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Abstract: Computer-aided ECG analysis is very important for early diagnosis of
heart diseases. Automated ECG analysis integrated with experts’ opinions may
provide more accurate and reliable results for detection of arrhythmia. In this
study, a novel genetic algorithm-neural network (GA-NN) approach is proposed
as a classifier, and compared with other classification methods. The GA-NN ap-
proach was shown to perform better than alternative approaches (e.g. k-nn, SVM,
naive Bayes, Bayesian networks) on the UCI Arrythmia and the novel TEPAS
ECG datasets, where the GA resulted in a feature reduction of 95%. Based on
the selected features, several rule extraction algorithms are applied to allow the
interpretation of the classification results by the experts. In this application, the
accuracy and interpretability of results are more important than processing speed.
The results show that neural network based approaches benefit greatly from di-
mensionality reduction, and by employing GA, we can train the NN reliably.
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1. Introduction

Alterations that disrupt the regular functioning of the heart cycle may cause cardiac
arrhythmia, which might be a potential reason for a heart disease. Thus, early
detection of arrhythmia can save lives. Electrocardiogram (ECG) is widely used
for the diagnosis of such abnormalities. ECG output must be integrated with
medical assessment to provide more meaningful results, however, ECG analysis as
a part of clinical assessment requires expert knowledge. Automated ECG analysis
integrated with experts’ opinions provides more robust and reliable results to detect
abnormal patterns.

In this paper, we aim to detect arrhythmic patterns in a rule-based manner
in order to aid the cardiologists. We propose a genetic algorithm-neural network
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approach (GA-NN) for ECG feature selection in rule-based arrhythmia classifica-
tion. The GA-NN approach performs feature selection and classification simultane-
ously. This way, it finds relevant features that contribute most to the classification
accuracy. In this approach, the neural network is the main classifier, while the
genetic algorithm performs feature selection: Neural network weights are encoded
in chromosomes and the optimal neural network model is selected according to its
classification performance. The objective function is based on the performance of
candidate networks, as determined by the classification error.

At the end of the iterative GA search, a final model is obtained, where each
input feature is assigned a weight and the network topology is optimized by elim-
inating connections with negligible weights. Thus, we prune dimensions to obtain
parsimonious representations that can be interpreted in human readable format.
We are mainly interested in producing a robust and reliable arrhythmia detection
system that can be used in diagnostic decision support systems. Applying rule
extraction methods directly on the original, raw data will result in a large and
complex rule set, which is slow to use and difficult to interpret [11]. In the pro-
posed system, the GA-NN approach is used as a preclassifier and feature selector,
and rule extraction is applied to the classifier output to produce concise rules. Since
rules are only useful to the expert as long as they are clear, simple and precise,
finding discriminative features is an important step for rule set construction.

The organization of the paper is as follows: Section 2 presents related work on
ECG analysis. In Section 3, we derive the proposed GA-NN approach in detail.
Rule extraction is explained in Section 4. Extensive experiments performed on the
UCT dataset [33] and a new proprietary ECG database introduced in this paper,
are presented in Section 5. In Section 6, the proposed approach is discussed and
our study concludes with a summary of the empirical results and a discussion of
future work.

2. Definitions and Related Work

2.1 Definitions

Electrocardiogram (ECG) is a recording of the heart rate. In clinical settings, it
is typically obtained as a laboratory test result and must be integrated with a
clinical assessment. Clinicians may reason differently while performing analysis
during these assessments, and typically, an analysis of ECG tracing is performed
under some time pressure. Consequently, an automated ECG analysis application
is meant to be a supportive element for the clinicians, while they conduct their
evaluations.

An ECG tracing consists of waves representing electrical activity on a scaled pa-
per, where the time is measured on the horizontal axis, and the voltage is measured
on the vertical axis. ECG features are derived from these waves, as complexes, in-
tervals, amplitudes and regularity of the features.

