t)e

ε(t+τji) − z2j (t− τji)e
εt]}

≤ eεt
n∑

i=1

{εz
2
i (t) + v2i (t)

2 + 1
2[−2−Ti+βi+Āi

n∑
j=1

f̄j(|aij |+ |bij |)+ĀiĪi]z
2
i (t)

+1
2[2− βi − Ti + ᾱi

n∑
j=1

lj(|aij |+ |bij |) + Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ĀiĪi]v
2
i (t)

+ᾱi

n∑
j=1

|aij |
2 ljz

2
j (t) + ᾱi

n∑
j=1

|bij |
2 ljz

2
j (t− τij)

+ᾱi

n∑
j=1

|bij |
2 lj [z

2
j (t)e

ετ − z2j (t− τji)]}

≤ eεt

2

n∑
i=1

{[ε− 2− Ti + βi + ĀiĪi + Āi

n∑
j=1

f̄j(|aij |+ |bij |)

+
n∑

j=1

ᾱj(|aji|+ eετ |bji|)li]z2i (t) + [ε+ 2− βi − Ti + ĀiĪi)

+ Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ᾱi

n∑
j=1

(|aij |+ |bij |)lj ]v2i (t)}. (15)
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From condition of Theorem 2, we can choose a small ε > 0 such that

ε− 2− Ti + βi + ĀiĪi + Āi

n∑
j=1

f̄j(|aij |+ |bij |) +
n∑

j=1

ᾱj(|aji|+ eετ |bji|)li ≤ 0,

ε+ 2− βi − Ti + ĀiĪi + Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ᾱi

n∑
j=1

(|aij |+ |bij |)lj ≤ 0,

for i = 1, 2 . . . , n.
From (15), we get D+V (t) ≤ 0, and so V (t) ≤ V (0), for all t ≥ 0.
From (14), we have

V (t) ≥
n∑

i=1

z2i (t) + v2i (t)

2
eεt =

n∑
i=1

eεt

2
[(xi(t)− x̄i(t))

2 + (yi(t)− ȳi(t))
2]. (16)

V (0) =
n∑

i=1

{z
2
i (0) + v2i (0)

2 + ᾱi

n∑
j=1

|bij |
2 lj

∫ 0

−τij
z2j (s) e

ε(s+τij)ds}

=
n∑

i=1

{ (φi(0)− φ̄i(0))
2

2 +
(φ∗

i (0)−φ̄∗
i (0))

2

2

+ᾱi

n∑
j=1

|bij |
2 lj

∫ 0

−τij
(φj(s)−φ̄j(s))

2 eε(s+τij)ds}

≤ ∥φ− φ̄∥2
2 +

∥φ∗ − φ̄∗∥2
2 + τ

n∑
j=1

max
1≤i≤n

{ᾱi
|bij
2 |li}eετ∥φ− φ̄∥2

≤ 1

2
[1 + τ

n∑
j=1

max
1≤i≤n

{ᾱi|bij |lj} eετ ]∥φ− φ̄∥2 + 1

2
∥φ∗ − φ̄∗∥2. (17)

Since V (0) ≥ V (t), from (16) and (17), we obtain
n∑

i=1

eεt

2 [(xi(t)− x̄i(t))
2 + (yi(t)− ȳi(t))

2]

≤ 1

2
[1 + τ

n∑
j=1

max
1≤i≤n

{|bij |lj} eετ ]∥φ− φ̄∥2 + 1
2∥φ

∗ − φ̄∗∥2. (18)

By multiplying both sides of (18) with 2e−εt, we get

n∑
i=1

[(xi(t)− x̄i(t))
2 + (yi(t)− ȳi(t))

2] ≤M e−εt∥φ− φ̄∥2, t > 0. (19)

for all t ≥ 0 , where M =

{
1 + τ

n∑
j=1

max
1≤i≤n

{|bij |lj} eετ + ∥φ∗−φ̄∗∥2

∥φ−φ̄∥2

}
.

For i = 1, 2, . . . , n, when Ii(t) are continuously periodic functions defined on
t ∈ [0,∞) with common period ω > 0, if xi(t) are the solutions of (2), then for any
natural number k, xi(t+ kω) are the solutions of (2). Thus, from (19) there exist
constants N > 0 and δ > 0, such that

|xi(t+ (k + 1)ω)− xi(t+ kω)| ≤ N e−δ(t+kω)∥φ− φ̄∥2. (20)
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It is noted that for any natural number p

xi(t+ (p+ 1)ω) = xi(t) +

p∑
k=0

(xi(t+ (k + 1)ω)− xi(t+ kω)).

