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Abstract: The shortest path problem is an important issue in communication
networks which is used by many practical routing protocols. The aim of this paper
is to present an intelligent model based on Hopfield neural networks (HNNs) for
solving shortest path problem and implement that on Field Programmable Gate Ar-
rays (FPGAs) chips. The Cyclone Π–EP2C70F896C6 FPGA chip from ALTERA
Inc. is considered for hardware implementing and VHDL language is employed for
hardware description. The synthesizing results show the proposed architecture of
neuron is more efficient than relevant neuron model for chip area utilization and
consequently improving the maximum operating frequency and power consump-
tion. The proposed router core is employed to find shortest paths in ring, star
and mesh communication networks and the results demonstrate the efficiency and
superiority of proposed core.

Key words: Hopfield neural network, shortest path problem, FPGA implementation,
VHDL

Received: November 17, 2013 DOI: 10.14311/NNW.2014.24.013
Revised and accepted: April 18, 2014

1. Introduction

The key responsibility of the network layer in communication networks is the rout-
ing problem [1,2] which is considered as establishing paths from source nodes to
destination nodes in connecting demand matrix for different applications. There
are different metrics which are considered as the objective of routing protocols and
have important effects on the network performance and quality of service. The most
common used metric in routing protocols is the shortest-path attempting to find
the paths with minimum length. The main idea behind this metric is that using the
shortest-path will result in low end-to-end delays and low resource consumptions
[3].

The routing problem is a complex and multi-constraint problem which is consid-
ered as a NP-hard problem. Therefore intelligent and meta-heuristic optimization
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approaches and algorithms are employed by routing protocols such as genetic al-
gorithms [4], artificial bee colony [5], ant colonies [6], swarm optimization [7] and
neural networks [8] where the Hopfield neural network (HNN) is an interesting
approach [9] using energy functions for solving routing problem [10].

The HNNs proposed by Hopfield [11] have been successfully employed for prac-
tical issues such as modelling associative content addressable memories [12] for face
detecting and pattern recognition and solving NP-hard optimization problems like
travelling salesman problem (TSP) [13]. Furthermore, HNN is considered as an in-
teresting optimization tool for modelling and solving routing problems in wireless
and optical networks [14–17].

The hardware implementing of routing protocols for designing router and switch
devices and employing them in physical layer is an important designing issue. The
Application Specific Integrated Circuits (ASICs) and Field Programmable Gate
Arrays (FPGAs) chips are two considering implementing environments for digital
Hopfield neural networks models and applications. The ASICs are expensive with
less flexibility but FPGA chips offer more flexibility by ability of reprogramming
[18,19,20]. The FPGAs consist of thousands of logic gates and some configurable
logic blocks which make them an appropriate solution for prototyping the digital
circuits with dedicated architectures. The introduction of VHSIC Hardware De-
scription Language (VHDL) [21] provided a modelling and simulation environment
for fast prototyping digital circuits and systems on FPGA.

In this paper new hardware architecture of Hopfield neural network (HNN) for
solving shortest path problem in communication networks is presented where the
proposed architecture is suitable for implementing on FPGA chips.

The rest of paper is organized as follows: Section 2 presents mathematical model
and concepts of digital Hopfield neural networks. The HNN model of shortest path
problem is described in Section 3. The hardware implementing architecture and
issues are presented in Section 4. Simulation and synthesizing results are described
in Section 5 and finally the paper is concluded in Section 6.

2. Digital Hopfield Neural Network

This section describes the mathematical model of digital Hopfield neural network
for implementing on FPGA. The Hopfield neural network (HNN) is considered as a
recurrent and single layer neural network where output of each neuron is introduced
into the inputs of other neurons in network using feedback schemes, Fig. 1.

The dynamic model of each neuron which is used to update weight and output
is described as follows:

dXj(t)

dt
= −Xj(t)

τ
+

N∑
i=1

TijYi(t) + bj (1)

Yi = f(Xi) =
1

1− exp(−aiXi)
(2)

where Xj(t) is the internal state of j-th neuron and Yi(t) is the output of i-th
neuron in the network and i ̸= j. In this model, N is the number of neurons in the
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network, bj is the bias value of j-th neuron, τ is neural time constant, ai is the
i-th neuron gain and T is the network weight matrix which is a symmetric matrix
(Tij = Tji).

