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Abstract: Database records can be often interpreted as state descriptions of some
world, system or generic object, states of which occur independently and are de-
scribed by binary properties. If records do not contain missing values, then there
exists close relationship between association rules and propositions about state
properties. In data mining we usually get a lot of association rules with large con-
fidence and large support. Since their interpretation is often cumbersome, some
quantitative measure of their “informativeness” would be very helpful.

The main aim of the paper is to define a measure of the amount of infor-
mation contained in an association rule. For this purpose we make use of the
tight correspondence between association rules and logical implications. At first a
quantitative measure of information content of logical formulas is introduced and
studied. Information content of an association rule is then defined as information
content of the corresponding logical implication in the situation when no knowl-
edge about dependence among properties of world states is at our disposal. The
intuitive meaning of the defined measure is that the association rule that allows
more appropriate correction of the distribution of world states, acquired under un-
fair assumption of independence of state properties, contains also larger amount
of information. The more appropriate correction here means a correction of the
current probability distribution of states that leads to the distribution that is closer
to the true distribution in the sense of Kullback-Leibler divergence measure.
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1. Introduction

In data mining different methods for gaining knowledge are studied and used. The
mining of association rules is one of the most successful. The purpose of mining
association rules is to discover the associations among data in large databases
or data sets, i.e. to find items that imply the presence of other items in the
same database records or transactions. Association rules were firstly introduced by
Agrawal [1] and then successfully applied by many authors.
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Having association rules, the main problem is to interpret them in some useful
way. One of the most appealing way of interpretation is to interpret them as logical
formulas, because logic provide main means for scientific reasoning. In paragraphs
2-4 the interpretation of association rules as logical formulas is systematically pur-
sued. We consider databases that contain only records with binary items that can
be interpreted as truth values of predicates and we assume that these predicates
denote properties describing independently realized states of some world, system
or generic object. In paragraph 2 we prove that if the database does not contain
missing data, then knowing association table (contingency table) of an association
rule α ⇒ γ brings in a possibility to interpret the association rule as an arbitrary
logical formula built up from the antecedent α and consequent γ. Moreover, the
probability that the formula is valid can be estimated from the standard parameters
of the association rule, namely from its confidence cf , support sup and consequent
coverage covY . Moreover, if the association rule is interpreted as implication, then
knowing only parameters cf and sup is sufficient (see also [2]).

During data mining process we usually get a lot of association rules with large
confidence cf ∼= 1 and support sup > supmin. To simplify their interpretation,
we should select only those of them that are “informative” in some way. So we
need some quantitative measure of “informativeness” of an association rule. A
lot of measures based on contingency table have been devised, see e.g. Tan [3] or
Blanchard [4]. In this article we propose a quite different and original approach.
We establish a quantitative information measure for logical formulas and then we
utilize the close relationship between association rules and logical implications.

Quantitative measure for evaluating information content of logical formulas
based on Shannon entropy was firstly proposed in [5] and [6]. To behave effi-
ciently in the surrounding world means to have a good knowledge of probabilities
of the states observed in this world, or of the events occurring there. Therefore the
formula enabling to specify more precisely an unknown true distribution of these
events or states should be considered more “informative” than a formula leading
to a less precise specification. Assume that we measure the distance between a pri-
ori distribution q of the world states and their true distribution p. The distance
between distributions is measured in the standard information-theoretic manner,
namely by the Leibler-Kullback divergence and is denoted D(p||q). After we find
out that some formula β, expressing logical dependence among the world states is
valid, the a priori distribution q can be transformed into a posteriori distribution
q̃ as it is specified in §5. The main result of §5 asserts that the distance between a
posteriori distribution q̃ and the true distribution p (denoted D(p||q̃)) is less than
D(p||q). The information content of formula β is then defined

I(β, q) = D(p||q)−D(p||q̃) ≥ 0.

In §5 we prove that for evaluation of I(β, q) the knowledge of true distribution
p is not necessary and that the value I(β, q) depends only on the probability that
formula β is valid (denoted [β]) and on the a priori distribution q. The soundness of
the defined measure stems from the fact that the more informative formula enables
to get more precise estimate q̃ of the true probability distribution p.

In data mining the association rules are used to support expert’s decision-
making. As we show in paragraph 4, the most important way, how association rules
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could be interpreted, is to interpret them as logical implications. Since association
rules can be in natural way interpreted as logical implications and we have at
our disposal a quantitative measure of information content of logical formulas, we
may apply this information measure, originally devised for logical formulas, also to
association rules.

Association rules reflect dependence among properties of world states. The
more this dependence is reflected, the more “informative” the association rule is
supposed to be. Before mining of association rules we may assume to be in sit-
uation, in which we have no knowledge of the dependence that among properties
exists. Assume for a while their mutual independence. Under this assumption
the probability distribution of world states q∗ can be easily evaluated from the
database (see paragraph 6). Assume further that association rule α ⇒ γ with
confidence cf ∼= 1 and support sup > supmin has been mined. The association
rule can be interpreted in natural way as logical formula α ⊃ γ and the probability
[α ⊃ γ] that the formula α ⊃ γ is valid in the given world can be estimated as
[α ⊃ γ] ∼= 1+ sup− sup/cf (see paragraph 2). The larger the information content
I(α ⊃ γ, q∗) of the formula α ⊃ γ is, the more precise correction of the distribu-
tion q∗, obtained under likely false assumption of independence of properties of
world states, might be carried out (see paragraph 5). Thus the natural measure of
information content of an association rule is

I(α ⇒ γ) = I(α ⊃ γ, q∗).