Arrhythmia diagnosis is based on these ECG features. Interpretation of ECG
features as a part of the analysis of ECG tracings is essential for arrhythmia recog-
nition. Before the detection of abnormal patterns in an ECG plot, however, an
understanding of the normal patterns is very important. Fig. 1 for a plot of a
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Fig. 1 Waves on a normal ECG plot. The data have been obtained from Tepa
Database [32]

normal ECG, which also shows the convention of naming of the different intervals
of the ECG plot.

The irregularity of the waves may be indicative of an abnormality in the heart
beats. An example of such an abnormality is given in Fig. 2. Here, it is possible to
observe the irregular R-R intervals, and narrow, indistinct QRS complexes. This
pattern emerges when several ectopic pacemakers at faster rates emerge and the
atrium can no longer respond to each stimulus. This generates multiple depolar-
ization and the atrioventricular node is blocked [3].

N S Y T e

Fig. 2 Atrial Fibrillation on ECG plot. The data have been obtained from MIT-BIH
Atrial Fibrillation DB record 4126 [21] [22]

Waves in normal ECG samples have known ranges for their parameters. Any
difference in such measurements may indicate an arrhythmic pattern. Additionally,
any disruption in the order of waves and missing waves might indicate abnormal-
ities. Fig. 3 indicates a ventricular tachycardia. In this case, P waves cannot be
seen in any regularity, and no waves are discernible between QRS complexes. These
result in a rapid succession of ventricular premature beats and irregular ventricular
rhythm.

2.2 Related Work

In the literature, there are many approaches to improve automated ECG analysis
for detecting abnormal patterns. The UCI Arrhythmia Repository [33] and MIT-
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Fig. 3 Ventricular tachycardia on ECG plot. The data have been obtained from
CU Ventricular Tachycardia DB record cu01 [21] [22]

BIH [21] are the two most commonly used databases for ECG analysis. The most
important algorithmic approaches are summarized in Tab. I.

Ref. Year | Protocol Algorithm | Results Dataset

Yeap et al. [36] | 1990 | 5% tra. 95% test. ANN BP 98.36% AHA
sens.

Hu et al. [15] 1993 | 3-fold CV 51-25-2 ~90% acc. | MIT-BIH

MLP
Chazal and | 2000 10-fold CV LDA 69.3-74.7% | Frank
Reilly [6] acc. Lead ECG
Datal[8]

Niwas et al. | 2005 | 58% tra.42% test. ANN ~99% acc. | MIT-BIH

23]

Zhang and | 2005 | 2/3 tra.1/3 test. PCA-SVM | =99% acc. | MIT-BIH

Zhang [37]

Song et al. [31] 2005 CcvV LDA-SVM 99.35% MIT-BIH
avg. acc.

Uyar [34] 2006 10-fold CV PCA-SVM | 83.7% acc. UCI

Kara and 2007 | 24 of 72 normal - 28 of | ANN BP 100% acc MIT-BIH

Okandan [18] 52 AF signals test.

Oliveira et al. | 2010 | 75% tra. 25% test. Bayesian ~99% MIT-BIH

[24] Networks sens. and QT

database

Jadhav et al. | 2011 | 90% tra. 10% test. ANN BP 86.67% UCI

[16] sens.

Froese et al. 2005 (6AY GA-NN 99.6% avg. | MIT-BIH

[10] acc.

This work - 10-fold CV GA-NN 89% acc. | UCI,
85% acc. TEPA

Tab. I Previous work on arrhythmia classification.