Furthermore, when the diagonal elements are zero (Tii = 0), and gain of neurons
is high (ai → ∞) the computational energy of network in stable states is described
as follows:

E = −1

2

N∑
i=1

N∑
j=1

TijYiYj −
N∑
i=1

biYi (3)

In terms of the network energy aspect, each neuron in network tends to reduct
total energy of network [22, 23], therefore the Equation (1) could be rewritten as
follows considering the Equation (3):

dXj(t)

dt
= −Xj(t)

τ
− ∂E

∂Yj
(4)

For digital implementing of Hopfield neural network on FPGA, a discrete model
of Equation (4) is required which is considered for time step ∆t. This Equation
is a recursive one and is suitable for digital hardware implementing using memory
elements:

Xj(k) = Xj(k − 1)−∆t× ∂E

∂Yj
(5)

The considered analytical model of digital Hopfield neural network always con-
vergences to stable states where output voltages of all neurons remain constant.

Fig. 1 Typical Hopfield neural network with N neurons.
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3. Hopfield Neural Network Model of Shortest
Path Problem

The routing problem is considered as a complex and multi-constraint problem
which is the main task of network layer in communication networks. Solving and
modelling routing problems require optimization of some cost functions which are
subjected to set of constraints. The cost functions may be considered as energy
functions which are suitable for modelling by neural networks to produce solutions
through minimizing energy functions [13].

3.1 Mathematical Model of Shortest Path Problem

The network topology is represented as a finite, directed, and weighted graph
G(N,L,W ) where N is the set of nodes, L is the set of connecting links in the
network. The links are denoted by their end nodes, e.g. link lo,e for o ∈ N as
origin and e ∈ N as ending nodes. The length of each link l ∈ L is represented
by a weighting function Wl ∈ W : L → R+ where R+ denotes the set of positive
integers. A connection request is specified by R(s,d) where s, d ∈ N are source and
destination nodes and the aim is to find shortest paths from source to destination
node.

In shortest path problem, every link has the different cost (length) and a short-
est path routing protocol selects the path that minimizes the total cost of data
propagation from source to destination.

The path Ps,d is considered as a sequence of nodes from source node s to
destination node d connected by links;

Ps,d ≡ {s, ni, nj , . . . , nk, d} ≡ {lsni , lninj , . . . , lnkd} (6)

The cost of each path is the sum of costs of all participating links in the path.

CPs,d
= Clsni

+ Clninj
+ · · ·+ Clnkd

(7)

The aim of shortest path problem is to minimize the cost of connecting path
between node pair (s, d) for all s, d ∈ N .

Minimize
{
CPs,d

}
∀s, d ∈ N (8)

3.2 Hopfield Neural Network Model of Shortest Path
Problem

For modelling shortest path routing problem using HNN, communication network
is represented by N×N adjacency matrix which shows network connectivity where
diagonal elements are removed [9]. Each element in the matrix is represented by
a neuron which is described by double indices (i, j) where the row subscript i and
the column subscript j denote node numbers, and a neuron at location (i, j) is
characterized by its output Yij that becomes 1 when the link from node i to node
j is used in the path and 0 otherwise.
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The dynamic model of a typical neuron at location (i, j) is described as follows:

dXij(t)

dt
= −Xij(t)

τ
+

N∑
k=1

N∑
l=1

TijklYkl(t) + bij (9)

Tijkl is connection weight between neuron at location (i, j) and neuron at
(k, l), bij is biases value of neuron at (i, j), an important matrix that is consid-
ered in the modelling is the K matrix where the Kij is 1 when the link from node
i to node j doesn’t exist in the path. In addition the cost of connecting link from
node i to node j is denoted by Gij as a finite real positive number. The cost of
not exist links is assumed to be zero. In order to solve the routing problem, using
the Hopfield model, first an energy function is defined whose minimization process
drives the neural network in to its lowest energy state. The stable state will corre-
spond to the routing solution. In this paper we use the same energy function given
in [9]. The energy function is constructed as follows:

E = z1E1 + z2E2 + z3E3 + z4E4 + z5E5 (10)

The energy terms are described as follows:

E1 =
1

2

N∑
i=1

∑
j=1

[1mm]j ̸=i

N
GijYij (11)

E2 =
1

2

N∑
i=1

N∑
j=1
j ̸=i

KijYij (12)

E3 =
1

2

N∑
i=1

∑
j=1
j ̸=i

N
Yij −

∑
j=1
j ̸=i

N
Yji


2

(13)

E4 =
1

2

N∑
i=1

∑
j=1
j ̸=i

N
Yij(1− Yij) (14)

E5 =
1

2
(1−Yds) (15)

In (10) the aim of Z1 term is to minimize the total cost of a path considering
the cost of existing links, the Z2 term prevents of non-existence links to be included
in the path. The Z3 term makes sure that if a node has been entered it will also
be used by a path. The Z4 term enforces that the state of the neural network
converges to a valid route with lowest energy value. The Z5 term is used to enforce
the construction of a path, which must originate from source node s and terminate
at destination node d.
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The network evolutes the internal activation to reduce the overall energy and
neurons update their state where ∂E/∂Y is calculated directly and is summation of
all energy terms. That is a discrete time-step approach for solving the differential
Equation that describes the connection between changes in activation and energy
terms [24]. The update Equation for a neuron is given by:

dX

dt
= −X

τ
−
(
z1
∂E1

∂Y
+ z2

∂E2

∂Y
+ z3

∂E3

∂Y
+ z4

∂E4

∂Y
+ z5

∂E5

∂Y

)
(16)

The differential equations for updating the neuron at location (i, j) are as follow:

∂E1

∂Y
=

1

2
Gij(1− δidδjs) (17)

∂E2

∂Y
=

1

2
Kij(1− δidδjs) (18)

∂E3

∂Y
=

N∑
k=1

[2mm]k ̸=i

(Yik − Yki)−
N∑

k=1
[2mm]k ̸=j

(Yjk − Ykj) (19)

∂E4

∂Y
=

1

2
(1− 2Yij) (20)

∂E5

∂Y
=

1

2
δidδjs (21)

where δij is the Kronecker-delta operator and is 1 when i = j and is 0 otherwise.
By substituting (16)–(20) in (15) and comparing the corresponding coefficients of
resulted Equation with (9) the connection weight and biases of HNN are as follows:

Tijkl = z4δikδjl + z3(δli + δjk − δik − δjl) (22)

bij = −z1
2
Gij(1− δidδjs)−

z2
2
Kij(1− δidδjs)−

z4
2

+
z5
2
δidδjs (23)

4. Hardware Architecture and Implementing
Issues

The hardware description and implementation of Hopfield neural network on FPGA
for solving shortest path problem involve some important issues which are described
in this section.

4.1 Neuron Architecture

The Hopfield neural network model of shortest path problem in a communication
network with N nodes is a combination of N × (N − 1) single neuron blocks.
Therefore designing of single neuron block is an important issue of designing Hop-
field neural network models. All neurons are synchronous circuits which update
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their internal states synchronously using (9) or (15). Fig. 2 shows typical hard-
ware architecture of single neuron blocks employed in Hopfield neural network. As
shown the ADD and MULTIPLY operations are two main operating blocks which
have important impacts on hardware resource utilization, operating frequency and
power consumption. Furthermore, four dimensional (4-D) arrays of Hopfield neural
network weights, described in (21), require many multipliers and adders for hard-
ware implementation of (9) [25–27]. Implementation of (15) reduces the number of
utilized resources that required in hardware implementation of HNN on FPGA.

Fig. 2 Typical hardware architecture of neuron.

New hardware architecture of neuron is depicted in Fig. 3 where the neuron up-
dates it’s output by energy evaluation equation. Input signals of neuron component
are initial state of neuron, X-initial , communication network graph information
indicated by graph signal, source and destination nodes, S node and D node ,
K matrix calculated during setup system, K signal, coefficients values of Hopfield
network that shown by z1, z2, z3, z4 and z5, output of all neurons that saved in a
register and known by HNN out , N row and N col signals that illustrate neu-
ron’s position among HNN neurons, ctrl and first cycle signals that generate by
controller unit block of Hopfield network setup, finally HNN out[N row][N col]
is output state signal of neuron. In the first operation stage (MAX ) loaded X sig
by X initial (when ctrl = ‘0’ and first cycle = ‘1’ ) that lead to first neuron’s
output state after passing activation function block next controller unit block
changes first cycle value to zero (first cycle = ‘0’ ).