2. Association Rules and Logical Formulas

At the beginning of this paragraph we introduce association rules and their param-
eters confidence (cf), support (sup), antecedent coverage (covX) and consequent
coverage (covY ) in the standard way following the seminal work [Agrawal 1994].
Then we show how association rules can be interpreted as logical formulas. Our
thorough analysis results in proving that an association rule α ⇒ γ can be inter-
preted as an arbitrary logical formula that is build up from α and γ. Moreover,
we prove that probability of its validity can be estimated from parameters cf , sup,
and covY , provided the transaction set is complete.

Assume that I = {i1, i2, . . . , im} is a set of labels, called items. Let T be a set
of transactions, where each transaction T is a set of items such that T ⊆ I. We
say that a transaction T contains X, a set of some items in I, if X ⊆ T .

An association rule is an implication of the form X ⇒ Y , where X ⊂ I, Y ⊂ I,
and X ∩ Y = ∅.

The ruleX ⇒ Y holds in the transaction set T with confidence cf if (cf×100)%
of transactions in T that contain X also contain Y .

The rule X ⇒ Y has support sup in the transaction set T if (sup × 100)% of
transactions in T contain X ∪ Y .

The rule X ⇒ Y has antecedent coverage covX in the transaction set T if
(covX × 100)% of transactions in T contain X.

The rule X ⇒ Y has consequent coverage covY in the transaction set T if
(covY × 100)% of transactions in T contain Y .
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Assume an world Ω and P = {P1, . . . , Pm} a set of properties describing world
states ω ∈ Ω. Assume that world states realize in random and that their realizations
are mutually independent. Then world Ω can be in one of n = 2m states ω1, . . . , ωn

and each state ωi can be unequivocally described with the conjunction

αi = L1 ∧ · · · ∧ Lm,

where for all j = 1, . . . ,m,Lj = Pj if the world state ωi has the property Pj or
Lj = ¬Pj otherwise.

According to the above definitions I = {P1,¬P1, . . . , Pm,¬Pm} constitutes an
itemset and T ⊂ I, T = {L1, . . . , Lm}, where Li = Pi or Li = ¬Pi, i = 1, . . . ,m are
transactions of a special type. We will call them complete transactions. A trans-
action set consisting of complete transactions will be called complete transaction
set.

An arbitrary formula φ created from literals L1, L2, . . . , Lm by means of propo-
sitional operators ∧, ∨, ⊃, ¬, ≡ is or is not valid in a transaction T . Assume
a complete transaction set T that consists of N transactions. If φ is valid in m
transactions of T, then

[ϕ]T =
m

N

is validity of φ in the transaction setT. Formula φ can be interpreted as an assertion
about world Ω. The probability that φ is valid in randomly chosen state of world
will be denoted [φ]. Clearly, for large N the value [φ]T can be considered being an
estimate of the probability [φ].

Definition 1 Let X ⇒ Y,X = {K1, . . .Km}, Y = {M1, . . .Mp} be an association
rule on a complete transaction set T = {T1, . . . , TN}. Denote α = K1 ∧ · · · ∧Km,
γ = M1 ∧ · · · ∧ Mp. Association table AX⇒Y of the association rule X ⇒ Y are
four real numbers (a, b, c, d), where

a =
a′

N
, b =

b′

N
, c =

c′

N
, d =

d′

N
and

a′ is the number of world states in which both α and γ are valid,
b′ is the number of world states in which α is valid and γ is not valid,
c′ is the number of world states in which α is not valid and γ is valid,
d′ is the number of world states in which neither α nor γ are valid.

Association table is often given in the form of the table:

γ ¬γ
α a b
¬α c d

Obviously equation a + b + c + d = 1 holds. Association rule X ⇒ Y will be
also written as α ⇒ γ.

Lemma 1 Let X ⇒ Y be an association rule on a complete transaction set T
= {T1, . . . , TN} and let AX⇒Y = (a, b, c, d) be its association table. Let sup,
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cf, and covY be support, confidence and consequent coverage of the rule X ⇒
Y respectively. Then if sup ̸= 0, the following holds:

a) sup = a, (1)

b) cf = a/(a+ b), (2)

c) covY = a+ c. (3)

Proof

a) According to Definition 1 α and γ are both valid in a′ = aN transactions
from T. It means that aN transactions from T contain X ∪ Y . Therefore
support of the rule X ⇒ Y equals to a.

b) According to Definition 1 α is valid in a′+b′ = (a+b)N transitions but only in
aN of them also γ is valid. In other words only Na/(a+ b) transactions from
T have the property that with X also contain Y . Therefore cf = a/(a+ b).

c) According to Definition 1 γ is valid in a′+c′ = N(a+ c) transactions. There-
fore covY = a+ c.

