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Abstract: The concept of an n-equidistant polygonal fuzzy number is introduced
to avoid the complexity of the operations between fuzzy numbers. Firstly, the
properties of linear operations and the convergence of n-equidistant polygonal
fuzzy numbers are discussed, the method how to change a fuzzy number into an
n-equidistant polygonal fuzzy number is shown. Next, for given a µ̂-integrable
polygonal fuzzy valued function, an n-equidistant polygonal fuzzy valued function
is constructed. By introducing the definition of K-quasi-additive integral and K-
integral norm, the universal approximation of polygonal fuzzy neural network are
studied. The final result indicates that the polygonal fuzzy neural network still
possess universal approximation to an integrable system.
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1. Introduction

A fuzzy neural network (FNN) is an organic combination of an artificial neural
network and fuzzy techniques, that form a hybrid intelligent system with both
intelligent information processing and adaptability. In real life, it can effectively
handle natural language messages, and there are more data messages of digital type
than language messages. Thus, we can obtain date messages with corresponding
input-output relationship of a fuzzy system by measurement date and transmission.
Buckley [2–3] gave a conjecture when he studied the universal approximation of
the regular FNN in 1994, and predicted the regular FNN is a universal approxima-
tion of the continuously increasing fuzzy function class. Since then, the network is
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systematically studied by many scholars at home and abroad on the system approx-
imation and the learning algorithm. Consequently, some useful achievements [1,
4–6, 8, 11–15, 25] were acquired. All of these have important value for fuzzy infer-
ence, fuzzy control and image restoration technique. Liu [12] defined n-symmetrical
polygonal fuzzy numbers for the first time in 2002, and completeness and separabil-
ity of this space were discussed in detail. Furthermore, the universal approximation
of a polygonal fuzzy neural network (PFNN) was researched. Unfortunately Liu
[11–12] did not use integral norms to investigate them. In fact, a PFNN is estab-
lished in accordance with the polygonal fuzzy numbers finish a fuzzy information
processing by means of finite points on x-axis, and a PFNN directly effected rel-
ative operations on corresponding fuzzy numbers. In [12], it was proved that a
three-layer feed-forward PFNN could be regarded as the universal approximation
of the continuous increasing fuzzy functions. In the real world, most systems don’t
certainly satisfy continuity. Hence, it is necessary to generalize the continuity of
fuzzy functions.

This paper is organized as follows: The method of transforming an ordinary
fuzzy numbers into a polygonal fuzzy number is indicated in Section 2, and some
basic concepts and the properties of the polygonal fuzzy number are briefly sum-
marized. In Section 3, the concept of K-integral norm is given by introducing
K-quasi-additive integral. In addition, a concrete PFNN is constructed in Section
4. In Section 5, approximation of the three-layer PFNN in the sense the K-integral
norm is proved.

2. Equidistant polygonal fuzzy numbers

Although, some of the system theory based on fuzzy number had successfully ap-
plied in fuzzy control field. However, these operations of fuzzy arithmetic are
extremely complex, even then the operations for the simple trigonometric fuzzy
numbers and ladder fuzzy numbers are very difficult. The reason is that the four
arithmetic operations in Zadeh’s extension principle do not satisfy closeness. Thus,
how to approximately finish nonlinear operations for general fuzzy numbers is an
important problems.

Let R+ = [0,+∞),Rd denote a d-dimensional Euclidean space, N denote natu-
ral number set, ∥ · ∥ be a norm in Rd. For arbitrary A,B ⊂ Rd, define

dH(A,B) = max{ ∨
x∈A

∧
y∈B

∥ x− y ∥, ∨
y∈B

∧
x∈A

∥ x− y ∥}.

By [7], we know that dH(A,B) is an Hausdorff distance between A and B.
Especially, dH(A,B) =| a− c | ∨ | b− d | whenever A = [a, b], B = [c, d] ⊂ R.

Definition 2.1 Let Ã : R −→ [0, 1]. If Ã satisfies the conditions (1)-(2):

(1) ker(Ã) = {x ∈ R | Ã(x) = 1} ̸= ∅;
(2) for any λ ∈ (0, 1], the Ãλ = {x ∈ R | Ã(x) ≥ λ} is a bounded closed interval.

Then Ã is called a fuzzy number on R.
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Let F0(R) denote the family of all fuzzy numbers on R. Form [7], for any

Ã, B̃ ∈ F0(R), we define

D(Ã, B̃) = ∨
λ∈[0,1]

dH(Ãλ, B̃λ).

Then it shows that (F0(R), D) constitutes a completely metric space.

The definition of the polygonal fuzzy numbers is put forward first time in [12],
it has the excellent linear properties, this makes the operations of fuzzy numbers
become quite succinct. In this section, we shall first introduce a kind of particular
polygonal fuzzy numbers, please refer to Definition 2.2b.

Definition 2.2a (Liu [12]) Let Ã ∈ F0(R), for a given n ∈ N. If there exists
a group of ordered real numbers a10, a

1
1, . . . , a

1
n, a

2
n, . . . , a

2
1, a

2
0 ∈ R with a10 ≤ a11 ≤

· · · ≤ a1n ≤ a2n ≤ · · · ≤ a21 ≤ a20 such that Ã(x) takes straight lines in interval
[a1i−1, a

1
i ] and [a2i , a

2
i−1], i = 1, 2, . . . , n, i.e., for all x ∈ R,

Ã(x) =


Ã(a1i−1) +

(x−a1
i−1)(Ã(a1

i )−Ã(a1
i−1))

(a1
i−a1

i−1)
, x ∈ [a1i−1, a

1
i ], i = 1, 2, . . . , n

1, x ∈ [a1n, a
2
n]

Ã(a2i−1) +
(a2

i−1−x)(Ã(a2
i )−Ã(a2

i−1))

(a2
i−1−a2

i )
, x ∈ [a2i , a

2
i−1], i = 1, 2, . . . , n

0, otherwise

Then Ã is called a n-polygonal fuzzy number, it is written as Ã = (a10, a
1
1, . . . , a

1
n,

a2n, . . . , a
2
1, a

2
0), where (·) is not a vector, it is only an expression of Ã, and define

0
0 = 0. Please refer to Fig. 1.
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Fig. 1 An n-polygonal fuzzy number Ã.