Thus

|xi(t+ (p+ 1)ω)| ≤ |xi(t)|+
p∑

k=0

|xi(t+ (k + 1)ω)− xi(t+ kω)|. (21)

Since xi(t) are bounded, it follows (20) and (21) that {x(t + pω)} uniformly
converges to a continuous function x∗(t) = (x∗1(t), x

∗
2(t), . . . , x

∗
n(t)) on any compact

set of ℜ. When xi(t) and
dxi(t)
dt are bounded, the same can be proved that {y(t+

pω)} uniformly converges to a continuous function y∗(t) = (y∗1(t), y
∗
2(t), . . . , y

∗
n(t))

on any compact set of ℜ.
Now we will show that x∗(t) is the ω- periodic solution of system (2).
First, x∗(t) is ω- periodic function, since

x∗(t+ ω) = lim
p→∞

x(t+ (p+ 1)ω) = x∗(t).

Second, we prove that x∗(t) is a solution of system (2). In fact, since

dxi(t+ pω)
dt

= −xi(t+ pω) + yi(t+ pω),

dyi(t+ pω)
dt

= −(1− βi)xi(t+ pω)− (βi − 1)yi(t+ pω)

−αi(xi(t+ pω))[hi(xi(t+ pω))−
n∑

j=1

aijfj(xj(t+ pω))

−
n∑

j=1

bijfj(xj(t+ pω − τij)) + Ii(t+ pω)].

(22)

Since {x(t+ pω)} uniformly converges to a continuous function x∗(t) = (x∗1(t),
x∗2(t), . . . , x

∗
n(t)), and that {y(t+pω)} uniformly converges to a continuous function

y∗(t) = (y∗1(t), y
∗
2(t), . . . , y

∗
n(t)), under the hypotheses (H1) − (H5), (22) implies

that {
dxi(t+ pω)

dt

}
,

{
dyi(t+ pω)

dt

}
,

uniformly converges to a continuous function on any compact set of ℜ, respectively.
Thus, letting p→ ∞, we obtain

dx∗i (t)
dt

= −x∗i (t) + y∗i (t),

dy∗i (t)
dt

= −(1− βi)x
∗
i (t)− (βi − 1)y∗i (t)− αi(x

∗
i (t))[hi(x

∗
i (t))

−
n∑

j=1

aijfj(x
∗
j (t))−

n∑
j=1

bijfj(x
∗
j (t− τij)) + Ii(t)].

(23)

It means that is x∗(t) is a periodic solution of system (2). From (19), we have

n∑
i=1

(xi(t)− x∗i (t))
2 ≤Me−εt∥φ− φ∗∥2, t > 0,

then it is globally exponentially stable.
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Theorem 3. Under the hypotheses H1-H5, there is one ω-periodic solution of
system (2), which is globally exponentially stable, if following conditions hold

βi − 1− ki > 0, −Ti + Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ĀiĪi + ᾱi

n∑
j=1

lj(|aij |+ |bij |) < 0,

for i = 1, 2 . . . , n.

Proof. Let x̄(t) = (x̄1(t), x̄2(t), . . . , x̄n(t))
T be an solution of system (2) with initial

value

x̄i(s) = φ̄i(s),
dx̄i(s)

ds
= ψ̄i(s), −τ ≤ s ≤ 0,

x(t) = (x1(t), x2(t), . . . , xn(t))
T be an solution of system (2) with initial value

xi(s) = φi(s),
dxi(t)

dt
= ψi(s), −τ ≤ s ≤ 0.

From (10), we can obtain

d|zi(t)|
dt

= sgn(zi(t))(−zi(t) + vi(t)) ≤ −|zi(t)|+ |vi(t)|. (24)

d|vi(t)|
dt

= sgn(vi(t)){−(1− βi)zi(t)− (βi − 1)vi(t)

+αi(xi(t))[
n∑

j=1

aij(fj(xj(t))− fj(x̄j(t)))

+
n∑

j=1

bij(fj(xj(t−τij))−fj(x̄j(t−τij)))]+(αi(xi(t))−αi(x̄i(t)))[
n∑

j=1

aijfj(x̄j(t))

+
n∑

j=1

bijfj(x̄j(t− τij))−Ii(t)]−[αi(xi(t))hi(xi(t))−αi(x̄i(t))hi(x̄i(t))]}

= sgn(vi(t)){−(1− βi)zi(t)− (βi − 1)vi(t)