Notice that if sup ̸= 0, then also cf ̸= 0. �
Lemma 2 Let X ⇒ Y be an association rule on a complete transaction set
T and let AX⇒Y = (a, b, c, d) be its association table. Let sup, cf, and covY be
support, confidence and consequent coverage of the rule X ⇒ Y respectively. Then
if sup ̸= 0, the following holds:

a) a = sup, (4)

b) b = sup(1− cf)/cf, (5)

c) c = covY − sup, (6)

d) d = 1− covY − sup(1− cf)/cf, (7)

Proof

a) See Lemma 1.a.

b) According to Lemma 1.b

cf =
a

a+ b
.

Therefore

b =
a(1− cf)

cf
= sup

(1− cf)

cf
.

c) c = covY − a = covY − sup (from (3) and (1)).

d) d = 1− a− b− c = 1− covY − sup(1− cf)/cf. �
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Lemma 3 Assume association rule X ⇒ Y , X = {K1, . . .Km}, Y = {M1, . . .Mp}
and denote α = K1 ∧ · · · ∧Km, γ = M1 ∧ · · · ∧Mp. If sup ̸= 0, then

a) [α ⊃ γ]T = 1 + sup− sup/cf, (8)

b) [α]T = sup/cf, (9)

c) [α ∧ γ]T = sup. (10)

Proof

a) According to Def. 1 we have [α ⊃ γ]T = a + c + d = 1 − b. Hence, b =
1− [α− γ]T .

According to (5)
b

sup
=

(1− cf)

cf
.

Therefore
1− [α ⊃ γ]T

sup
=

(1− cf)

cf

and
[α ⊃ γ]T = 1 + sup− sup

cf
.

Proofs of b) and c) are obvious. �

Assume an association rule X ⇒ Y with association table AX⇒Y , where X =
{K1, . . .Km}, Y = {M1, . . . ,Mp}, α = K1 ∧ · · · ∧Km, γ = M1 ∧ · · · ∧Mp, defined
on a complete transaction set T. Obviously, using logical connectives indefinite
number of formulas can be built up from α and γ. From Tab. I one can easily
see that all these formulas are members of 16 classes of equivalence such that any
two formulas in the same class are logically equivalent and any two formulas from
different classes are not. Any formula inside the class can represent the class and
its validity in T can be easily computed from parameters a, b, c, d of the association

α γ α
∧
¬
α

α
∧
γ

α
∧
¬
γ

α ¬
α
∧
γ

γ α
̸=

γ

α
∨
γ

¬
α
∧
¬
γ

α
≡

γ

¬
γ

α
∨
¬
γ

¬
α

α
⊃

γ

¬
α
∨
¬
γ

α
∨
¬
α

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

va
li
d
it
y

0 a b a
+

b

c a
+

c

b
+

c

a
+

b
+

c

d a
+

d

b
+

d

a
+

b
+

d

c
+

d

a
+

c
+

d

b
+

c
+

d

1

Tab. I Classes of equivalence of formulas built up from α and γ of the association
rule α ⇒ γ.
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table AX⇒ Y . For example all formulas of the class represented by formula α ⊃ γ
have validity equal to [α ⊃ γ]T = a+ c+ d. The sufficient and necessary condition
for a formula from this class to be valid in whole transition set T is a+ c+ d = 1.
Obviously, the equivalent condition to the previous one is b = 0.

Theorem 1 Assume an association rule X ⇒ Y , where X = {K1, . . . ,Km},
Y = {M1, . . . ,Mp}, α = K1 ∧ · · · ∧Km, γ = M1 ∧ · · · ∧Mp, defined on a complete
transaction set T . Let X ⇒ Y has confidence cf, support sup and consequent
coverage covY . Then validity in T of any formula built up from α and γ by means
of logical connectives can be evaluated using sup, cf and covY .

Proof The validity of any formula that has been built up from α and γ can be
evaluated from parameters a, b, c, d of the association rule X ⇒ Y according to
Tab. I. Values of a, b, c, d can be evaluated from sup, cf and covY according to
Lemma 2. �

Example 1 Assume a set of patients described with 7 properties HD, LD, SBP,
DBP, OLD, FAT, IM with the following meaning.

HD... Patient has high level of high density cholesterol.
LD... Patient has high level of low density cholesterol.
SBP... Patient has high value of systolic blood pressure.
DBP... Patient has high value of diastolic blood pressure.
OLD... Patient is older than the given age (e.g. 60 years).
FAT... Patient’s body mass index BMI is greater than 30.
IM... Patient suffered from myocardial infarction in the next 2-years period

after examination.

We can consider the patients being realizations of a generic patient. Generic
patient here constitutes world Ω and particular patients constitute realizations of
world states. Suppose we have at our disposal 10 patients with descriptions given
in Tab. II.

