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Abstract: Liquefaction potential is a scientific assessment parameter to assess lig-
uefaction of medium to fine grained cohesion-less soil due to earthquake shaking. In
this paper alternative liquefaction potential prediction models have been developed
using adaptive neuro fuzzy inference system (ANFIS) and multiple linear regression
(MLR) technique. Geological survey of the study area was performed and forty lo-
cations were identified to perform standard penetration test (SPT). Disturbed and
undisturbed soil samples were collected from the borehole to execute the laboratory
tests. The bore-log datasets were used for determining liquefaction potential of the
cohesion-less soils. The analytical approach by Idriss and Boulanger (I & B) has
been applied initially to estimate liquefaction potential of soil on the basis of stan-
dard penetration test datasets obtained from the field investigations. To develop
the ANFIS models 101 datasets were collected and incorporated for the develop-
ment of fuzzy neural network models. Multiple linear regression (MLR) models
have also been developed and the results were compared with neuro-fuzzy models.
Based on obtained results it can be stated that the developed adaptive neuro fuzzy
inference system models have better prediction ability to predict liquefaction po-
tential with satisfactory level of confidence and can be used as an alternative tool.
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1. Introduction

On 26" January 2001, an earthquake originated in Bhuj (India) with maximum
horizontal acceleration 0.35 g, damaged many medium and high rise buildings in
and around Bhuj city [1]. The city buildings experienced differential settlement by
violent shaking; this phenomenon was due to liquefaction which is caused by earth-
quake. Soil liquefaction occurs in loose, saturated cohesion-less soil units (sands
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and silts) and sensitive clays. Different methods like modified Seed’s method,
Tokimatsu and Yoshimi method and Idriss and Boulanger method etc. are used to
estimate liquefaction potential using soil properties and seismic parameters. Soil
properties are determined using in situ SPT and laboratory testing. However, in-
situ testing is tedious method involving skilled labour, high cost and extra time.
Therefore, alternative approach with economical and reliable prediction of liquefac-
tion has been executed considering the soft computing and multi linear regression
approach.

Though soft computing methods have been applied in various field of civil en-
gineering however limited applications are available in the area of assessment of
liquefaction potential using ANFIS. Some researchers like Goh, 1995, 2002; Wang
et al., 2010; Moradi et al, 2011; Wang and Rahman, 1999; Hanna et al., 2007a,
2007b; Hsu et al. 2006; kayabah, 1996; Sitharam, et al., 2004; Rao et al., 2007;
Chiru-Danger et al. 2001; Juang et al. 2000, 2001; Hsu et al. 2006;Ramakrishnan
et al., 2008;Gracia et al., 2008;kayadelen et al., 2009 etc. [4-13, 1, 14-17] have
developed the models using neural network technique for assessing liquefaction
potential.

Fuzzy neural network which is integration of well-known fuzzy and neural net-
work technique has been applied for the assessment of liquefaction potential in
this work. Fuzzy neural network which was first proposed by Jang [2] in fuzzy
modeling environment is divided into two areas: linguistic fuzzy modeling which
is focused on interpretability is mainly the Mamdani model [3]; and precise fuzzy
modeling that is focused on accuracy is mainly the Takagi-Sugeno-Kang (TSK)
model. Adaptive Neuro-Fuzzy Inference System (ANFIS) falls in the category of
precise fuzzy modeling.

Current research is the effort of assessing liquefaction potential of Allahabad
city situated near the banks of river Ganga and Yamuna. Since alluvial soil is
abundantly present in this vicinity and soil strata on the bank of river are mainly
consist of sand, silt and clay soil at various depths. The upper part of strata con-
tains major portion of silty soil and sandy silt enhancing probability of liquefaction.
So there is a major chance of liquefaction occurrence in the upper soil strata dur-
ing the earthquake. Analytical method given by Idriss and Boulanger (I & B) was
used initially for liquefaction potential assessment, later on it was incorporated in
Neuro-fuzzy and MLR modeling approach for predicting liquefaction potential of
soils.