+αi(xi(t))[
n∑

j=1

aij(fj(xj(t))− fj(x̄j(t)))

+
n∑

j=1

bij(fj(xj(t− τij))− fj(x̄j(t− τij)))] + α′
i(ξi)zi(t)[

n∑
j=1

aijfj(x̄j(t))

+
n∑

j=1

bijfj(x̄j(t− τij))− Ii(t)]− g′i(ξ̄i)zi(t)}

≤ (βi−1−g′i(ξ̄i))|zi(t)|−(βi−1)|vi(t)|+ ᾱi

n∑
j=1

lj [|aij ||zj(t)|+ |bij ||zj(t−τij)|]

+ Āi[
n∑

j=1

f̄j(|aij |+ |bij |) + Īi]|zi(t)|

≤ [βi − 1− Ti + Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ĀiĪi]|zi(t)| − (βi − 1)|vi(t)|

+ᾱi

n∑
j=1

lj [|aij ||zj(t)|+ |bij ||zj(t− τij)|]. (25)

From (24) and (25), we can obtain

|zi(t)| ≤ e−t|zi(0)|+
∫ t

0

es−t|vi(s)|ds. (26)
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|vi(t)| ≤ e(1−βi)t|vi(0)|
+ [βi − 1− Ti + Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ĀiĪi]
∫ t

0
e(βi−1)(s−t)|zi(s)|ds

+ ᾱi

n∑
j=1

lj [|aij |
∫ t

0
e(βi−1)(s−t)|zj(s)|ds

+|bij |
∫ t

0

e(βi−1)(s−t)|zj(s− τij)|ds]. (27)

We consider the functions gi(ξ) given by

gi(ξ) = ξ−Ti+Āi

n∑
j=1

f̄j(|aij |+|bij |)+ĀiĪi+ᾱi

n∑
j=1

lj(|aij |+|bij |eξτ ), i = 1, 2, . . . , n.

Obviously
dgi(ξ)

dξ
> 0, lim

ξ→+∞
gi(ξ) = +∞, gi(0) < 0,

for i = 1, 2, . . . , n.
Therefore, there exist constants ξi ∈ (0,+∞), such that

gi(ξi) = 0, i = 1, 2, . . . , n.

We choose ξ̄ = min{ξ1, ξ2, . . . , ξn}, then ξ̄ > 0, when 0 < σ < ξ̄, we have

σ − Ti + Āi

n∑
j=1

f̄j(|aij |+ |bij |) + ĀiĪi + ᾱi

n∑
j=1

lj(|aij |+ |bij |eστ ) < 0.

Since the initial values φi(s), ψi(s) are bounded and continuous functions, then
exist N1, N2 > 0, such that |φi(t)| ≤ N1, |ψi(t)| ≤ N2, 1, 2, . . . , n, t ∈ [−τ, 0]. Let
L = N1 +N2, we will show that for any sufficiently small constant ε > 0,

|zi(t)| < (L+ ε)e−σt, |vi(t)| < (L+ ε)e−σt, t ≥ 0, i = 1, 2, . . . , n. (28)

If (28) does not hold, there exists some k ∈ {1, 2, . . . , n} and t1 ≥ 0, such that |zk(t1)| = (L+ ε)e−σt1 , d+|zk(t1)|
dt ≥ 0,

|zi(t)| < (L+ ε)e−σt, t ∈ [0, t1),
|vi(t)| < (L+ ε)e−σt, t ∈ [0, t1].

(29)

or  |zk(t1)| = |vk(t1)| = (L+ ε)e−σt1 ,
|zi(t)| < (L+ ε)e−σt, t ∈ [0, t1),
|vi(t)| < (L+ ε)e−σt, t ∈ [0, t1).

(30)

or  |vk(t1)| = (L+ ε)e−σt1 ,
|vi(t)| < (L+ ε)e−σt, t ∈ [0, t1),
|zi(t)| < (L+ ε)e−σt, t ∈ [0, t1].