Patient Patient’s description
T1 HD LD SBP ¬DBP OLD FAT IM
T2 ¬HD LD SBP DBP OLD FAT IM
T3 ¬HD LD SBP ¬DBP OLD FAT IM
T4 HD LD ¬SBP ¬DBP OLD FAT ¬IM
T5 ¬HD ¬LD SBP ¬DBP ¬OLD ¬FAT ¬IM
T6 ¬HD LD SBP ¬DBP OLD FAT ¬IM
T7 ¬HD LD SBP DBP ¬OLD FAT IM
T8 ¬HD LD SBP DBP OLD ¬FAT IM
T9 ¬HD ¬LD SBP ¬DBP ¬OLD ¬FAT ¬IM
T10 ¬HD LD SBP DBP OLD FAT ¬IM

Tab. II Small patient database that constitutes complete transaction set.
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From the point of view of association rule theory the properties constitute item-
set I = {HD,¬HD,LD,¬LD,SBP,¬SBP,DBP,¬DBP,OLD,¬OLD,FAT ,
¬FAT , IM,¬IM} and patient’s descriptions T1, . . . , T10 complete transaction set
T that contain 10 transactions.

Formula LD ∧ OLD ∧ FAT ⊃ SBP is not valid only in T4 and therefore
[LD ∧ OLD ∧ FAT ⊃ SBP ]T = 0.9. From Tab. II we see that association rule
X⇒Y , X = {LD,OLD,FAT}, Y = {SBP} has support sup = 0.5 and confidence
cf = 5/6 = 0.83. According to Lemma 3 the probability estimate of validity of the
formula LD ∧OLD ∧ FAT ⊃ SBP is

[LD ∧OLD ∧ FAT ⊃ SBP ]T = 1 + sup− sup

cf
= 0.9.

On the base of the Tab. II also association table AX⇒Y = (a, b, c, d) can be estab-
lished and we are getting AX⇒Y = (0.5, 0.1, 0.4, 0). From Tab. I we will get the
same value of the formula probability estimate

[LD ∧OLD ∧ FAT ⊃ SBP ]T = a+ c+ d = 0.9.

As another example let us take formula LD∧¬HD∧SBP ⊃ IM. It is not valid
only in the states T6 and T10 and therefore [LD ∧ ¬HD ∧ SBP ⊃ IM ]T = 0.8.
The association rule X ⇒ Y,X = {LD,¬HD,SBP}, Y = {IM} has support
sup = 0.4 and confidence cf = 2/3 = 0.66 (see Tab. II). Therefore

[LD ∧ ¬HD ∧ SBP ⊃ IM ]T = 1 + sup− sup

cf
= 0.8.

The association table of this rule is AX⇒Y = (0.4, 0.2, 0.1, 0.3) and therefore ac-
cording to Tab. I

[LD ∧ ¬HD ∧ SBP ⊃ IM ]T = a+ c+ d = 0.8.

3. Confidence Intervals

Assume that [α]T is validity of a formula α in a complete transaction set T. Suppose
that transaction set T has N transactions that are interpreted as states of world
Ω. If we take [α]T as an estimate of the probability that formula α is valid in
randomly chosen world state ω ∈ Ω, how accurate this estimate can be?

For answering this question we shall use the standard statistical technique of
confidence intervals. Assume [α] be the probability that α is valid in the world Ω
and let r be the number of transactions in which α is valid. The random variable
X that takes r as its value follows Binomial distribution Bi(N, [α]) with mean

µX = N [α]

and standard deviation
σX =

√
N [α](1− [α]).

If N [α](1 − [α]) ≥ 5 the Binomial distribution is very well approximated with
Normal distribution and the confidence interval for X is µX ± zcσX , where zc
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is the constant that defines the width of the smallest interval about the mean
that includes 100c% of the total probability mass under the bell-shaped Normal
distribution (e.g. for c = .95 the value is zc = 1.96). If we take [α]T as an estimator
of [α] we are getting

µ̃X = N [α]T ,

σ̃X =
√
N [α]T (1− [α]T ).

The variable X takes r as its value and its confidence interval is

N [α]T ± zc
√
N [α]T (1− [α]T )

Obviously, the confidence interval of the random variable that takes as its value
[α] = r/N is

[α]T ± zc

√
[α]T (1− [α]T )

N
. (11)

In Example 1 the transaction set T is too small so that the confidence intervals
of considered formulas might be evaluated. E.g. for formula LD ∧OLD ∧ FAT ⊃
SBP we have

N [α]T (1− [α]T ) ∼= 0.9 ≪ 5.

4. Associations Rules Interpreted as Implications

Association rules are used in data mining to support expert decision-making. To-
day’s models of expert decision-making used in the field of artificial intelligence
suppose that the expert knowledge can be decomposed into small peaces or chunks,
which can be expressed as IF-THEN rules [7]. IF-THEN rules are then interpreted
as implications, i.e. from validity of the assertion in the IF part of the rule the
validity of the assertion in the THEN part of the rule is deduced. Therefore in data
mining the interpretation of an association rule as implication α ⊃ γ is the mostly
appealing.

If we assume sufficiently large N and cf ∼= 1, then from (8) and (9) we are
getting

[α ⊃ γ] ∼= [α ⊃ γ]T = 1 + sup− sup

cf
∼= 1,

[α] ∼= [α]T =
sup

cf
∼= sup.

Thus association rule α ⇒ γ that has cf ∼= 1 and large support sup can be in natural
way interpreted as implication α ⊃ γ that is valid with probability [α ⊃ γ] ∼= 1 and
that can be often used for deducing consequent. Often here means with probability
[α] ∼= sup.