2. Liquefaction Potential Assessment

2.1 Idriss and Boulanger’s method

Geotechnical professionals generally investigate subsurface to evaluate the potential
for liquefaction. The most common techniques using standard penetration test
(SPT) i.e. blow count (commonly referred as to the “N-value”). The liquefaction
potential assessment by analytical approach follows certain protocols:

1. Estimation of the cyclic stress ratio (CSR) induced at various depths within
the soil by the earthquake.

250



Kumar V., Venkatesh K., Tiwari R. P.: A neurofuzzy technique to predict...

2. Estimation of the cyclic resistance ratio (CRR) of the soil, i.e. the cyclic
shear stress ratio which is required to cause initial liquefaction of the soil.

3. Evaluation of factor of safety against liquefaction potential of in situ soils

Calculation of CSR: Modus operandi by Idriss & Boulanger [18] for evaluation
of CSR is same as “simplified method”. Right after CSR calculated from the
equation (1).

CSR :Tavg/gé = 0.65 (amazx/9) (O'v/o':;) Iq (1)

Value of CSR is adjusted for the moment magnitude M = 7.5. Accordingly the
value of CSR is given as

Td

(CSR)y_r.5 = OSR/MSF = 065 (0,0ma0/0%) 77e7 2)

A new parameter rq which could be adequately expressed as a function of depth
and earthquake magnitude (M) was introduced and can be explain from following
relations:

In (rq) =oc (2) + B (2) M (3)
x (2) = —1.012 — 1.126sin (z/11.73 + 5.133) (4a)
B (z) = 0.106 + 0.118sin (2/11.28 + 5.142) (4b)

where z is the depth in meters and M is moment magnitude. These equations
were appropriated for depth z < 34 m however for depth z > 34 m; the following
expression can be used:

rq= 0.12exp(0.22M) (5)

CSRy 5 is the cyclic stress ratio for magnitude of 7.5 earthquakes, magnitude smaller
or larger than 7.5, introduces a correction factor namely magnitude scaling factor
MSF defined by the following equation given by [19]:

MSF = 10*2* /M (6)

Calculation of CRR: Idriss and Boulanger [18] adjusted the equation of CRR
for clean sands as follows

(Nl)GOC (N1)60cs ’ (Nl)GOcs ’ (N1)60cs !

_ s _ —2.

CRR = exp { 1 T\ 126 236 ) T\ 254 8¢ (@)
Subsequent expressions describes the way parameters in the above equation is cal-
culated

(N)goes = (N1)go + (AN1)go (8a)
(ANy)g = exp (1.63 +9.7/FC — (15.7/FC)) (8b)
(Nl)GO = Cn (N (8¢)

The use of equations in preceding articles provides a convenient means for evaluat-
ing the cyclic stress ratio required to cause liquefaction for cohesion-less soils with
varying fines content.
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Calculation of Factor of Safety: If the cyclic stress ratio caused by an earth-
quake is greater than the cyclic resistance ratio of the in situ soil, then liquefaction
could occur during the earthquake, and vice versa. The factor of safety (FOS)
against liquefaction is defined as:

FSLiquefaction - CRR/CSR (9)

Liquefaction is predicted to occur when F'S < 1.0, and liquefaction predicted not
to occur when F'S > 1. The higher the factor of safety, the more resistant against
liquefaction [20], however, soil that has a factor of safety slightly higher than 1.0
partially liquefy during the earthquake.