Typically, a preprocessing step is required to detect characteristic waves in ECG
signal data. Pan and Tompkins developed an algorithm to detect QRS complexes,
based on a dual threshold technique, but this approach is only useful if the heart
rate is regular [26]. An optimized C language implementation of QRS detection,
known as the Hamilton-Tompkins algorithm improves the dual thresholding by
discrimination of the T wave [13].
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Wavelet transform analysis is also widely used to detect P waves, QRS com-
plexes and T waves in the ECG signal [27, 31]. Lin et al. used a Morlet wavelet
decomposition to extract features [19]. Benitez et al. presented a robust method
for QRS detection, which uses a variable threshold determined automatically from
the root mean squared (RMS) value of the data [4]. By using the first differential
of the ECG signal and its Hilbert transformed data, R waves were successfully dif-
ferentiated from T and P waves. Kara and Okandan extracted Daubechies wavelet
coefficients and trained neural networks for successful discrimination of atrial fib-
rillation [18]. In the study by Oliveira et al. [24], features such as distance between
two consecutive QRS complexes and QRS complex shape are combined with a
hidden Markov model based framework, developed earlier by Andredo et al. [2].

For the arrhythmia detection problem, neural network based methods are very
common. Niwas et al. studied arrhythmia classification using a multilayer feedfor-
ward neural network trained with the backpropagation algorithm [23], whereas [18]
used Levenberg-Marquard based backpropagation. Jadhav et al. performed a com-
parison study with multilayer perceptrons (MLP), generalized feedforward neural
network, and modular neural network models using the UCI arrhythmia dataset [16].
Among the three approaches, MLP was found to have the best performance. It
is also possible to use multiple classifiers in tandem. As an example of this, Hu
et al. used MLPs in a cascade for beat classification of one normal and 12 ab-
normal classes [15]. The first MLP is used for classifying normal vs. abnormal
beats, and the second level is used to categorize abnormal beats into one of the 12
abnormal classes. It is shown that the composite MLP classifier works better than
a single MLP for the multiclass problems, but the overall performance principally
relies on how well the first neural network performs. Additionally, Froese et al.
performed a comparison study with Linear Discriminant Analysis (LDA) and feed-
forward MLP, using either backpropagation or genetic algorithms for the training
process [10]. The study reports 99.6% average accuracy on the MIT-BIH database
for distinguishing between the atrial beat types and the ventricular beat types.

Another general approach in ECG classification is the usage of support vector
machines (SVM). Typically, SVM classifiers are used in conjunction with dimension
reduction techniques. Uyar et al. studied arrhythmia classification using SVM
with principal component analysis (PCA) and independent component analysis
(ICA) [34]. According to experiments, PCA was a better feature extraction choice
compared to the ICA. Song et al. used linear discriminant analysis (LDA) for
dimensionality reduction before applying SVM [31]. For the discrimination of six
types of arrhythmia beats, SVM with LDA was shown to perform better than SVM
with PCA.

3. GA-NN Approaches

While backpropagation is applicable for training neural networks (NN), Genetic
Algorithms (GA) can be used to perform training [1] or joint training and model
selection [25, 17, 38]. In this study, we extend the work in this area and propose a
novel GA-NN approach.

The main idea behind the GA-NN approach is to harness the global search
ability of the GA in ECG feature space, while performing arrhythmia classification
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with the neural network. In this way, the aim is to find the most effective ECG
features for determining arrhythmia patterns. The type of the combination used
in this study is called supportive combination by Schaffer et al. [29], because the
genetic algorithm is used to assist the neural network in feature selection and weight
learning.

The number of hidden units can be determined by the experiments performed
for parameter selection. In this work, we set the number of hidden units to bes
half the number of input dimensions, and fix the network topology. The sigmoid
function is used in the hidden layer to introduce non-linearity. Each individual in
the GA population encodes one candidate solution, and is assigned a fitness value,
which is an assessment that indicates how good the solution is. Fitness values
are calculated based on the classification performance of the solutions. During the
GA iterations, NN weights are optimized and fitness values of the solutions are
computed. The possibility of the solutions to be in the next generation is inversely
proportional to their fitness values. Parent solutions are selected by using roulette
wheel selection, crossover is applied to produce offspring, and these offspring are
mutated so as to provide variation. Additionally, a second mutation operator is
applied to prune irrelevant features from the network by zeroing their weights as
described by Sexton et al. [30]. The best offsprings produced as a result of these
operations comprise 90% of the next generation. The remaining part is filled by
the best solutions from the old generation in order to preserve the best individuals.
The solution with the best fitness value in a generation is compared with the one
from the old generation. The iterations are stopped when the best solution of the
current generation is not better than the best solution of the previous generation.