To search for acceptable association rules using systematic passing through all
possible states of the world Ω would be, for large number of literals contained
in the association rule, too time-consuming. Nevertheless, we can use efficient
Agrawal’s algorithms [1] for searching of association rules with great support. These
algorithms retrieve association rules with sup ≥ supmin and afterwards they check
their confidence cf and retain only those with cf ≥ cfmin. According to (8) and
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(11) found association rules can be interpreted as implications α ⊃ γ that are valid
in the world Ω with probability

[α ⊃ γ]T ± zc

√
[α ⊃ γ]T (1− [α ⊃ γ]T )

N
, where [α ⊃ γ]T = 1 + sup− sup

cf
(12)

and according to (9) and (11) their antecedents are valid in Ω with probability

[α]T ± zc

√
[α]T (1− [α]T )

N
, where [α]T =

sup

cf
. (13)

5. Information Content of a Logical Formula

Assume a world Ω and P = {P1, P2, . . . , Pm} a set of properties describing world
states ω ∈ Ω. Thus world Ω can be in one of n = 2m states ω1, . . . , ωn. Denote
p = {pi} the true probability distribution of world states. Clearly, each state ωi

can be unequivocally described with the conjunction

αi = L1 ∧ · · · ∧ Lm, (14)

where for all j = 1, . . . ,m Lj = Pj if the world state ωi has the property Pj or
Lj = ¬Pj otherwise.

For an arbitrary formula β that consists of predicates from P we define its
spectrum

Iβ = {i ∈< 1, 2m >: β is valid in the world state ωi}. (15)

Obviously,

β ≡ ∨
i∈Iβ

αi. (16)

Theorem 2 Let Ω be a world with true probability distribution p = {pi} of its
world states ωi. Let the present knowledge about world Ω can be described by a
probability distribution {qi}, qi > 0 if pi > 0. Let the following formula

β ≡ ∨
i∈Iβ

αi, where Iβ is spectrum of β,

be valid in Ω with probability 0 < [β] < 1. Assume that the distribution {qi} is
updated to {q̃i} according to the following equations

q̃i =
[β]∑

i∈Iβ

qi
qi if i ∈ Iβ , (17)

q̃i =
(1− [β])∑
i/∈Iβ

qi
qi if i /∈ Iβ . (18)
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Then the following assertions are valid:

1. {q̃i} is a probability distribution. Moreover q̃i < 1 for all i and q̃i > 0 if
pi > 0.

2. D(p∥q)−D(p∥q̃) = D(r∥s), where r and s are probability distributions

r = {r1, r2}, s = {s1, s2}, r1 = [β], r2 = (1− [β]), s1 = A, s2 = (1−A), A =
∑
i∈Iβ

qi.

(19)
Here D(p∥q) measures the difference between probability distributions {pi} and
{qi} and is known as information (or Leibler-Kullback) divergence

D(p∥q) =
∑
i

pi log
pi
qi
, (20)

where p log p/q = 0 if p = 0, q ≥ 0 and p log p/q = ∞ if p > 0, q = 0 (see for
example Cover [8]).

Proof

1. If [β] > 0, then
∑
i∈Iβ

pi > 0. Hence, for some j ∈ Iβ must be pj > 0 and

consequently qj > 0. Thus
∑

i∈Iβ
qi > 0 holds. If [β] < 1, then

∑
i/∈Iβ

pi > 0.

Hence, for some j /∈ Iβ must be pj > 0 and qj > 0. Thus also
∑

i/∈Iβ
qi > 0

holds. From (17) and (18) we see that q̃i is defined for all i and that for all i
0 ≤ q̃i < 1 must hold.

Denote A =
∑

i∈Iβ
qi and (1−A) =

∑
i/∈Iβ

qi. Then

∑
i

q̃i =
∑
i∈Iβ

[β]

A
qi +

∑
i/∈Iβ

(1− [β])

(1−A)
qi = [β] + (1− [β]) = 1.

Thus {q̃i} is a probability distribution. Moreover, theorem assumption that
qj > 0 if pj > 0 together with (17), (18) yields that q̃i > 0 if pi > 0.

2. Let us put A =
∑
i∈Iβ

qi Then

D(p∥q̃) =
∑
i

pi log
pi
qi

=
∑
i∈Iβ

pi log
Api
[β]qi

+
∑
i/∈Iβ

pi log
(1−A)pi
(1− [β])qi

=

=
∑
i∈Iβ

pi log
A

[β]
+
∑
i∈Iβ

pi log
pi
qi

+
∑
i/∈Iβ

pi log
pi
qi

+
∑
i/∈Iβ

pi log
(1−A)

1− [β]
.