2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive Neuro-Fuzzy Inference System (ANFIS) is one of the most successful
schemes which combine the benefits of ANN and FIS into a single capsule [1].
The attractive features of an ANFIS include: easy to implement, fast and accu-
rate learning, strong generalization abilities, excellent explanation facilities through
fuzzy rules, and easy to incorporate both linguistic and numeric knowledge for prob-
lem solving [21, 22]. According to the neuro-fuzzy approach, a neural network is
proposed to implement the fuzzy system. A typical architecture of an ANFIS, in
which a circle indicates a fixed node, whereas a square indicates an adaptive node,
is shown in Fig. 1. In this structure, there are input and output nodes, and in
the hidden layers, there are nodes functioning as membership functions (MFs) and
rules. For simplicity, we assume that the examined FIS has two inputs and one
output. For a first-order Sugeno fuzzy model [3], a classic rule set with two fuzzy
“if then”rules is as following;:

Rule 1: if a is Ay and b is By, then fi = pra+ q1b+ 11, (10a)

Rule 2: if a is A3 and b is Bs, then fo = paa + q2b + 7. (10b)

where a and b are the two crisp inputs, and A; and B; are the linguistic labels
associated with the node function.

Fig. 1 First order Sugeno ANFIS architecture.
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As indicated in Fig. 1, the system has a total of five layers. The functioning of
each layer is described as follows [1].

Input node (Layer 1): Nodes in this layer contains membership functions. Param-
eters in this layer are referred to as premise parameters. Every node i in this layer
is a square and adaptive node with a node function:

O} = pua,(a) fori=1,2. (11)

where z is the input to node i, and A; is the linguistic label (small, large, etc.)
associated with this node function. In other words, O} is the membership function
of A; and it specifies the degree to which the given x satisfies the quantifier A;.

Rule nodes (Layer 2): Every node in this layer is fixed node labeled X, whose
output is product of all incoming signals.

O? = w; = pua,(a) x up, (b) for i =1,2 (12)
Average nodes (Layer 3): Every node in this layer is fixed node labeled Y. The
i*" node calculates the ratio between the i*" rule’s firing strength to the sum of
all rule’s firing strengths. Every node of these layers calculates the weight, which
is normalized. For convenience, outputs of this layer are called normalized firing
strengths.
w

W= —— fori=1,2 (13)
w1 + We

03

2

Consequent nodes (Layer 4): Every node i in this layer is an adaptive node with
a node function
Of =w; x f1 = w; X (pia+ qib+r;) (14)

Where w; is a normalized firing strength from layer 3 and (p;, ¢;, 74) is the pa-
rameters set of this node. Parameters in this layer are referred to as consequent
parameters.

Output node (Layer 5): The single node in this layer is a fixed node labeled >,
which computes the overall output as the summation of all incoming signals:

Ziwi X fi

22 wi (15)

Overall output = O? = Zwi x fi=
i

2.3 Multiple Linear Regression (MLR) Analysis

Regression analysis is the study of establishing the functional relation between
independent and dependent variables. The independent variables may vary from
one or greater than one depending on the requirement of the dependent models.
However, the number of dependent variables is strictly restricted to one. The gen-
eral formula of regression establishing relationship between different independent
variables and a dependent variable is shown below [23]:

y="by+bix1 4+ boxo+ ... bpxp (16)
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or, y = by + Xb;x; (17)

where, i =1,2,...,p

y is the dependent variable (liquefaction potential in this case)

Z1,%2 — Tp are independent variables,

and by, b1,bs — b, are the coefficients that has to be determined using regression
analysis.

3. Methodology

After geological survey, soil investigation of the sites and its surroundings were
carried out initially for pertinent data collection. In-situ standard penetration
test was conducted to collect disturbed and undisturbed soil samples from the
40 boreholes. The required soil properties were investigated in the laboratory
to determine liquefaction potential of cohesion-less soils using I & B analytical
approach. The bore-log charts of different boreholes were used to collect the input
datasets whereas output datasets were obtained from I & B analytical method. To
develop the ANFIS and MLR models 101datasets were collected in terms of input
and output values of the models.