Obviously, 1-polygonal fuzzy number Ã degenerates a ladder fuzzy number or
a trigonometric fuzzy number whenever n = 1. In addition, it is clearly that

Ã(a10) < Ã(a11) < · · · < Ã(a1n) = 1 = Ã(a2n) > · · · > Ã(a21) > Ã(a20).
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Definition 2.2b Particularly, in the sense of the partition in Definition 2.2a,
we divide a closed interval [0, 1] of y-axis into equal n small intervals for a given

n ∈ N. Then Ã(aqi ) =
i
n and Ã(aqi ) − Ã(aqi−1) =

1
n , q = 1, 2; i = 1, 2, . . . , n, and

its membership function is expressed as follows:

Ã(x) =


i−1
n +

(x−a1
i−1)

n(a1
i−a1

i−1)
, x ∈ [a1i−1, a

1
i ], i = 1, 2, . . . , n

1, x ∈ [a1n, a
2
n]

i−1
n +

(a2
i−1−x)

n(a2
i−1−a2

i )
, x ∈ [a2i , a

2
i−1], i = 1, 2, . . . , n

0, otherwise

Then Ã is called an n-equidistant polygonal fuzzy number, refer to Fig. 2.
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Fig. 2 An n-equidistant polygonal fuzzy number Ã.

For a given n ∈ N, let the symbol Zn(F0(R)) denote the family of all n-
equidistant polygonal fuzzy numbers on F0(R).

Note 1 For simplicity, in this paper, we will always discuss the problems in the
sense of n-equidistant polygonal fuzzy numbers. From Definition 2.2b, some prop-
erties of n-equidistant polygonal fuzzy numbers are similar as a ladder or trigono-
metric fuzzy number. For given n ∈ N, an n-equidistant polygonal fuzzy number Ã
can be solely determined by 2n+2 real numbers a10, a

1
1, . . . , a

1
n, a

2
n, . . . , a

2
1, a

2
0 on R.

On the contrary, the 2n + 2 real numbers of satisfied above conditions can solely
determined the analytic expression of an n-equidistant polygonal fuzzy number.

Example 2.1 Let Ã = (−2,−1,−0.5, 0.8, 1, 3) ∈ Zn(F0(R)). The analytic expres-
sion of the n-equidistant polygonal fuzzy number can solely determined.

In fact, let 2n + 2 = 6, it implies n = 2, then there exist a sole divided point
λ = 1

2 . At the moment, we obtain the coordinates of the knots points on the image
of a 2-equidistant polygonal fuzzy number, they are

(−2, 0), (−1, 0.5), (−0.5, 1), (0.8, 1), (1, 0.5), (3, 0).

Connecting neighbor knots points in order with straight line segments, we can
get the analytic expression of 2-equidistant polygonal fuzzy number Ã(x), i.e.,
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Ã(x) =


1
2x+ 1, −2 ≤ x < −1
x+ 3

2 , −1 ≤ x < −0.5
1, −0.5 ≤ x ≤ 0.8

− 5
2x+ 3, 0.8 < x ≤ 1

− 1
4x+ 3

4 , 1 < x ≤ 3

On the image of the corresponding Ã(x), please refer to Fig. 3.
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Fig. 3 2-polygonal fuzzy number Ã = (−2,−1,−0.5, 0.8, 1, 3).

Clearly, Zn(F0(R)) ⊂ F0(R). As for a given fuzzy number, its corresponding
n-equidistant polygonal fuzzy number depends on the selection of n, the bigger
valued of n takes, the more knots of the polygonal lines are, the approximation
capability of polygonal fuzzy numbers to given fuzzy numbers is more stronger, at
the moment, they are becoming more and more complex.

Definition 2.3 (Wang [21]) Let Ã, B̃ ∈ F0(R), Zn(Ã) = (a10, a
1
1, . . . , a

1
n, a

2
n, . . . , a

2
1,

a20), Zn(B̃) = (b10, b
1
1, . . . , b

1
n, b

2
n, . . . , b

2
1, b

2
0) ∈ Zn(F0(R)). For a given n ∈ N, define

addition, subtraction and multiplication etc. as follows:

(1) Zn(Ã)+Zn(B̃) = (a10+b
1
0, a

1
1+b

1
1, . . . , a

1
n+b

1
n, a

2
n+b

2
n, . . . , a

2
1+b

2
1, a

2
0+b

2
0);

(2) Zn(Ã)−Zn(B̃) = (a10−b20, a11−b21, . . . , a1n−b2n, a2n−b1n, . . . , a21−b11, a20−b10);
(3) Zn(Ã) ·Zn(B̃) = (c10, c

1
1, . . . , c

1
n, c

2
n, . . . , c

2
1, c

2
0); c

1
i = a1i b

1
i ∧a1i b2i ∧a2i b1i ∧a2i b2i ;

c2i = a1i b
1
i ∨ a1i b2i ∨ a2i b1i ∨ a2i b2i , i = 0, 1, 2, . . . , n;

(4) k · Zn(Ã) = (ka10, ka
1
1, . . . , ka

1
n, ka

2
n, . . . , ka

2
1, ka

2
0), k ≥ 0.

Theorem 2.1 (Wang [21]) Let Ã, B̃ ∈ F0(R),∀n ∈ N. Then the following proper-
ties hold as follows:

(1) Zn(Ã± B̃) = Zn(Ã)± Zn(B̃), Zn(Ã · B̃) = Zn(Ã) · Zn(B̃);

(2) Zn(Zn(Ã)) = Zn(Ã), Zn(k · Ã) = k · Zn(Ã), where k ≥ 0.
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Example 2.2 Let Ã = (−2,−1,−0.5, 0.8, 1, 3), B̃ = (−1,−0.5, 0, 1, 1.5, 2) ∈ Z2(F0(R)).
By Definition 2.3 and Theorem 2.1, its arithmetic operations are obtained

Ã+ B̃ = (−3,−1.5,−0.5, 1.8, 2.5, 5);

Ã− B̃ = (−4,−2.5,−1.5, 0, 8, 1.5, 4);

Ã · B̃ = (−4,−1.5,−0.5, 0.8, 1.5, 6).

Evidently, the space Zn(F0(R)) of n-equidistant polygonal fuzzy numbers is
closed with respect to the arithmetic operations, its extension operations are more
simpler than the corresponding operations in Zadeh’s extension principle, which
possess excellent properties.

Aim at the (1) of Definition 2.3, please refer to the demonstration of Fig. 4.
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Fig. 4 Addition of the polygonal fuzzy numbers Ã and B̃.

Theorem 2.2 (Wang [21]) Let Ã, B̃ ∈ F0(R), Zn(Ã) = (a10, a
1
1, . . . , a

1
n, a

2
n, . . . , a

2
1,

a20), Zn(B̃) = (b10, b
1
1, . . . , b

1
n, b

2
n, . . . , b

2
1, b

2
0) ∈ Zn(F0(R)). Then we have

D(Zn(Ã), Zn(B̃)) =
n
∨
i=0

(| a1i − b1i | ∨ | a2i − b2i |).