Since
∑
i∈Iβ

pi = [β] and
∑
i/∈Iβ

pi = 1− [β] hold, we are getting

D(p∥q̃) = D(p∥q) + [β] log
A

[β]
+ (1− [β]) log

1−A

1− [β]
=

= D(p∥q)− ([β] log
[β]

A
+ (1− [β]) log

1− [β]

1−A
) = D(p∥q)−D(r∥s),

where r, s are probability distributions (19). �
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Theorem 3 Assume Ω be a world with true probability distribution of its states
p = {pi}. Let the present knowledge about world Ω be described by a probability
distribution q = {qi}, qi > 0 if pi > 0. Let a formula β be valid in Ω with probability
[β] = 1 and let A =

∑
i∈Iβ

qi. Assume that the distribution {qi} is updated to {q̃i}

according to the following equations

q̃i =
qi
A

if A < 1 and i ∈ Iβ , (21)

q̃i = 0 if A < 1 and i /∈ Iβ . (22)

Then the following assertions are valid:

1. q̃ = {q̃i} is a probability distribution and q̃i > 0 if pi > 0.

2. D(p∥q̃) = D(p∥q) + logA

If A = 1, then the knowledge of [β] cannot be used for refinement of the current
probability distribution q. In this case we put q̃ = q.

Proof

1. Assume A < 1. Due to the assumption [β] = 1, there exists j ∈ Iβ such that
pj > 0. For this j qj > 0 must hold according to the Theorem’s assumptions.
Hence, A =

∑
i∈Iβ

qi > 0 and q̃i is defined for all i. Moreover, 0 ≤ q̃i ≤ 1 for

all i and
n∑

i=1

q̃i =
∑
i∈Iβ

qi
A = 1. Hence, q̃ = {q̃i} is a probability distribution.

If pi > 0, then qi > 0 and i ∈ Iβ holds due to [β] = 1. Then the value q̃i is
evaluated according to (21) and therefore also q̃i > 0.

2.

D(p∥q̃) =
∑
i∈Iβ

pi log
Api
qi

+
∑
i/∈Iβ

pi log
pi
q̃i
.

Since [β] = 1, pi = 0 must hold for all i /∈ Iβ . Consequently, the second sum
in the preceding equation must be zero and we are getting

D(p∥q̃) =
∑
i∈Iβ

pi log
Api
qi

=
∑
i∈Iβ

pi log
pi
qi

+
∑
i∈Iβ

pi logA = D(p∥q) + logA.

�

The amount of information inherent in a formula β may be defined as follows.

Definition 2 Assume that Ω is a world with the true probability distribution of
its world states p = {pi}. Let the present state of knowledge be q = {qi}, qi > 0 if
pi > 0 and let a formula β be valid in Ω with probability [β] > 0. Then the amount
of information contained in β is defined as

I(β, q) = D(p∥q)−D(p∥q̃), (23)
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where the distribution update q̃ is defined according to the Theorem 2 if [β] < 1
or according Theorem 3 if [β] = 1.

Theorem 4 Assume a world Ω with the true probability distribution p = {pi} of
its world states ωi. Assume further that the current knowledge about Ω is given
by means of probability distribution q = {qi}, qi > 0 if pi > 0. Assume that β
and γ are two formulas valid in Ω with probabilities [β] and [γ]. Let qβ , qγ be two
probability updates of distribution q based on the known probabilities [β] and [γ]
respectively. Then the following assertions hold.

1. I(β, q) = ([β] log [β]
A + (1− [β]) log 1−[β]

1−A ), if 0 < [β] < 1. (24)

2. I(β, q) = − logA, if [β] = 1, A < 1. (25)

3. I(β, q) = 0, if [β] = 1, A = 1. (26)

4. I(β, q) is non negative.

5. If I(β, q) ≥ I(γ, q), then D(p∥qβ) ≤ D(p∥qγ), i.e. the qβ update is closer to
the true probability distribution p than qγ .

The symbol A that occurs in theorem items 1-3 is defined A =
∑
i∈Iβ

qi.

Proof Assertions 1–3 simply follow from the Theorem 2 and 3. Assertion 4 follows
from Theorem 2 and 3 and from the fact that both expressions − logA and D(r, s)
are nonnegative. To prove Assertion 5 assume I(β, q) ≥ I(γ, q). According to
Definition 2 we have

I(β, q) = D(p∥q)−D(p∥qβ),

I(γ, q) = D(p∥q)−D(p∥qγ).

Therefore
D(p∥qγ)−D(p∥qβ) = I(β, q)− I(γ, q) ≥ 0.

�
Notice that I(β, q) can be computed using only [β] and q. The soundness

of the just defined measure stems from the fact that according to the Theorem
4 the more informative formula enables to get more precise estimate of the true
probability distribution p of the world states.

If β consists of only some predicates from P = {P1, . . . , Pm}, i.e. if β consists
of Pj1, . . . , Pjp ∈ P, p < m, we can instead of world Ω consider the restrict world
Ω′, the states ω′

i of which are described only with predicates Pj1, . . . , Pjp. Then
the spectrum of a formula β is

I ′β = {i ∈ ⟨1, 2p⟩ : β is valid in the world state ω′
i}.

Obviously probability distribution {q′i} is a marginal distribution of the probability
distribution {qi} and the following holds

A′ =
∑
i∈I′

β

qi
′ =

∑
i∈Iβ

qi = A.
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Example 2 Assume that world states ωi of a world Ω are characterized with
properties P = {P1, P2, P3, P4}. Let β = (P1 ∧ (P3 ∨ ¬P4)) be a formula. Let
a current knowledge about world be given by probability distribution q = {qi}
defined in the Tab. III.