3.1 Experimental method

Standard penetration test was conducted in order to collect disturbed and undis-
turbed soil samples. Disturbed and undisturbed soil samples were collected from
these boreholes up to the depth of 10 meters. The SPT N-value was also determined
at a regular interval of 1.5 m depth [24]. Disturbed soil samples were used to de-
termine liquid limit; plastic limit; angle of internal friction; particle size finer than
2 mm, 0.075 mm and 0.002 mm and undisturbed samples were used to determine
natural water content [25-27], bulk unit weight. All experiments were conducted
according to bureau of Indian standard’s guidelines for soil testing.

Data modification: Corrected SPT-N values are required to estimate liquefac-
tion potential using I & B method hence standard procedure for correcting SPT-N
value was adopted as per the Indian Standard IS: 2131-1981 [24]. A brief discussion
on corrected SPT-N value is discussed hereunder:

Correction for overburden pressure: N-value obtained from SPT test is cor-
rected first which is either calculated by the equation:

N, = Cx (18)

Cy is correction factor obtained directly from the graph given in Indian Standard
Code (IS: 3121-1981) (Fig. 2).
It can also be calculate from the following relationship i.e.

2000
CN = 0.77l0910

(19)

where, p is effective overburden pressure in kN/m? [28].
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Effective Vertical Overburden Pressure
(kgf/cm?)

0.4 0.8 1.2 1.6 2
Correction of N Value in Cohesionless Soil for Overburden
Fressure

Fig. 2 Correction due to overburden pressure.

Dilatancy Correction: The values obtained in overburden pressure (N;) shall
be corrected for dilatancy if the stratum consist of fine sand and silt below water
table for the values of N; greater than 15 by following equation [29]:

N, = 15 + 0.5(N; — 15) (20)

The range of soil properties found through SPT and other laboratory test used as
input vectors in ANFIS method is shown in Tab. I. Two parameters i.e. water table
(W) and earthquake magnitude (M) were varied for parametric studies. Level of
water table varied from 0, 2, 4, 6 and 8 m from ground surface and earthquake
magnitude varied for 6.0, 7.0 and 8.0. Hence, 15 combinations were formed for
calculating CSR value by I & B method for the specific depth of water table and
earthquake magnitude as shown in Tab. II. Similarly, CSR values were obtained
for different combination of depth and earthquake magnitude.

Input Parameters Ranges
depth (m) 0-10
SPT-N value 0-50

Bulk unit weight (7;) 1.31-2.36
Particle finer than 0.075 mm (%) | 18.34-99.64
Natural water content 1.16-32.3

Tab. I Ranges of Input Parameters.

Depth of water table (m)

0

2

Earthquake magnitude (Richter scale)

6.0

7.0

Tab. II Assumed Water Table and Farthquake Magnitude.
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4. Development of ANFIS and MLR Models

Since this study is based on SPT and bore log chart datasets. Initially two fun-
damental input variables i.e. depth (z) and SPT-N value (N) were chosen for
the development of the fuzzy neural network models for predicting liquefaction
potential. Subsequently input variables were increased to develop an optimum lig-
uefaction potential model with minimum error. Study carried out up to five input
variables comprising depth (d), SPT-N value (N), bulk density (p¢), particle size
finer than 0.075 mm (Dy) and natural/field moisture content (w¢). In this, 30
borehole datasets were used for training and testing whereas 10 borehole datasets
were reserved for validating the fuzzy neural network models. Normalized datasets
were used for models using following equation [30].

_ Qactual — Omin. (21)
Amaz. — CAmin.
where, o = Normalized value.
Qgetual = data which has to be normalized, the input and output
parameter’s value.
iin = minimum value of data.
and, Qmaz = maximum value of data.

ANFIS modeling tool was used for all operations in which networks were trained
for varying numbers of epochs. Grid partitioning method and triangular member-
ship function were used to generate fuzzy inference system from input variables,
whereas linear membership function was used for target variable. Hybrid optimiza-
tion technique was used for training FIS [31]. Inputs were increased gradually to
study the effect of individual parameter on liquefaction. Output parameter (that is
occurrence of liquefaction) in the ANFIS model is designed to answer in like/unlike
format based on I & B method [32].