Definition 2.4 Let a function σ : R → R. If σ is bounded with limx→−∞ σ(x) = 0,
limx→+∞ σ(x) = 1. Then σ is called an activation function on R. For example,
the Sigmodial function σ(x) = 1

1+e−x is an ordinary activation function.
Note 2 For given n ∈ N, let an activation function σ is monotone increas-
ing. Then σ may be extended as follows σ : Zn(F0(R)) → Zn(F0(R)). If Ã =
(a10, a

1
1, . . . , a

1
n, a

2
n, . . . , a

2
1, a

2
0). Then we have

σ(Ã) = (σ(a10), σ(a
1
1), . . . , σ(a

1
n), σ(a

2
n), . . . , σ(a

2
1), σ(a

2
0)).

Theorem 2.3 (Wang [21]) Let Ã, B̃ ∈ F0(R), a given n ∈ N. Then D(Zn(Ã), Zn(B̃))

≤ D(Ã, B̃) and limn→−∞D(Ã, Zn(Ã)) = 0.

Theorem 2.4 Let Ã, B̃ ∈ F0(R). Then limn→−∞D(Zn(Ã), Zn(B̃)) = D(Ã, B̃).

Proof. By Theorem 2.3, it is straightforward to see that

lim
n→∞

D(Ã, Zn(Ã)) = 0, lim
n→∞

D(B̃, Zn(B̃)) = 0.
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Therefore, by use of the definition of the limit of the sequence of numbers, for any
ε > 0, it shows that there exists natural numbers N1, N2 ∈ N such that

D(Ã, Zn(Ã)) <
ε

2
, D(B̃, Zn(B̃)) <

ε

2
.

whenever n > N1, n > N2, respectively. Taking N =max(N1, N2), whenever n >
N , we can derive from that

D(Ã, B̃) ≤ D(Ã, Zn(Ã)) +D(Zn(Ã), Zn(B̃)) +D(Zn(B̃), B̃).

Hence, we obtain

D(Ã, B̃)−D(Zn(Ã), Zn(B̃)) <
ε

2
+
ε

2
= ε.

According to Theorem 2.3, for each ε > 0, there exists N ∈ N, whenever n > N ,
it is not hard to see that

| D(Zn(Ã), Zn(B̃))−D(Ã, B̃) |= D(Ã, B̃)−D(Zn(Ã), Zn(B̃)) < ε.

Consequently, we can get that limn→−∞D(Zn(Ã), Zn(B̃)) = D(Ã, B̃).

Theorem 2.5 (Wang [21]) For a given n ∈ N. Then (Zn(F0(R)), D) constitutes a
completely separable metric space.

Next, for an arbitrary n ∈ N, we shall discuss how to solely determine an n-
equidistant polygonal fuzzy number Zn(Ã) for a given fuzzy number Ã ∈ F0(R).
On the contrary, we must emphasize that its corresponding fuzzy numbers isn’t
sole for given an n-equidistant polygonal fuzzy number.

For a given n ∈ N, let Zn : F0(R) → Zn(F0(R)) be a mapping. Then Zn(·) is
said to be an n-equidistant polygonal operator. Concrete exchanging method as
follows.

In fact, for arbitrary Ã ∈ F0(R), divide unit closed interval [0, 1] on y- axis into
n equal parts, it means that insert n− 1 dividing points λi =

i
n , i = 1, 2, . . . , n− 1.

Since Aλ is a bounded closed interval for any λ ∈ [0, 1], letting Ã(x) ≥ λi =
i
n , i = 1, 2, . . . , n − 1 (the inequality is certainly to solve), then solve x with a1i ≤
x ≤ a2i in supp Ã ⊂ R, and satisfies

[a1n, a
2
n] ⊂ [a1n−1, a

2
n−1] ⊂ · · · ⊂ [a11, a

2
1] ⊂ [a10, a

2
0].

Thus, we obtain a group of real numbers aqi , i = 0, 1, 2, . . . , n; q = 1, 2 with

a10 ≤ a11 ≤ · · · ≤ a1n ≤ a2n ≤ · · · ≤ a21 ≤ a20.

That is to say that Ã may be changed into a n−equidistant polygonal fuzzy
number, denoted as Zn(Ã) = (a10, a

1
1, . . . , a

1
n, a

2
n, . . . , a

2
1, a

2
0).

On the other hand, let Ã i
n
= [a1i , a

2
i ] for λi =

i
n ∈ [0, 1], where i = 0, 1, 2, . . . , n.

In turn, Connect the knot points

(a10, 0),

(
a11,

1

n

)
,

(
a12,

2

n

)
, . . . , (a1n, 1), (a

2
n, 1), . . . ,

(
a22,

2

n

)
,

(
a21,

1

n

)
, (a20, 0)
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which are the points on the curve of membership function Ã(x) with straight line
segments in order. Thus, we can get one ladder polygonal with continuity from the
right whenever x < a1n, and continuity from the left whenever x > a2n. Obviously,
it is not hard to see that

ker(Zn(Ã)) = kerÃ = [a1n, a
2
n], supp(Zn(Ã)) = suppÃ = [a10, a

2
0];

(Zn(Ã)) i
n
= Ã i

n
= [a1i , a

2
i ], i = 0, 1, 2, . . . , n.

Particularly, we don’t distinguish between {a} and a whenever Ã degenerates a
single point set {a} on R, stipulating for Zn({a}) = Zn(a) = (a, a, . . . , a, a, . . . , a, a).

Example 2.3 The two fuzzy numbers are given as follows:

Ã(x) =


√
4x+ 1− 2, 3

4 ≤ x < 2
1, 2 ≤ x ≤ 3

3−
√
x+ 1, 3 < x ≤ 8
0, otherwise

, B̃(x) =


4− 4

x+1 , 0 ≤ x < 1
3

1, x = 1
3

4
x+1 − 2, 1

3 < x ≤ 1

0, otherwise

Clearly, suppÃ = [ 34 , 8], kerÃ = [2, 3]; suppB̃ = [0, 1], kerB̃ = [ 13 ,
1
3 ].