Then from the Tab. III we can see that

A =
∑
i∈Iβ

qi = q9 + q11 + q12 + q13 + q15 + q16 =

= 0.504 + 0.2016 + 0.0864 + 0.0336 + 0.1344 + 0.0576 = 0.564

αi P1 P2 P3 P4 qi P1 ∧ (P3 ∨ ¬P4)
α1 0 0 0 0 .0336 0
α2 0 0 0 1 .0144 0
α3 0 0 1 0 .1344 0
α4 0 0 1 1 .0576 0
α5 0 1 0 0 .0224 0
α6 0 1 0 1 .0096 0
α7 0 1 1 0 .0896 0
α8 0 1 1 1 .0384 0
α9 1 0 0 0 .0504 1
α10 1 0 0 1 .0216 0
α11 1 0 1 0 .2016 1
α12 1 0 1 1 .0864 1
α13 1 1 0 0 .0336 1
α14 1 1 0 1 .0144 0
α15 1 1 1 0 .1344 1
α16 1 1 1 1 .0576 1

Tab. III States of the world Ω.

Let us restrict the initial world Ω to world Ω′ with predicates P1, P3, P4 only.
Then the probability distribution {q′i} of states of the restricted world Ω′ is given
in the Tab. IV. Clearly,

q′5 = q9 + q13 = 0.084

q′7 = q11 + q15 = 0.336

q′8 = q12 + q16 = 0.144

A′ =
∑
i∈I′

β

qi
′ = q′5 + q′7 + q′8 = 0.084 + 0.336 + 0.144 = 0.564

6. Information Content of an Association Rule

Assume as in paragraph 2 that transactions T ∈ T consist of items describing states
ω of some world Ω. More precisely, assume that each transaction T = {L1, . . . , Lm}
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α′
i P1 P3 P4 q′i P1 ∧ (P3 ∨ ¬P4)

α′
1 0 0 0 .056 0

α′
2 0 0 1 .024 0

α′
3 0 1 0 .224 0

α′
4 0 1 1 .096 0

α′
5 1 0 0 .084 1

α′
6 1 0 1 .036 0

α′
7 1 1 0 .336 1

α′
8 1 1 1 .144 1

Tab. IV States of the restricted world Ω′.

of a complete transaction set T determines an world state ω ∈ Ω that can be
unequivocally described with formula α = L1 ∧ · · · ∧ Lm. Assume further that
α ⇒ γ is a association rule defined on transaction set T. Then we define the
information content of an association rule α ⇒ γ as follows.

Definition 3 The information content of an association rule α ⇒ γ is defined as

I(α ⇒ γ) = I(α ⊃ γ, q∗), (27)

where q∗ = {q∗i }, q∗i > 0 is the probability distribution of world states that is de-
rived from the true probability distribution p = {pi} of world states under assump-
tion of statistical independence of world properties (i.e. properties that describe
world states). It means that if the state ωi has description αi = L1 ∧ · · · ∧Lr, then

q∗i = [L1] . . . [Lr], (28)

where [Lj ], j = 1, . . . , r is the marginal probability of Lj , induced by the true
probability distribution p.

The soundness of just defined information measure stems from the fact that
more informative association rule enables, provided it is interpreted in a natural
way as logical implication, to get more precise correction of the initial probability
distribution of world states, which has been obtained under likely false assumption
of statistical independence of world properties.

Marginal probabilities Lj can be easily estimated from the transaction set as
well as support sup and confidence cf of the association rule. Probability distribu-
tion q∗ = {q∗i } can be determined using (28). In paragraph 2 we have showed that
from support sup and confidence cf the estimate [α ⊃ γ]T of the probability that
formula α ⊃ γ is valid in randomly chosen world state can be evaluated using (8).
Eventually, information content of the association rule can be computed according
to the equations (24), (25), (26) respectively.

Example 3 Assume association rule LD∧OLD ∧FAT ⇒ SBP from Example 1.
From the Tab. II we see that the rule has support sup = 0.5, confidence cf = 5/6
and that estimates of marginal probabilities of predicates are [LD]T = 0.8, [OLD]T =
0.7, [FAT ]T = 0.7 and [SBP ]T = 0.9. The probability that formula LD ∧OLD ∧
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FAT ⊃ SBP is valid can be estimated from its confidence cf and support sup

[α ⊃ γ]T = 1 + sup− sup

cf
= 0.9

Our task is to evaluate the information content of the association rule according to
the Definition 3. Denote A =

∑
i∈Iα⊃γ

q∗i . Since ¬(α ⊃ γ) ≡ α ∧ ¬γ, we are getting

(1−A) =
∑

i/∈Iα⊃γ

q∗i =
∑

i∈I¬(α⊃γ)

q∗i =
∑

i∈Iα∧¬γ

q∗i .

Formula α∧¬γ ≡ LD∧OLD∧FAT ∧¬SBD is valid only in the one state, which
we denote ωk and which has description αk = LD ∧ OLD ∧ FAT ∧ ¬SBD. The
probability q∗k of this state is estimated from the transaction set

q∗k = [LD]T [OLD]T [FAT ]T (1− [SBP ]T ).