To identify different network architecture with its fundamental attributes a
coding method was used for different networks, as such Wx My where, Wx denotes
depth of water table and My is earthquake magnitude value. The predicted values
of liquefaction potential by developed models are discussed in subsequent heading.

Regression analyses were also carried out to establish the functional relation
between independent and dependent variables to develop MLR models. The devel-
oped multivariate liner equations from MLR analysis are presented in Tab. VIII.
These equations are shown for all fifteen combinations of water table and earth-
quake magnitude. The generalized form of MLR equations to predict liquefaction
potential (LP) is as follows

LP = A1 - Agd + A3N + A4DX + A5Wf - Aﬁpf (22)

where, A1 to Ag represents the constant of the equation with the adopted variables
i.e. depth (d), SPT-N value (N), percentage finer then 0.075 (Dy), moisture content
(w¢) and bulk density (pg).
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5. Results and Discussion

The developed ANFIS and MLR models were validated using reserve datasets.
As mentioned above five levels of water table and three earthquake magnitudes
were considered for assessing liquefaction potential using I & B, ANFIS an MLR
technique. These parameters resulted in total of fifteen set of liquefaction values.
Tab. III(a), IV(a) and V(a) show liquefaction potential values for these combina-
tions predicted by ANFIS models. Using the same datasets MLR models were
developed, validated and compared with observed values obtained by conventional
methods are depicted in Tab. III(b), IV(b) and V(b).

Tab. IIT to V displays the results of liquefaction potential on the basis of
CRR/CSR obtained from I & B method where as ANFIS and MLR models predic-
tions are based on five input parameters. In some of the combinations, the lique-
faction potential values predicted by ANFIS and MLR models is not in accordance
with I & B method. The comparison between the predicted values of optimum
ANFIS models and I & B method are also shown in Figs. 3 to 5. This study also
highlights the drawbacks with respect to predicted value by ANFIS method are as
follows: WMy ANFIS model is giving liquefaction potential as 0.952 instead of
1.25; similarly WgMy model predicting 1.109 compared to 0.826. In case of WgMg
model it is 1.027 and 1.25 compared to 1.00 and 0.995 similarly in WgMg it is
1.25, 1.25, 1.024 and 1.25 in comparison to 0.942, 0.874, 0.918 and 0.815 as dis-
played in Tab. III(a). In Tab. IV(a) liquefaction potential is predicted by ANFIS
model for W7May is 0.993 compared to 1.037. In case of Tab. V(a) liquefaction
potential predicted by ANFIS model for WgMg is 1.001 and 1.25 in comparison to
0.884 and 0.956. Similarly MLR also predicted some results incorrectly for example
model MgW gave four incorrect prediction as 1.129, 1.154, 1.312, & 1.154, model
MgWs gave five incorrect prediction as 1.799, 1.224 & 1.749, 1.749 & 1.749 model
MgWy gave six incorrect prediction as 1.010, 1.539, 2.113, 2.113, 1.800 & 2.113
model MgWj also gave six incorrect prediction as 0.000, 2.134, 2.134, 1.808, 2.134
& 0.829 and model MgWg gave five incorrect prediction as 0.000, 2.025, 2.025,
1.719, 2.025. Above incorrect predictions were found for earthquake magnitude of
6.0. The details of predicted value for earthquake magnitude of seven and eight
respectively may also viewed in Tab. IV(b) & V(b) to observe the limitations of
these methods.