In fact, whenever n = 2, as for fuzzy number Ã, choose divided point λ = 1
2 ,

let Ã(x) =
√
4x+ 1 − 2 = 1

2 whenever x ∈ [ 34 , 2), which implies x = 21
16 ; Similarly,

let Ã(x) = 3−
√
x+ 1 = 1

2 whenever x ∈ [3, 8], which implies x = 21
4 . And so, we

get

Z2(Ã) =

(
3

4
,
21

16
, 2, 3,

21

4
, 8

)
Whenever n = 3, select divided points λ1 = 1

3 , λ2 = 2
3 , let

√
4x+ 1 − 2 = 1

3 ,
2
3

whenever x ∈ [ 34 , 2), respectively, we deduce that x1 = 10
9 , x2 = 55

36 ; let 3−
√
x+ 1 =

1
3 ,

2
3 whenever x ∈ (3, 8], respectively, we infer that x1 = 55

9 , x2 = 40
9 .

Hence, we get a 3−equidistant polygonal fuzzy number of Ã, which is shown
by Fig. 5.

Z3(Ã) =

(
3

4
,
10

9
,
55

36
, 2, 3,

40

9
,
55

9
, 8

)
.

Putting divided points λ1 = 1
4 , λ2 = 2

4 , λ3 = 3
4 , then it is easily to obtain a

4-equidistant polygonal fuzzy number of Ã, which is

Z4(Ã) =

(
3

4
,
65

64
,
21

16
,
105

64
, 2, 3,

65

16
,
21

4
,
105

16
, 8

)
.

Especially, aim at n = 3, obtain the following coordinates of the knots of Ã in
order: ( 34 , 0), (

10
9 ,

1
3 ), (

55
36 ,

2
3 ), (2, 1), (3, 1), (

40
9 ,

2
3 ), (

55
9 ,

1
3 ), (8, 0).
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Returning to n = 3, we are not hard to get the membership function of the
3-equidistant polygonal fuzzy number Z3(Ã)(x) of Ã as follow:

Z3(Ã)(x) =



12
13x− 9

13 ,
3
4 ≤ x ≤ 10

9
4
5x− 5

9 ,
10
9 < x ≤ 55

36
17
12x− 7

17 ,
55
36 < x ≤ 2

1, 2 < x ≤ 3 .
− 3

13x− 22
13 , 3 < x ≤ 40

9
−1

5x− 14
9 ,

40
9 < x ≤ 55

9
− 3

17x− 24
17 ,

55
9 < x ≤ 8

and the mixture figure of Ã(x) and Z3(Ã)(x) is shown in Fig. 5.

3
4
10
9

55
36 2 3 40

9
55
9 8O

y

x

( )A x 

3( )Z A 

1 3

2 3

1

Fig. 5 Mixture figure of Ã and Z3(Ã).

By utilizing the similar method, as for fuzzy number B̃, it is easily to show

Z2(B̃) =

(
0,

1

7
,
1

3
,
1

3
,
3

5
, 1

)
;

Z3(B̃) =

(
0,

1

11
,
1

5
,
1

3
,
1

3
,
1

2
,
5

7
, 1

)
;

Z4(B̃) =

(
0,

1

5
,
1

8
,

3

13
,
1

3
,
1

3
,

5

11
,
3

5
,
7

9
, 1

)
.

In the light of Theorem 2.2, obviously, D(Z3(Ã), Z3(B̃)) = 7. By Definition 2.3
and Theorem 2.1, we can clearly obtain

Z3(Ã+ B̃) =

(
3

4
,
119

99
,
311

180
,
7

3
,
10

3
,
89

18
,
430

63
, 9

)
;

Z3(Ã · B̃) =

(
0,

10

99
,
11

36
,
2

3
, 1,

20

9
,
275

63
, 8

)
.

Synthesizing the above discussion, we can see that n-equidistant polygonal fuzzy
numbers make outstanding contributions for studying the operations and metric
of fuzzy numbers by means of Theorem 2.1 to Theorem 2.5, it lays the theoretical
foundation for further exploring equidistant polygonal fuzzy valued functions.
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3. K-integral norms

In 1987, Sugeno [17] initially suggested the concepts of quasi-additive measures and
quasi-additive integral. On the basis of these, the tK-integral,Kt-integral and a few
new generalized fuzzy integrals were defined in [16, 19–20]. In 2011, Wang [21] put
forward K-quasi-additive fuzzy valued integrals by introducing induced operator
K, and then, the polygonal fuzzy neural network [9, 18, 21–22] was introduced in
the sense of integral norm. In this section, we firstly introduce the definition of
K-quasi-additive integral, and give the concept of K-integral norm.

Definition 3.1 (Wang [21]) Let K : R+ → R+ be a concave function with strictly
monotone increasing, and it is derivable on (0,+∞), moreover, satisfies K(0) =
0,K(1) = 1. Then K is called to be an induced operator on R+.

Obviously, its converse operator K−1 exists,too, and it is strictly increasing.
For example, for any x ∈ R+, let K(x) =

√
x or K(x) = log2(1 + x), it is not

difficult to see that the K are induced operators.

Definition 3.2 (Jiang [10]) Let K be an induced operator on R+. For arbitrary
a, b ∈ R+, define their K-quasi sum and K-quasi-product as follows a ⊕ b =
K−1(K(a) +K(b)), a⊗ b = K−1(K(a) ·K(b)).

Theorem 3.1 (Wang [21]) Let ⊕ and ⊗ be K-quasi-sum and K-quasi product,
respectively. For any a, b ∈ R+, then the following conclusions hold

(1) a+ b ≤ a⊕ b and a+ b ≤ a⊕ b iff K(a+ b) ≤ K(a) +K(b);

(2) K(a⊕ b) = K(a) +K(b), K(a⊗ b) = K(a) ·K(b);

(3) K−1(a+ b) = K−1(a)⊕K−1(b), K−1(a · b) = K−1(a)⊗K−1(b).

Definition 3.3 (Sugeno [17]) Let (X,ℜ) be a measurable space, K be an induced
operator, µ̂ : ℜ → [0,+∞]. If the conditions (1)-(4) are fulfilled as follows:

(1) µ̂(∅) = 0;

(2) If A,B ∈ ℜ, and A ∩B = ∅, then µ̂(A ∪B) = µ̂(A)⊕ µ̂(B);

(3) If An ⊂ ℜ, and An ↑ A, then µ̂(An) ↑ µ̂(A);
(4) If An ⊂ ℜ, and An ↓ A, and there exists n0 such that µ̂(An0) < +∞, then

µ̂(An) ↓ µ̂(A). Then µ̂ is called a K-quasi-additive measure, and corresponding
triple (X,ℜ, µ̂) is called a space of K-quasi-additive measure.