Therefore
1−A = q∗k = 0.8× 0.7× 0.7× 0.1 = 0.0392.

The information content of the association rule LD∧OLD∧FAT ⇒ SBP is then
evaluated according to (24)

I(LD ∧OLD ∧ FAT ⇒ SBD) = I(LD ∧OLD ∧ FAT ⊃ SBP, q∗) =

= 0.9 log
0.9

0.9608
+ 0.1 log

0.1

0.0392
= 0.0254.

In a similar way we may calculate the information content of the association rule
LD∧¬HD∧SBP ⇒ IM. The support and the confidence of this rule are sup = 0.4
and cf = 2/3 and marginal probabilities estimates are [LD]T = 0.8, [HD]T = 0.2,
[SBP ]T = 0.9 and [IM ]T = 0.5 (see the Tab. II). The estimate of probability
that formula LD ∧¬HD ∧SBP ∧¬IM is valid can be evaluated from sup and cf
according to (8) and it equals to 0.8.

Consequently, the value 1 − A and the information content of the association
rule are

1−A = 0.8× 0.8× 0.9× 0.5 = 0.288,

I(LD ∧ ¬HD ∧ SBP ⊃ IM, q∗) = 0.8 log
0.8

0.712
+ 0.2 log

0.2

0.288
= 0.0203.

Thus the information content of association rule LD ∧ OLD ∧ FAT ⇒ SBP is
about 25% greater than the information content of the association rule

LD ∧ ¬HD ∧ SBP ⇒ IM.

7. Conclusion

In the paper a quantitative measure of “informativeness” of association rules has
been introduced. The measure can be used if the underlying database model fulfills
the following conditions.
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1. The records in the database describe independently occurring states of a
world or a system.

2. The components of the records are values of binary properties of the world
states.

3. The records have fixed length and do not contain any missing values.

For example, database can be a database of inhabitants of a town district, a
database of clients of a bank, a database of medical patient records of some hospital
department etc. Components of records are supposed to be binary properties. Of
course, if some record component takes more values than two or if it takes real
values, then it can be converted into several binary components using binary coding.
If the database contains records with missing values, then those with missing values
must be discarded.

For evaluation of the introduced information measure I(α ⇒ γ) of an associa-
tion rule α ⇒ γ that contains r properties we need to know the following.

1. Probabilities q∗i of all world states, in which the implication α ⊃ γ is valid.
There are at maximum 2r such probabilities. They are to be evaluated under
assumption of independence of world properties from r marginal property
probabilities. The estimates of property probabilities can be easily obtained
from database. Having q∗i , we can simply compute constant A from Theo-
rem 4.

2. Probability [α ⊃ γ] that a formula α ⊃ γ is valid in the underlying world.
This probability can be easily estimated using confidence and support of the
association rule α ⇒ γ.

From constant A and from probability [α ⊃ γ] the information content of as-
sociation rule α ⇒ γ can be evaluated according to the Theorem 4. To be able to
interpret association rules in some plausible way, we are usually interested only in
association rules with less then several tens of properties. In this case the effective
evaluation of the constant A and then that of the information measure is quite
feasible.

The information content of an association rule has been defined under assump-
tion that no knowledge about dependence among properties describing world states
is at our disposal. However, it is not always the case. Sometimes some a priori
knowledge about the true distribution of world states might be available. For ex-
ample, consider a database of patient records. Then if in some record the property
“male” has value true, then in the same record the property “suffered from compli-
cated child delivery” must have value false. A priori knowledge of this kind often
reflects logic dependence that may exist among properties. This dependence may
be taken into consideration and it may be included into the definition of informa-
tion content of an association rule. To do it, we represent known logical dependence
with logical formula and then refine the initial probability distribution q∗, obtained
under assumption of independency, to distribution q̃ by means of equations (21)
and (22). According to Theorem 4, q̃ is a probability distribution and moreover, it
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is a real refinement, since the Kullback-Leibler divergence between q̃ and the true
probability distribution of states p is less then that between distributions q∗ and p.

For example, assume that logical dependence among properties may be ex-
pressed with implication α ⊃ γ. Assume that we have taken this piece of knowledge
into consideration and refined initial distribution q∗ into q̃. Since implication α ⊃ γ
is valid, confidence of the association rule α ⇒ γ must equal to 1. If its support were
sufficiently large, it might be mined by means of Agrawal’s algorithm. However, its
information content would be according to (26) I(α ⇒ γ) = I(α ⊃ γ, q̃) = 0. We
see that if we interpret an association rule in natural way as logical implication and
if the validity of this implication is a priori known and considered, then information
content of the association rule equals to zero. Putting it in another way, we are
getting intuitively reasonable result that in this case the association rule does not
yield any new information.

Introduced measure of “informativeness” of association rules enables us to focus
our attention on those association rules that mostly reflect regularities inherent
in the data. The interpretation of these association rules gives the largest hope
to obtain new interesting knowledge. However, the practical usefulness of the
introduced information measure may be proved only by means of its successful
applications.
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