As a candidate solution, a neural network is evaluated according to its perfor-
mance on validation data. The performance is generally related to the difference
between the actual output and the predicted output. The fitness value obtained
from the fitness function is given as [30]:

f:Z(Oi—Oi)2+O\/W, 0, € {0,1} (1)

where O; is the target class, and O; is the estimated class of the instance i, and N is
the number of instances. Here, C' represents the number of nonzero weights in the
network. In selection, each individual in the population is assigned a probability
based on its fitness value. The probability is computed as:

_ _ fcur - fbad
P(X B x) B 21':1 fi - fbad

where f; indicates the fitness value of the solution 7, fp.q is the worst fitness value
and fey, is the fitness value of the current solution.

Given a neural network topology, we use the backpropagation algorithm for
setting the initial weights, in order to reduce the error to a predetermined level
and to start the GA from a decent initial population. Training parameters like
the maximum fail count, hidden node count, mutation rate, as well as the number
of neurons in the hidden layer are determined by evaluating the overall accuracy.
Sensitivity analysis is performed to assess the effects of parameter changes on the

(2)
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overall accuracy, and the results are illustrated in Fig. 4 and Fig. 5. All networks
in a population are tested using the same parameters. Our experimental results,
given in Section 5, show that the GA-NN approach improves significantly over NN
trained with backpropagation only.
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Fig. 4 Max. fail selection versus overall accuracy.
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Fig. 5 Number of neurons in hidden layer versus overall accuracy.
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To detect the presence or the absence of arrhythmia accurately, it is important
to fine-tune the network parameters. The data are divided into training, test and
validation sets for model selection. In order to select parameter values for max. fail
count, hidden node count, initial population number etc., we build neural network
populations with different parameter values. Then we apply GA steps for each NN
population to obtain a final model with the optimized weights. The final model
selection is performed on the validation set, whereas each model is optimized on
the training set. Feature selection and classification are jointly performed for a
given parameter set.

4. Rule Extraction

The last stage of the system is the rule extraction stage, since our main interest
is to aid cardiologists with medical assessments in producing robust and reliable
arrhythmia classification. There are several approaches in the literature that focus
on rule generation for arrhythmia, and some of these use features that are known
to be discriminative for this problem. We contrast several approaches with the
proposed method, and test different rule extraction methods. Additionally, the
output of each rule extraction method is tested on a validation set and perfor-
mance metrics such as accuracy, sensitivity, f-score, precision and MCC (Matthews
correlation coefficient) are calculated, in order to assess how well these rules de-
pict the characteristic differences between arrhythmia and normal cases. For rule
extraction the following methods are contrasted:

e (/.5 is a decision tree algorithm that uses information entropy for deciding
the best split at each level of the tree. Rules are generated by adding the
conditions on each path from each leaf node to the root node [28].

e In RIPPER, the rule set is produced by repeatedly adding rules that contain
features with the highest information gain. Post-pruning is performed for
optimization [5].

e PART builds a partial C4.5 decision tree in each iteration and the leaf node
having the maximum coverage is selected as the rule of that iteration. Fol-
lowing iterations are performed on the instances that are not covered by the
previous rule [9].

The main flow of the system that uses rule extraction is summarized in Fig. 6.

5. Experimental Setup

5.1 Datasets

The first dataset used in this study is obtained from the UCI Repository [33].
The UCI Arrhythmia dataset originally contains 452 instances with 279 attributes.
There are 16 arrhythmia cases associated with each instance. 15 cases indicate
anomalies, and one case shows a normal rhythm. The class distribution of this
dataset is very unbalanced, and instances of classes 11, 12 and 13 are lacking in
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Fig. 6 Main flow of the system.

the dataset, while a majority of instances belong to the normal rhythm class. To
have better sensitivity rates, the dataset is preprocessed. Initially, all anomalies
are grouped into one class as “abnormal rhythm”, and a normal-abnormal rhythm
classification problem is obtained.