Definition 3.4 (Wang [21]) Let (X,ℜ, µ̂) be a space of K-quasi-additive mea-
sure, K an induced operator, f an nonnegative measurable function, A ∈ ℜ, T =

{A1, A2, . . . , An} be a finite measurable partition on X. Put
∫ (K)

A
fdµ̂ = supT SK(f,

T,A), where SK(f, T,A) = ⊕
∑n

i=1(infx∈Ai∩Af(x)⊗ µ̂(Ai ∩ A)). Then
∫ (K)

A
fdµ̂

is called a K-quasi-additive integral of f with respect to µ̂ on A. Especially, f is

called µ̂-integrable whenever integral value
∫ (K)

A
fdµ̂ < +∞.

Lemma 1(Jiang andWang [10, 21]) (Integral Transformation Theorem) Let (X,ℜ, µ̂)
be a space of K-quasi-additive measure, K be an induced operator, f be a nonneg-

ative measurable function. Then
∫ (K)

A
fdµ̂ = K−1(

∫
A
K ◦ fdµ̂) for each A ∈ ℜ,

where µ(·) = K(µ̂(·)), µ is a Lebesgue measure.

Note 3 In fact, a K-quasi-additive integral degenerates a Lebesgue integral when-
ever K(x) = x. Hence, this kind of integral is a generalization for Lebesgue in-
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tegral, the corresponding quasi-sum and quasi-product degenerates ordinary sum
and product, respectively. In addition, some excellent properties about them are
very easily to be discovered, refer to [10, 19–22]. For simplicity, what we are going
to discuss will be restricted on the space Zn(F0(R+)) in the following paper, here

we define Ã ∈ Zn(F0(R+)) iff Ã(x) = 0 for arbitrary x < 0.

Definition 3.5 Let (X,ℜ, µ̂) be a space of K-quasi-additive measure µ̂(E) < +∞.

For any E ∈ ℜ, F̃ : E → Zn(F0(R+)) be an n-equidistant polygonal fuzzy valued

function for a given n ∈ N, or write it as F̃ (x) = (f10 (x), f
1
1 (x), . . . , f

1
n(x), f

2
n(x), . . . ,

f21 (x), f
2
0 (x)), for all x ∈ E. If each nonnegative real function fqi : E → R+(i =

0, 1, 2, . . . , n; q = 1, 2) are µ̂-integrable on E. Then F is said to be a µ̂-integrable
polygonal fuzzy valued function on E, and stipulate for its integral∫

E

F̃ (x)dµ =

(∫
E

f10 (x)dµ,

∫
E

f11 (x)dµ, . . . ,

∫
E

f1n(x)dµ,∫
E

f2n(x)dµ, . . . ,

∫
E

f21 (x)dµ,

∫
E

f20 (x)dµ

)
.

Write L1(µ̂, Zn) = {F̃ : E → Zn(F0(R+)) | F̃ is a µ̂-integrable polygonal fuzzy val-
ued function on E}. Moreover, from Definition 3.4, we can view that it is Lebesgue
measurable if nonnegative real function fqi (x) is µ̂-integrable.

Definition 3.6 Let (X,ℜ, µ̂) be a space of K-quasi-additive measure, K be an

induced operator. For an arbitrary n ∈ N, F̃1, F̃2 ∈ L1(µ̂, Zn), E ∈ ℜ, define

H(F̃1, F̃2) =
∫ (K)

E
D(F̃1(x), F̃2(x))dµ. Then H is said to be a K-integral norm.

According to Lemma 1 (Integral Transformation Theorem), we can obtain that
H(F1, F2) is also denoted as

H(F̃1, F̃2) = K−1

(∫
E

K(D(F̃1(x), F̃2(x)))dµ

)
.

Theorem 3.2 (Wang [21]) Let (X,ℜ, µ̂) be a space of K-quasi-additive measure,

n ∈ N. For an arbitrary F̃1, F̃2, F̃3 ∈ L1(µ̂, Zn), then H(F̃1, F̃3) ≤ H(F̃1, F̃2) ⊕
H(F̃2, F̃3).

Theorem 3.3 (Wang [21]) Let (X,ℜ, µ̂) be a space of K-quasi-additive measure.
For a given n ∈ N, (L1(µ̂, Zn),H) constitutes a metric space with respect to quasi-
addition ⊕.

4. Construction of a PFNN

Actually, the polygonal fuzzy neural network (PFNN) is a class of network system
which connection weights and threshold value are taken valued in Zn(F0(R+)),
and their inner operations are based on Definition 2.3, Theorem 2.1 and Note 2.
In this section, we shall characterize the universal approximation of the three-layer
regular PFNN in the sense of K-integral norm with respect to integrable fuzzy
valued functions class.
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Let a activation function σ(·) on knots be continuous, input neurons and output
neurons be linear, input signal x ∈ E ⊂ R, connection weights Ṽj , Ũj ∈ Zn(F0(R+)),

threshold value Θ̃ ∈ Zn(F0(R+)). For any given n ∈ N, we denote a three-layer
regular PFNN as

Zn(P̃0[σ]) = {Ỹ : E → Zn(F0(R+)) | Ỹ (x) =

p∑
i=1

Ṽj · σ(Ũj · x+ Θ̃j),

p ∈ N, Ṽj , Ũj , Θ̃j ∈ Zn(F0(R+)),∀x ∈ E},

where p be the quantity of neurons in hidden layer, which is expressed by the
following Fig. 6.

p

j

1
j

U 

!

!
j
V 

x Y 

Fig. 6 A single input single output PFNN.

Definition 4.1 For a given n ∈ N, let Γ = {Ỹ : R → Zn(F0(R))},Ω ⊂ Γ, ∀F̃ ∈ Γ.

For an arbitrary compact set U ⊂ R and ∀ε > 0, there exists a G̃ ∈ Ω such
that D(F̃ (x), G̃(x)) < ε for each x ∈ U . Then we call that Ω possess universal

approximation with respect to F̃ , or say that Ω is an universal approximator of F̃ .

Definition 4.2 (Liu [11]) Let σ : R → R+ be a activation function, f be an
arbitrary continuous function on R. For an arbitrary ε > 0 and each compact set
U ⊂ R. If there exists p hidden neurons, connection weight ui, vi ∈ R and threshold
value θi ∈ R such that | f(x)−

∑p
i=1 vi · σ(ui · x+ θi) |< ε for every x ∈ U . Then

σ is called a Tauber-Wiener function.
Next, we shall give a familiar theorem, this means that a continuous functions

on a closed set E ⊂ R can be extended to the total straight line R, and an extended
theorem may be obtained.

Lemma 2 Let f(x), g(x) be continuous functions on E ⊂ R. Then min{f(x), g(x)}
is a continuous function on E, too.

Proof. Since min{f(x), g(x)} = 1
2 (f(x) + g(x)− | f(x) − g(x) |) for any x ∈ E.