The results obtained from lesser input vectors were ignored since liquefaction
values obtained with the combination of five input vectors were close to I & B
method. Coefficient of determination (COD or R?), mean absolute error (MAE)
and root mean square error (RMSE) obtained for fifteen cases by ANFIS and MLR
models are summarized in Tab. VI. The coefficient of determination is as high as
0.998 for the earthquake magnitude 7.0 whereas water table is at ground level for
ANFIS models. As per the results, most of the ANFIS models have coefficient
of determination greater than 0.9 which illustrate good prediction capabilities of
ANFIS models. The ANFIS models from combinations MgWq, M7 W and MgWg
having the coefficient of determination values of 0.9943, 0.9979 and 0.9922 respec-
tively, that illustrate that ANFIS models needs improvement with a lot of datasets.
However, the incorrect predicted liquefaction potential from these models varied
from one to four (bolded results in respective Table) out of total 30 validation
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datasets, which is within acceptable limit. The comparative study depicts that
results obtained from ANFIS models can be used cautiously and performance of
models can be upgraded by introducing more sets of data inputs. It can also be
observed from Tab. VI that the coefficient of determination obtained from MLR
models is in the range of 0.8. In this case mean absolute error and root mean
square error is also high. It is also indicative from the above discussion that num-
bers of incorrect prediction from MLR models is greater than ANFIS models. The
comparison of these statistical parameters clearly indicates that COD, MAE and
RMSE obtained by ANFIS models are far better than MLR models.

By ANFIS By MLR

S. No. | Models =01 TWAE | RMSE | COD | MAE | RMSE
1 | MgWo | 0.995 | 3.140 | 4.490 | 0.852 | 59.93 | 71.47
2 MgW, | 0.872 | 6.161 | 9.212 | 0.8475 | 63.00 | 73.00
3 MoW, | 0.911 | 6349 | 8.008 | 0.8274 | 70.49 | 84.77
) MgWe | 0.777 | 8.085 | 10.004 | 0.8338 | 69.76 | 84.54
5 MoWs | 0.732 | 8.024 | 11341 | 0.8380 | 67.38 | 80.65
6 | M;W, | 0.998 | 2.877 | 3.995 | 0.8515 | 60.80 | 72.58
7 MW, | 0.001 | 5.807 | 8711 | 0.8455 | 6352 | 7356
8 MW, | 0.927 | 5.667 | 8.730 | 0.8265 | 7050 | 4.82
9 M, We | 0.042 | 4221 | 6.934 | 0.8334 | 70.00 | 34.85
10 | M,Ws | 0.004 | 5.624 | 9576 | 0.8378 | 67.85 | SL.1%
11| MsW, | 0.960 | 2.023 | 5.612 | 0.8514 | 6155 | 7351
12 | MsW, | 0.945 | 4.856 | 6.968 | 0.8433 | 63.04 | 74.05
13 | MsW, | 0.988 | 2.066 | 5.642 | 0.8254 | 70.70 | S4.86
14 | MsWe | 0.992 | 2.604 | 3.606 | 0.8330 | 70.35 | 85.08
15 | MsWs | 0.963 | 4.005 | 7.722 | 0.8376 | 68.24 | 3153

Tab. VI Calculations of coefficient of correlation and average absolute error for
each model.

The datasets of one borehole, which was not used in training, and testing of
models were used for validation of these models in the end to check the ability of
the models if these models are likely to be adopted for prediction of liquefaction
potential. The result obtained by conventional 1&B method was compared with
the predicted condition of liquefaction in like/unlike terms as shown in Tab. VII.
This comparison indicates that prediction capability of ANFIS model with high
coefficient of determination is in better agreement with the conventional approach
in comparison to MLR models.