(31)

Therefore, by (24) and (29), we have

d+|zk(t1)|
dt

≤ −|zk(t1)|+ |vk(t1)| < −(L+ ε)e−σt1 + (L+ ε)e−σt1 = 0,
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which is a contradiction. By (27) and (30)(or (31)), we obtain

|vk(t1)| = (L+ ε)e−σt1 ≤ e(1−βk)t1 |vk(0)|+ [βk − 1− Tk

+Āk

n∑
j=1

f̄j(|akj |+ |bkj |) + Āk Īk]
∫ t1
0

e(βk−1)(s−t1)|zk(s)|ds

+ᾱi

n∑
j=1

lj [|akj |
∫ t1
0

e(βk−1)(s−t1)|zj(s)|ds+|bkj |
∫ t1
0

e(βk−1)(s−t1)|zj(s−τkj)|ds]

≤ (L+ ε){e(1−βk)t1 + [βk − 1− Tk + Āk

n∑
j=1

f̄j(|akj |+ |bkj |)

+Āk Īk]
∫ t1
0

e(βk−1)(s−t1)−σsds+ ᾱi

n∑
j=1

lj [|akj |
∫ t1
0

e(βk−1)(s−t1)−σsds

+|bkj |eτσ
∫ t1
0

e(βk−1)(s−t1)−σsds]}

≤ (L+ ε){e(1−βk)t1 + [βk − 1− Tk + Āk

n∑
j=1

f̄j(|akj |+ |bkj |)

+Āk Īk + ᾱi

n∑
j=1

lj(|akj |+ |bkj |eτσ)] e
−σt1 − e(1−βk)t1

βk − 1− σ
}

≤ (L+ ε)e−σt1{e(1−βk+σ)t1 + [βk − 1− Tk + Āk

n∑
j=1

f̄j(|akj |+ |bkj |)

+Āk Īk + ᾱi

n∑
j=1

lj(|akj |+ |bkj |eτσ)]
1− e(1−βk+σ)t1

βk − 1− σ
}. (32)

Since

βk−1−σ > βk−1−Tk+ Āk

n∑
j=1

f̄j(|akj |+ |bkj |)+ Āk Īk+ ᾱi

n∑
j=1

lj(|akj |+ |bkj |eτσ),

we have

[βk − 1− Tk + Āk

n∑
j=1

f̄j(|akj |+ |bkj |) + Āk Īk

+ᾱi

n∑
j=1

lj(|akj |+ |bkj |eτσ)]/(βk − 1− σ) < 1.

From (32), we have
L+ ε < L+ ε,

which is a contradiction. Thus (28) holds, let ε→ 0, we have

|zi(t)| ≤ Le−σt, |vi(t)| ≤ Le−σt, 1, 2, . . . , n, t > 0. (33)

From (33), there exist constants σ > 0 and M > 0 such that

n∑
i=1

|xi(t)− x̄i(t)|2 ≤Me−σt∥φ− φ̄∥2, 1, 2, . . . , n, t > 0. (34)

Next, similar to the methods of the proof of Theorem 2, we can proof that
system (2) has one ω-periodic solution which is globally exponentially stable.
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4. Numerical examples

In this Section, we give two examples to show showing our results.

Example 1. We consider the following inertial Cohen-Grossberg-type neural net-
works

d2xi(t)

dt2
=− βi

dxi(t)

dt
− αi(xi(t))(hi(xi(t))−

2∑
j=1

aijfj(xj(t))

−
2∑

j=1

bijfj(xj(t− τij)) + Ii(t)),

(35)

for i = 1, 2, where

β1 = 2.2, β2 = 2.1, a11 = 0.2, a12 = 0.3, a21 = −0.2, a22 = 0.1,

b11 = 0.1, b12 = 0.2, b21 = −0.1, b22 = −0.2, αi(x) = 1 +
1

1 + x2
,

hi(x) = x, fi(x) =
1

16
sin(x), Ii(t) =

1

6
(2 + sin(t)).

Obviously,

1 ≤ αi(x) ≤ 2, |α′
i(x)| = | −2x

(1 + x2)2
| ≤ 1,

1

6
< Ii(t) <

1

2
, h′i(x) = 1,

gi(x) = αi(x)hi(x) = x+
x

1 + x2
,

7

8
≤ g′i(x) = 1 +

1− x2

(1 + x2)2
≤ 2.

|fi(x)− fi(y)| ≤ |x− y|/16, i = 1, 2.

We select

ω = 2π, f̄i =
1

16
, αi = 1, ᾱi = 2, Āi = 1, hi = 1, h̄i = 1, Īi =

1

2
,

Fig. 1 Transient response of state variables x1(t) of Example 1.
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Fig. 2 Transient response of state variables x2(t) of Example 1.

Ti =
7

8
, Ki = 2, li = 1/16, i = 1, 2.

Thus, hypotheses (H1)− (H5) are hold.
For numerical simulation, let τ11 = 0.1, τ12 = 0.2, τ21 = 0.2, τ22 = 0.1, the

following any three cases are given:

[φ1(0), φ2(0), ψ1(0), ψ2(0)] = [1;−0.1; 0.8; 1.3]; [1.5; 0.8; 1.2; 1.5]; [0.1; 1.2; 1.4; 1.8].