Obviously, the conclusion holds
Lemma 3 (Liu [12]) Let a closed set E ⊂ R, f(x) be a continuous functions on
E. Then there exists an extension function g(x) such that it is continuous on R,
where g(x) = f(x) for every x ∈ E.

Lemma 4 (Liu [12]) Let F̃ : E → Zn(F0(R+)) be an n-equidistant polygonal fuzzy

valued function, σ be a activation function. Then F̃ ∈ Zn(P̃0[σ]) iff F may be
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denoted as F̃ (x) = (f10 (x), f
1
1 (x), . . . , f

1
n(x), f

2
n(x), . . . , f

2
1 (x), f

2
0 (x)) for arbitrary

x ∈ E, where fqj (x) =
∑p

i=1 h
q
j(i)(x), and hqj(i)(x) = vj(i, q) · σ(wj(i, q) · x +

θj(i, q)), j = 0, 1, 2, . . . , n; i = 1, 2, . . . , p; q = 1, 2, and for each fixed i, the group of
functions hqj(i) satisfies

h1j (i)(x) ≤ h1j+1(i)(x) ≤ h2j+1(i)(x) ≤ h2j (i)(x), j = 0, 1, 2, . . . , n− 1.

Theorem 4.1 Let a closed set E ⊂ R, f(x) and g(x) be continuous functions
on E with f(x) ≤ g(x) for each x ∈ E. Then there exists an extensive continuous
function F (x) and G(x) of f(x) and g(x) on R, respectively, such that F (x) ≤ G(x)
for arbitrary x ∈ R.

Proof. By Lemma 3, we know that the extensive continuous functions F (x) and
G(x) exist. Next, we need only structure the continuous functions F (x) and G(x)
with F (x) ≤ G(x) for every x ∈ R.

Virtually, selecting F (x) = f(x), G(x) = g(x) whenever x ∈ E, and writing
U = R − E, then U is an open set on real straight line R. Applying structure
theorem of open sets, it follows that U can denoted as an union of finite or countable
constitution intervals, i.e., U = ∪k∈L(ak, bk), where L is a countable index set.

(1) If all constitution intervals are finite, we connect point (ak, f(ak)) with
(bk, f(bk)), (ak, g(ak)) with (bk, g(bk)) for any k ∈ L, respectively. Thus, for all
x ∈ (ak, bk), we get two equations of straight line on (ak, bk) as follows

F (x) = f(ak)
bk − x

bk − ak
+ f(bk)

x− ak
bk − ak

;

G(x) = g(ak)
bk − x

bk − ak
+ g(bk)

x− ak
bk − ak

,∀x ∈ (ak, bk).

On the other hand, in accordance with the definition of constitution intervals,
it is easily to know that ak, bk /∈ U , therefore, ak, bk ∈ E. By known conditions,
it shows that f(ak) ≤ g(ak), f(bk) ≤ g(bk). At the moment, we can infer that
F (x) ≤ G(x) for any x ∈ (ak, bk).

(2) If there exists a constitution interval (ak0 , bk0), which is an infinite interval,
assume (ak0 , bk0) = (−∞, bk0) or (ak0 ,+∞), we define

F (x) = f(bk0), G(x) = g(bk0), ∀x ∈ (−∞, bk0);

F (x) = f(ak0), G(x) = g(ak0), ∀x ∈ (ak0 ,+∞).

Clearly, ak0 , bk0 ∈ E with f(ak0) ≤ g(ak0) and f(bk0) ≤ g(bk0). Hence, for every
x ∈ (ak0 , bk0), we derive from that F (x) ≤ G(x), furthermore, it is straightforward
to see F (x) ≤ G(x) for any x ∈ U .

Consequently, for arbitrary x ∈ R, F (x) ≤ G(x) holds, too.
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Theorem 4.2 For any compact set E ⊂ R and a given n ∈ N, F̃ ∈ L1(µ̂, Zn), σ be a

monotone increasing Tauber-Weiener function. Then there exists an Q̃ ∈ Zn(P̃0[σ])

so that Q̃(x) =
∑p

i=1 Ṽi · σ(Ũi · x+ Θ̃i) for arbitrary x ∈ E.

Proof. Clearly, a set E is compact iff it is bounded closed set on Euclidean space.
By hypothesis, for any x ∈ E, we let

F̃ (x) = (f10 (x), f
1
1 (x), . . . , f

1
n(x), f

2
n(x), . . . , f

2
1 (x), f

2
0 (x)).

If appear certain two neighboring functions to be equal, then write them as one.
Based on this consideration, without loss of generality, we suppose

0 ≤ f10 (x) < f11 (x) < · · · < f1n(x) < f2n(x) < · · · < f21 (x) < f20 (x). (1)

On account of F̃ ∈ L1(µ̂, Zn), then F is µ̂-integrable on E, from Definition 3.5,
it indicates that every nonnegative real functions fqj (x) are Lebesgue integrable on

E, where fqj : E → R+, j = 0, 1, 2, . . . , n; q = 1, 2.
Obviously, by Definition 3.5, the nonnegative real functions fqj (x) are measur-

able. Now, with regard to each fqj (x), making use of Lusin Theorem, there exists
a closed subset Eq

j ⊂ E for arbitrary δ > 0 such that

µ(E − Eq
j ) <

δ

2(n+ 1)
,

where each functions fqj (x) is continuous on E
q
j , j = 0, 1, 2, . . . , n; q = 1, 2. As the

closed set Eq
j ⊂ E ⊂ R, in the light of Lemma 3, it follows that every continuous

function fqj (x) on E
q
j can be extended one continuous function sqj(x) on E.

From another angle, we realize that (1) may be denoted as

f1j (x) < f1j+1(x) < f2j+1(x) < f2j (x), j = 0, 1, 2, . . . , n− 1.

Utilizing Theorem 4.1, for all x ∈ E, we immediately obtain

s1j (x) ≤ s1j+1(x) ≤ s2j+1(x) ≤ s2j (x), j = 0, 1, 2, . . . , n− 1.

For arbitrary x ∈ E, let

S̃(x) = (s10(x), s
1
1(x), . . . , s

1
n(x), s

2
n(x), . . . , s

2
1(x), s

2
0(x)).

Evidently, S(x) constitutes a continuous n-equidistant polygonal fuzzy valued
function, where sqj(x) is continuous on E whenever j = 0, 1, 2, . . . , n; q = 1, 2.