6. Conclusions

Estimation of liquefaction potential by soft computing and regression methods
using SPT data can be advantageous over the conventional approach. Therefore,
ANFIS & MLR models were developed to predict liquefaction potential for a site
or region. The results of liquefaction potential obtained in like/unlike form for
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Particle Size Distribution
[ | LP LP

Depth

Natural
Muisture

g
2 E =
2 5 =
- ] 5} 5 st Prediction | Prediction
z z = % Finer than Size in mm = by ANFIS by MLR
i) & Z Me v ANFIS v ML
= an z Method Model Model
| ! = 3] ; !
meter ? 20 | 0075 | 0002 | % ?
15 | 6 | NomPlastieSily |y | gpas | 816 | 367 | 3230 | 174 [267| 20 | Like Like Unlike
| | Soil with Gravel | | | ) 1 1 } 1 1 t T
Non Plastic Silty s o z . "
3.0 5 on | l_"'"" ilty sM 99.07 46.36 0.00 25.76 1.9 2.65 20 Like Like Like
4.5 12 SM 99.07 | 46.36 0.00 | 25.76 1.9 | 265 20 Like Like Like
6.0 12

5M 99.07 46.36 0.00 25.76 1.9 2.65 20 Like Like Like

[ Non Plastic Silty | | T I : :
on Plastic Silty | ovr | 9907 | 4636 | 000 | 2576 | 19 [265] 20 Like Like Like
sand | | | | | | |
Non Plastic Silty

9.0 23
sand

M 99.07 46.36 0.00 25.76 1.9 2.65 20 Like Like Like

Tab. VII The comparison depicts that ANFIS model & MLR Technique can pre-
dict the LP after proper training and testing.

Combi-
nation
0.35;6;0 | = 2.281494—(0.10516 d)+(0.069095 N)+(0.006684 D)+ (0.021259 w¢)-(1.6931 p)
0.35;7;0 | = 1.698935—(0.08183 d)+(0.049976 N)+(0.005053 D )+ (0.015554 wy)-(1.24449 py)
0.35;8;0 | = 1.259794—(0.06314 d)+(0.036033 N)+(0.003799 D)+ (0.011341 w¢)-(0.91134 ps)
0.35;6;2 | = 4.410201—(0.24532 d)+(0.100098 N)+(0.013324 D« )+(0.035717 w¢)-(2.95095 ps)
0.35;7;2 | = 3.266915—(0.18662 d)+(0.072495 N)+(0.009962 D )+(0.026115 wy)-(2.16428 py)
0.35;8;2 | = 2.410765—(0.1412 d)+(0.052338 N)+(0.007413 Dx)+(0.019029 wr)-(
0.35;6;4 | =5.941853—(0.2828 d)+(0.130454 N)+(0.018231 D )+(0.049365 we)-(4.17785 ps
0.35;7;0 | = 4.390949—(0.2148 d)+(0.094525 N)+(0.013583 D)+ (0.036071 w¢)-(3.06187 ps
0.35;8;4 | = 3.232732—(0.16227 d)+(0.068275 N)+(0.010076 D« )+(0.026268 w¢)-(2.23602 ps¢

( )-

( )-

( )-
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( )-

Developed Multi-Linear Equation

1.5816 pr)
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0.35;8;8 | = 3.304963—
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)
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3.25637 pg
2.37979 ps
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AA/\/\/\/\
vvvvvv

Tab. VIII Multi-varied linear equation.

different combination of water table and earthquake magnitude demonstrate the
closeness of ANFIS models to I & B method. Thirty-four datasets were used
for predicting liquefaction potential for fifteen models which form 510 validated
results. Out of 510 predictions, only 12 predictions by ANFIS models deviated
from the correct prediction which supports the prediction capabilities of ANFIS
models. In this, 98% of predictions are analogous. The mean absolute error varies
from 2.604% to 8.085%; root mean square error varies from 3.61 to 11.34% whereas
coefficients of determination obtained by these models are more than 0.9 except
for a few models. On the other hand MLR, models gave more than 20 incorrect
results with high mean absolute error and root mean square error. Based on ANFIS
prediction capability ANFIS modeling technique to predict liquefaction potential
of soils can be adopted in comparison to MLR models. The analysis of results
evidently demonstrates that these ANFIS models can be used effectively and it is
more reliable since developed models predicts liquefaction potential correctly for
one bore log case.
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