About 0.33% of the feature values in the dataset are missing. Samples with
missing values among the features are removed. This leads to a reduction to 278
input features and 420 instances. Data are normalized to a range of —1 and +1 in
order to provide robustness.

The second dataset is a novel ECG dataset, which we use for database-independent
verification of the performance. The data are obtained with the Kardiosis ECG
Tool of the manufacturing firm TEPA [32]. This dataset is smaller than the UCI
Arrhythmia dataset. There are 20 records, 13 of which are normal and the rest
abnormal.

5.2 Classifiers

In our proposed system, weights of neural networks are encoded in a chromosome.
The structure of the neural networks is comprised of one input layer, one hidden
layer and one output layer. Each network is initially trained with a scaled conju-
gate gradient backpropagation algorithm. Since there are 278 input features and
140 hidden units in each neural network, we have 39.200 parameters per network
to optimize. As stated before, irrelevant input features are determined by their
relative contributions to the classification accuracy on the training set, and they
are pruned.

A population of neural networks with the same parameter set is initially created.
Genetic algorithm steps are applied to the populations of 30 individuals, iteratively.
Parent selection is performed by roulette wheel selection. Crossover rate is chosen
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as 90% and mutation rate is set as 10%. Fitness values of the offsprings are ob-
tained from the objective function given in the previous section and based on the
fitness value evaluation, probability of each solution to be in the next generation
is computed. 90% of the new population is filled by the offsprings with the highest
probability. The rest of the population is completed by the best solutions from the
old generation.

A set of automatically computed ECG features are presented as inputs to the
neural network, and the output nodes indicate class labels, which are “normal”
and “abnormal”. The encoding scheme is given in Fig 7.
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Fig. 7 Encoding scheme of a chromosome.

Several general classification schemes used in the literature for arrhythmia de-
tection problem are implemented for comparison in this study, including k-Nearest
Neighbor (k-NN), Support Vector Machine (SVM), Naive Bayes, Bayesian Net-
works and Neural Networks. k-NN and SVM classifiers represent distance based
methods for arrhythmia classification, whereas naive Bayes and Bayesian Networks
are probabilistic approaches. Dimensionality reduction techniques such as recursive
feature extractor (RFE-SVM), correlation based feature selection (CFS), principal
component analysis (PCA) and factor analysis (FA), are used before these clas-
sifiers. The classifiers are applied to both the original dataset and the reduced
dataset to observe the effect of dimensionality reduction. The flow diagram of the
comparison is given in Fig. 8.

5.3 Performance Measures

In this study, the main performance measure is sensitivity. Sensitivity is also called
recall, the positive rate, or hit rate. It is the proportion of correct detections of the
target class (called true positives, or TP for short) to the total number of samples
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Fig. 8 General classification schemes used in the literature for the arrhythmia
detection problem.

of the target class. The latter is composed of detected (TP) and missed (false
negatives, or FN for short) samples.

TP
Recall = TPLFN (3)

The second important metric is the f-score, which is the harmonic mean of Recall
and Precision. Precision represents the ability of producing the same results under
changing conditions:

TP
Precision = ———— 4
recision = s (4)
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F— score — 2 x Precision x Recall 5)
~ Precision + Recall

In addition to these, the Matthews Correlation Coefficient (MCC) measure is cal-

culated, which indicates the quality of a classifier for two-class problems, taking

both positive and negative measures into account.