On the other hand, with regard to each continuous function sqj(x) on E, taking
advantage of Definition 4.2, for any ε > 0, it shows that there exists a Tauber-
Wiener function σ, natural numbers pjq ∈ N, connection weights v′jq(i), u

′
jq(i) ∈ R

and threshold value θ′jq(i) ∈ R such that∣∣∣∣∣sqj(x)−
pjq∑
i=1

v′jq(i) · σ(u′jq(i) · x+ θ′jq(i))

∣∣∣∣∣ < ε, (2)

370



Guijun Wang, Xiaoping Li: Construction of the polygonal fuzzy neural network. . .

where j = 0, 1, 2, . . . , n; q = 1, 2, for any x ∈ E. Let A =
∩n

j=0E
1
j , B =

∩n
j=0E

2
j ,

then we can derive from

µ(E −A) = µ

 n∪
j=0

(E − E1
j )

 ≤
n∑

j=0

µ(E − E1
j ) ≤

n∑
j=0

δ

2(n+ 1)
=
δ

2
.

Similarly, it is not hard to see that µ(E −B) ≤ δ
2 . Furthermore, we obtain

µ(E −A ∩B) ≤ µ(E −A) + µ(E −B) < δ.

Clearly, A ∩ B ̸= ∅. In fact, if A ∩ B = ∅, adopt parallel method to above, we
can get µ(E) = µ(E −A ∩B) ≤ δ. This contradicts that µ is a finite measure. At
present, for arbitrary x ∈ E, let

hqj(x) =

pjq∑
i=1

v′jq(i) · σ(u′jq(i) · x+ θ′jq(i)), j = 0, 1, 2, . . . , n; q = 1, 2. (3)

Then (2) may be written as

| sqj(x)− hqj(x) |≤
ε

2
. (4)

For arbitrary x ∈ E, j = 1, 2, . . . , n, let

φj(x) = min{s1j (x)− s1j−1(x), s
2
n(x)− s1n(x), s

2
j−1(x)− s2j (x)}.

Since each real function sqj(x) is continuous on E, from Lemma 2, we know that
φj(x) is continuous on E, too, and satisfy φj(x) > 0, j = 1, 2, . . . , n. Putting

δE(n) = inf
x∈E

min
1≤j≤n

φj(x).

Virtually, for fixed n ∈ N, denote ψn(x) = min1≤j≤n φj(x). In the light of
Lemma 2, we can obtain that positive function ψn(x) is still continuous on E.
Then minimum value of the function ψn(x) is acquired on closed set E. Therefore,
δE(n) is existing, and δE(n) ≥ 0.

Next, we are going to verify δE(n) ̸= 0. On the contrary, if δE(n) = 0, i.e.,
infx∈Eψn(x) = 0, we notice that continuous function ψn(x) must acquire minimum
value on closed set E, i.e., inf = min, thus, there exists x0 ∈ E such that

0 = ψn(x0) = min
1≤j≤n

φj(x0).

Consequently, there exists a j0 ∈ {1, 2, . . . , n} such that φj0(x0) = 0. This contra-
dicts that all φj(x) > 0 on E. Hence, δE(n) > 0.

At the moment, for given n ∈ N and for all x ∈ E, j = 1, 2, . . . , n. It is easily
to see that

0 < δE(n) ≤ φj(x) ≤ (s1j (x)− s1j−1(x)) ∧ (s2j−1(x)− s2j (x)).

On the other hand, whenever q = 1, for arbitrary ε > 0, and restricting ε <
δE(n), by (4), we obtain

s1j (x)−
ε

2
< h1j (x) < s1j (x) +

ε

2
, j = 0, 1, 2, . . . , n.
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Therefore, it follows that

h1j+1(x)− h1j (x) > s1j+1 − s1j (x)− ε > s1j+1 − s1j (x)− δE(n) ≥ 0.

Similarly, whenever q = 2, from (4), we can infer

h2j (x)− h2j+1(x) > s2j − s2j+1(x)− ε > s2j − s2j+1(x)− δE(n) ≥ 0.

Synthesizing above discussion, we immediately can summarize that

0 ≤ h10(x) < h11(x) < · · · < h1n(x) < h2n(x) < · · · < h21(x) < h20(x).

For each x ∈ E, let

Q̃(x) = (h10(x), h
1
1(x), . . . , h

1
n(x), h

2
n(x), . . . , h

2
1(x), h

2
0(x)). (5)

According to Lemma 4, it indicates the Q̃ ∈ Zn(F0(R+)). Next, we are going
to substitute for expression (3), for arbitrary x ∈ E, let

hqj(i)(x) = v′jq(i) · σ(u′jq(i) · x+ θ′jq(i)), j = 0, 1, 2, . . . , n; q = 1, 2.

In the light of (5), we know that their coefficients satisfy

v′j1 ≤ v′(j+1)1 ≤ v′(j+1)2 ≤ v′j2;

u′j1 ≤ u′(j+1)1 ≤ u′(j+1)2 ≤ u′j2;

θ′j1 ≤ θ′(j+1)1 ≤ θ′(j+1)2 ≤ θ′j2.

Combining (3) and (5), for arbitrary x ∈ E, we get

Q̃(x) =

(
p01∑
i=1

h10(i)(x),

p11∑
i=1

h11(i)(x), . . . ,

pn1∑
i=1

h1n(i)(x),

pn2∑
i=1

h2n(i)(x), . . . ,

p12∑
i=1

h21(i)(x),

p02∑
i=1

h20(i)(x)

)
. (6)

Based on the above investigation, we shall adjust the coefficient terms v′jq(i), w
′
jq(i)

and θ′jq(i) in the group of functions hqj(x) by constituting three transformations,

let p =
∑n

j=0 pjq, βk =
∑k−1

j=0 pjq, and choose β1 = 0, k = 2, 3, . . . , n; q = 1, 2.
Moreover, let

vqj =

{
v′(j−βk)q

, βk < j ≤ βk+1,

0, otherwise,
θqj =

{
θ′(j−βk)q

, βk < j ≤ βk+1,

0, otherwise,

uqj =

{
u′(j−βk)q

, βk < j ≤ βk+1,

0, otherwise.
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In accordance with above transformations, for arbitrary j ∈ {0, 1, 2, . . . , n}; q =
1, 2, for any x ∈ E, it isn’t difficult to prove

p∑
i=1

vqj (i) · σ(u
q
j(i) · x+ θqj (i)) =

pjq∑
i=1

v′jq(i) · σ(u′jq(i) · x+ θ′jq(i)). (7)

Now, for arbitrary i ∈ {1, 2, . . . , p}, let

Ṽi = (v10(i), v
1
1(i), . . . , v

1
n(i), v

2
n(i), . . . , v

2
1(i), v

2
0(i));

Ũi = (u10(i), u
1
1(i), . . . , u

1
n(i), u

2
n(i), . . . , u

2
1(i), u

2
0(i));

Θ̃i = (θ10(i), θ
1
1(i), . . . , θ

1
n(i), θ

2
n(i), . . . , θ

2
1(i), θ

2
0(i)).