Figs. 1 and Figs. 2 depict the time responses of state variables of x1(t) and x2(t)
of system in Example 1, respectively.

On the other hand, we have the following results by simple calculation

−2− T1 + β1 + Ā1Ī1 + Ā1

2∑
j=1

f̄j [|a1j |+ |b1j |] +
2∑

j=1

ᾱj [|aj1|+ |bj1|]l1 = − 1

20
< 0,

−2− T2 + β2 + Ā2Ī2 + Ā2

2∑
j=1

f̄j [|a2j |+ |b2j |] +
2∑

j=1

ᾱj [|aj2|+ |bj2]|l2 = −11

80
< 0,

2− β1 − T1 + Ā1Ī1 + Ā1

2∑
j=1

f̄j [|a1j |+ |b1j |] + ᾱ1

2∑
j=1

[|a1j |+ |b1j |]lj = − 9

20
< 0,

2− β2 − T2 + Ā2Ī2 + Ā2

2∑
j=1

f̄j [|a2j |+ |b2j |] + ᾱ2

2∑
j=1

[|a2j |+ |b2j ]|lj = −27

80
< 0,

and β1 −K1 = 0.2 > 0, β2 −K2 = 0.1 > 0.
Then, the conditions of Theorem 2 hold. From Theorem 2 that this system (35)

has one 2π- periodic solution, and all other solutions of system (35) exponentially
converge to it as t→ +∞. Evidently, this consequence is coincident with the results
of numerical simulation.
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Fig. 3 Transient response of state variables x1(t) of Example 2.

Fig. 4 Transient response of state variables x2(t) of Example 2.

Example 2. For system (35), we let β1 = 3.5, β2 = 4, the other parameters are
the same as that in Example 1.

For numerical simulation, the following any three cases are given:

[φ1(0), φ2(0), ψ1(0), ψ2(0)] = [1;−0.5; 0.8; 1.3]; [1.5; 1; 1; 1.5]; [−1; 0.1;−0.4; 1.8].

Figs. 3 and Figs. 4 depict the time responses of state variables of x1(t) and x2(t)
of system in Example 2, respectively.

On the other hand, we have the following results by simple calculation

β1 − 1−K1 = 0.5 > 0, β2 − 1−K2 = 1 > 0,

−T1 + Ā1Ī1 + Ā1

2∑
j=1

f̄j [|a1j |+ |b1j |] + ᾱ1

2∑
j=1

lj [|a1j |+ |b1j |] = −0.225 < 0,
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−T2 + Ā2Ī2 + Ā2

2∑
j=1

f̄j [|a2j |+ |b2j |] + ᾱ2

2∑
j=1

lj [|a2j |+ |b2j |] = −0.3 < 0.

Then, the conditions of Theorem 3 hold. From Theorem 3 that this system (35)
has one 2π- periodic solution, and all other solutions of system (35) exponentially
converge to it as t→ +∞. Evidently, this consequence is coincident with the results
of numerical simulation.

Remark 1. Example 1 and Example 2 showed system (35) has one ω-periodic
solution, which is globally exponentially stable. In Example 1, there is

β1 − 1− k1 = −0.8 < 0.

But this condition isn’t satisfied Theorem 3. While in Example 2, there is

−2− T1 + β1 + Ā1Ī1 + Ā1

2∑
j=1

f̄j [|a1j |+ |b1j |] +
2∑

j=1

ᾱj [|aj1|+ |bj1|]l1 = 0.25 > 0.

This condition isn’t satisfied Theorem 2. It showed that Theorem 2 and Theorem
3 have different applications.

In fact, the parameter βi in Theorem 2 must be satisfy βi > Ki, 2− Ti < βi <
2 + Ti. For Theorem 3 it is only required to satisfy βi > 1 +Ki.
Therefore, Theorems 2 and Theorem 3 can solve different problems.

5. Conclusion

In this paper, we give theorems to ensure the existence and the exponential stability
of the periodic solution for inertial Cohen-Grossberg-type neural networks. Novel
existence and stability conditions are stated with simple algebraic forms and their
verification and applications are straightforward and convenient. Especially, we
give different conditions in Theorems 2 and Theorems 3 to ensure the exponential
stability of the periodic solution, which have different advantages in different prob-
lems and applications. Finally two examples illustrate the effectiveness in different
conditions.
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