TPxTN —-FP xFN

MCC = - - (6)

/(TP +FP)(TP+ FN)(TN + FP)(TN + FN)

5.4 Results

We have used 10-fold cross-validation in our experiments. On the UCI Arrhythmia
dataset, 86.75% accuracy is obtained with the proposed GA-NN scheme. There is
also approximately 95% decrease in the number of features. Only 12 input features
remain from the original 278 after pruning.

For comparison purposes, we have implemented k-NN, SVM, Naive Bayes and
BayesNet methods, together with the four dimensionality reduction approaches
mentioned in the previous section. For the k-NN classifier, 5-15 neighbors were
tested. We have also tested stacked and voted combinations of k-NN and SVM to
assess classifier combination. However, the amount of training data is limited, and
the complexity induced by classifier combination results in overlearning.

Each classifier is evaluated based on the performance metrics for accuracy, sen-
sitivity, f-score, precision and MCC. The results of classifiers for the reduced data
sets and the original dataset are given in Tab. II (in terms of sensitivity), Tab. III
(in terms of f-score), Tab. IV (in terms of MCC), and Tab. V (in terms of accu-
racy). In each table, the last column is the unreduced dataset, and the first four
columns are dimensionality-reduced datasets.

According to these results, the proposed GA-NN approach provides the highest
hit rate for the target class. Naive Bayes and Bayesian methods have similar
performance. As a proof of the efficiency of feature selection, GA-NN outperforms
Naive Bayes on the original dataset.

The GA-NN method produces higher f-scores than the competing methods. In
terms of taking both posivite and negative classes into account, GA-NN provides
the highest results. Probabilistic approaches perform better than k-NN and SVM.

RFE-SVM | CFS FA PCA | Original
k-NNj 0.7179 0.5897 | 0.6410 | 0.5128 0.3718
SVM 0.3163 0.3571 | 0.3061 | 0.3163 0.3061
NaiveBayes 0.5102 0.6186 | 0.7143 | 0.5714 0.7158
BayesNet 0.6596 0.7021 | 0.7128 | 0.5638 0.6702
Neural Network 0.536 0.530 0.612 0.541 0.560
GA-NN - - - - 0.9646

Tab. IT Comparison of classifiers in sensitivity.
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RFE-SVM| CFS | FA |PCA |Original
k-NNj 0.7044 0.6715 (0.6329|0.5333| 0.4328
SVM 0.3875 0.3933 [0.3750{0.3713| 0.3681
NaiveBayes 0.6667 0.7317 (0.7778|0.6667| 0.7083
BayesNet 0.7425 |0.7904/(0.7701|0.7067| 0.7636
Neural Network 0.639 0.655 | 0.707 | 0.643 0.65
GA-NN - - - - 0.8916

Tab. III Comparison of classifiers in f-score.

RFE-SVM| CFS | FA | PCA |Original
k-NN; 0.5247  10.5281]0.4117|0.2753 | 0.1827
SVM 0.0432  |-0.0459|0.0223|-0.0244| -0.0069
NaiveBayes 0.5691 0.5942 0.6209| 0.4725| 0.4562
BayesNet 0.5897  [0.6701|0.6151|0.6049 | 0.6320
Neural Network| 0.5759 0.5980 [0.6596| 0.5275| 0.461
GA-NN - - - - 0.7375

Tab. IV Comparison of classifiers in MCC.

RFE-SVM CFS FA PCA | Original
k-NN; 0.7762 0.7857 | 0.7238 | 0.6667 0.6381
SVM 0.5333 0.4857 | 0.5238 | 0.5000 0.5095
NaiveBayes 0.7619 0.7895 | 0.8095 | 0.7333 0.7295
BayesNet 0.7952 0.8333 | 0.8095 | 0.7905 0.8143
Neural Network 0.790 0.757 0.779 0.738 0.736
GA-NN - - - - 0.8675

Tab. V Comparison of classifiers in accuracy.

When we consider the ratio of correctly classified instances, GA-NN significantly
outperforms competing methods with 86.75% accuracy. Finally, the GA-NN ap-
proach is tested on the ECG dataset obtained from TEPA [32]. An accuracy of
85% is obtained.