It means that there exists connection weights Ṽi, Ũi ∈ Zn(F0(R+)) and threshold

value Θ̃i ∈ Zn(F0(R+)), i = 1, 2, . . . , p. Substitute expression (6) by (7), in a
moment, applying Definition 2.3, for arbitrary x ∈ E, we immediately derive from

Q̃(x) =

(
p∑

i=1

v10 · σ(u10(i) · x+ θ10(i)),

p∑
i=1

v11 · σ(u11(i) · x+ θ11(i)), . . . ,

p∑
i=1

v1n · σ(u1n(i) · x+ θ1n(i)),

p∑
i=1

v2n · σ(u2n(i) · x+ θ2n(i)), . . . ,

p∑
i=1

v21 · σ(u21(i) · x+ θ21(i)),

p∑
i=1

v20 · σ(u20(i) · x+ θ20(i))

)

=

p∑
i=1

Ṽi · σ(Ũi · x+ Θ̃i).

Hence, aim at a given F̃ ∈ L1(µ̂, Zn), we may construct an n-equidistant polyg-

onal fuzzy valued function Q̃ so that Q̃ ∈ Zn(P̃0[σ]).

5. Approximation based on K-integral norm

Next, we are going to obtain the important result which is Theorem 5.1 by utilizing
Theorem 4.2. The conclusions indicate that a PFNN still possess the capability of
universal approximation to an integrable system.

Theorem 5.1 Let (R,ℜ, µ̂) be a finite K-quasi-additive measure space. For given

n ∈ N, for any compact set E ⊂ R, F̃ ∈ L1(µ̂, Zn), σ be a monotone increasing
Tauber-Wiener function. Then there exists an n-equidistant polygonal fuzzy valued
function Q̃ ∈ Zn(P̃0[σ]) such that Zn(P̃0[σ]) can approximate to F̃ by arbitrary
accuracy in the sense of K-integral norm H.

Proof. Take advantage of Theorem 4.2, it is straightforward to know the existence
of an n-equidistant polygonal fuzzy valued function Q̃(x), and Q̃ ∈ Zn(P̃0[σ]).
Without loss of generality, for any x ∈ E, which is denoted by
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Q̃(x) = (h10(x), h
1
1(x), . . . , h

1
n(x), h

2
n(x), . . . , h

2
1(x), h

2
0(x)),

where hqj(x) =
∑p

i=1 v
q
j (i) · σ(u

q
j(i) · x+ θqj (i)), j = 0, 1, 2, . . . , n; q = 1, 2.

Now, we are going to prove that the n-equidistant polygonal fuzzy valued func-
tion Q approximates to F in K-integral norm H.

Actually, for every ε > 0, by Theorem 4.2, taking δ = ε > 0, we can realize that
there exists closed sets A,B ⊂ E with A ∩B ̸= ∅ such that µ(E −A ∩B) < δ.

Furthermore, according to Theorem 4.1, it explicates F̃ (x) = S̃(x) for any
x ∈ A∩B. On the one hand, for given n ∈ N, applying Theorem 2.2 and combining
(4), for arbitrary x ∈ A∩B, we can view that the distance function D(F̃ (x), Q̃(x))
on A∩B is denoted as follow:

D(F̃ (x), Q̃(x)) = ∨n
i=0(| s1i (x)− h1i (x) | ∨ | s2i (x)− h2i (x) |)

≤ ∨n
i=0(

ε

2
∨ ε

2
) =

ε

2
.

On the other hand, since (R,ℜ, µ̂) be a finite K-quasi-additive measure space,
and µ(·) = K(µ̂(·)) is a Lebesgue measure. By means of monotone continuity of

induced operator K, it reveals that compound distance function K(D(F̃ (x), Q̃(x)))
is Lebesgue integrable on E.

In addition, making use of absolute continuity of Lebesgue integrals, we deduce∫
E−A∩B

K((F̃ (x), Q̃(x)))dµ <
ε

2
.

Consequently, utilizing Lemma 1 and the Equation (2) of Theorem 3.1, we can
infer that

H(F̃ , Q̃) = K−1

(∫
E

K(D(F̃ (x), Q̃(x)))dµ

)
= K−1

(∫
A∩B

K(D(F̃ (x), Q̃(x)))dµ+

∫
E−A∩B

K(D(F̃ (x), Q̃(x)))dµ

)
= K−1

(∫
A∩B

K(D(F̃ , Q̃))dµ

)
⊕K−1

(∫
E−A∩B

K(D(F̃ , Q̃))dµ

)
≤ K−1

(∫
A∩B

K(
ε

2
)dµ

)
⊕K−1

(ε
2

)
= K−1

(
K(

ε

2
)µ(A ∩B) +

ε

2

)
.

In fact, for any ε > 0, asK is strictly monotone increasing, K( ε2 ) is an infinitesi-
mal quantity, and µ(A∩B) ≤ µ(E) < +∞. Hence, the expressionK( ε2 )µ(A∩B)+ ε

2
is an infinitesimal quantity, too. In addition, the induced operator K−1 is strictly
monotone increasing, it follows that the expression K−1(K( ε2 )µ(A∩B)+ ε

2 ) is still
arbitrarily small. Thus, by Definition 4.1, it explicates that this three-layer PFNN
Zn(P̃0[σ]) can approximate to F̃ by any accuracy in K-integral norm H.
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6. Conclusions

So far, we have obtained a three-layer polygonal fuzzy neural network (PFNN) still
possess universal approximation with respect to a class of µ̂-integrable polygonal
fuzzy valued functions. Because most systems don’t certainly satisfy continuity in
the real world, this forces us to generalize the continuity of approximate functions.
In fact, the concepts of an n-equidistant polygonal fuzzy number and K-integral
norm being introduced play an important role in our discussion. It is worth empha-
sizing that the paper focuses on the universal approximation of a three-layer PFNN
for a class of integrable functions in the sense of K-integral norm. The results of
investigation indicate that the approximation capability of the PFNN to past con-
tinuous fuzzy system may be generalized to general integrable systems. In addition,
these conclusions suit the case of negative polygonal fuzzy numbers. Since a num-
ber of fuzzy messages may be characterized by positive or negative fuzzy numbers
in practice. Consequently, these results will provide the applications of the PFNN
models and soft-computing technique with the necessary theoretical basis.
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