According to the experiments, the proposed approach outperforms others in
terms of all performance metrics. The results show that dimensionality reduction
has a beneficial effect on classification. An increasing trend in sensitivity is seen
among classifiers when dimensionality-reduced data sets are used.

5.5 Rule Extraction

Based on the selected features, rule sets are extracted using the C4.5, RIPPER, and
PART algorithms. Performance metrics of accuracy, sensitivity, f-score, precision
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the rule extraction methods is given in Tab. VI.

Method | Accuracy | Sensitivity | F-score | Precision | MCC
C4.5 87.8% 81.0% 85.2% 89.8% 75.0%
RIPPER 88.5% 85.6 % 86.6% 87.6% 76.5%
PART 94.2% 87.9% 93.0% 98.7% 88.6%

Tab. VI Performance results of the rule sets.

According to these measures, PART provides the highest values in all metrics.
C4.5 and RIPPER have similarities, but RIPPER outperforms C4.5 especially in
terms of sensitivity, which is related to its ability to identify the target class. The
resulting rules produced by PART are given in Tab. VII. (For an explanation about
the individual features, please check the UCI database manual).

—

If V1_Avg_QRSA > 1 then CLASS = ABNORMAL

2 | If AVL_Amplitude_T_wave < -0.8 and V1_N_intrinsic_deflections < 8
then CLASS = ABNORMAL

3 | If heartrate < 57 and Tinterval < 165 then CLASS = ABNORMAL
4 | If Tinterval > 221 and DI_Avg_QRSTA < 25.5 then CLASS =
ABNORMAL

5 | If heartrate > 94 and Tinterval > 148 then CLASS = ABNORMAL
6 | If V3_Avg_width_S_wave < 28 and V3_Amplitude_S_wave > -6.8
and DI_Avg_QRSTA > 17.7 then CLASS = ABNORMAL

7 | If V1_N_intrinsic_deflections > 24 and V3_Avg_width_S_wave > 40
then CLASS = ABNORMAL

8 | If QRSduration > 107 and V1_Avg_ QRSA < -25 then CLASS =
ABNORMAL

9 | If V2_Avg width_S_wave > 44 and V1_N_intrinsic_deflections > 4
and heartrate > 64 and V3_Avg_width_S_wave < 56 then CLASS =
ABNORMAL

Tab. VII Rules selected by the PART algorithm.

The resulting rule set consists of nine rules. The selected features are the QRSA
of the V1 Lead, amplitudes of S and T waves, the heart rate, duration of the T wave
and the QRS complex, the width of the S wave, the QRSTA of the D1 Lead and the
number of intrinsic deflections. The rules are not shown in an order of importance,
because PART produces rules from repeatedly generated partial decision trees. We
can assume that these rules contain complementary information.
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6. Conclusions

In this work, we proposed a GA-NN approach for ECG-based arrythmia detection,
followed by rule extraction. We have obtained a small set of interpretable rules
with high predictive performance. With the proposed GA-NN approach, we per-
formed feature reduction and classification simultaneously. By doing so, features
that contribute most to classification are determined. We observed that utilizing
the global search ability of the genetic algorithm with the neural network as a
classifier improves the performance over using neural networks directly, even in
conjunction with dimensionality reduction techniques. The GA-NN approach con-
siderably reduces the dimensionality of the data, and trains the NN reliably.

We performed comparisons with state of the art classification schemes, and
dimensionality reduction methods. The proposed approach outperforms others
according to the experimental results.

Additionally, a novel ECG dataset is introduced and used for verifying the
proposed approach. We have obtained high accuracy rates on this new dataset.
Several rule extraction algorithms were applied to interpret the classification results
in a human readable format. The resulting rule set is concise and useful. Obviously,
clinical assessment is indispensable for this problem, but our results indicate that
automated analysis can give real-time assessment help to the clinicians.
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