Internal state of proposed neuron is updated using Equation (15) where needed
parts of equation are calculated by employing Y sig , N row , N col , S node,
D node, graph and K signals and are assigned to DE 1, DE 2, DE 3, DE 4
and DE 5 signals. In the next posedge clock (clk) DE s multiplying by corre-
sponding coefficient signals then summation of all results produces local voltage
variation of neuron, Delta X signal, finally Delta X plus to X sig (previous
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local voltage) and make X func (current local voltage) and the cycle continuous
until ctrl signal value change to zero by controller unit block (ctrl=’0‘ ).

Fig. 3 Hardware architecture of neuron.

4.2 Activation Function

One important issue of implementing neural networks on FPGA is introducing a
suitable architecture for computing activation functions. Many techniques have
been introduced in literature for evaluating such elementary or nearly-elementary
functions such as polynomial approximations, CORDIC algorithms, rational ap-
proximations, and table-driven methods.
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The combination of low order polynomials approximation and not very large-
scale look up table is an interesting method [28] using a piecewise linear approx-
imation function y = f(t) = m × t + h considering m and h parameters. If the
segments are chosen wisely, the sigmoid can be calculated using only shift and add
operations. However, this method has a limited accuracy, with no possibility for
improving (really by increasing degree of polynomial approximation to tow order
or further it can be improved a little). Using the nearly odd property of the ac-
tivation function, f(−t) = 1− f(t), the number of the segments can be decreased
to half of the desired range. The non-saturation range is between −8 and 8, so
the approximation segments only needs operate between 0 and 8. That requires
all 15 integer bits and all 16 fractional bits to be included in the computations.
Any numbers not in that range are considered to be in saturation and assigned
an output value of 1. Block diagram of implementing a typical piecewise linear
approximation function extracted from [29] is depicted in Fig. 4.

Fig. 4 Hardware architecture of activation function.

4.3 Number presentation

Another issue is determining the numerical precision format that allows an opti-
mum trade-off between precision and implementation areas. Standard single or
double precision floating-point representations minimize quantization errors while
requiring significant hardware resources. Less precise fixed-point representation
may require less hardware resources with more quantization errors. Implementing
a multi-layer perceptron (MLP) on FPGA using both fixed and floating point pre-
cision demonstrated that the fixed-point MLP implementation is 12 times faster
in speed, over 13 times smaller in area, and achieves far greater processing density
compared to the floating-point FPGA-based MLP [28]. In this paper numbers are
represented in 32-bit fixed-point fashion; 1 bit for sign part, 16 bits for integer part
and 15 bits for fractional part.
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5. Simulation and Synthesizing Results

This section presents the implementing schemes of digital HNN on FPGA which
is intended for real-time applications. The Cyclone Π-EP2C50F672C6 FPGA chip
from ALTERA Inc. is considered for hardware implementing and VHDL language
is employed for hardware description.

5.1 FPGA based HNN setup

The proposed architecture for FPGA implementation of Hopfield neural network
model for solving shortest path problem is shown in Fig. 5. The Controller unit
is considered as heart of system for generating internal data signals such as Ini-
tial state of neurons, S node, D node and Net parameter and controlling signals
(Ctrl and first cycle) for neurons operating. The Controller unit receives the in-
formation of Source and Destination nodes, the network Graph information and
synchronizing clock (clk) for starting the operating of hardware neurons core in
Hopfield network block after receiving an Enable signal. The Hopfield network
block consists of N × (N − 1) single hardware neurons for modelling shortest path
problem in communication networks with N nodes. Here we consider two different
models of neurons; a typical model shown in Fig. 2 and a new optimized model
shown in Fig. 3. The two different models of neurons are employed in different
experiments for a comparison study on hardware utilization, power utilization and
maximum operating frequency.

After getting the information of communication network such as number of
nodes and connecting link costs normalized in the range of [0, 1] then the required
parameters are calculated considering the number of nodes in communication net-
work and required neurons in Hopfield network. The HNN starts its operation,
then Controller unit starts network operation by determining neurons initial states
and assigned ctrl and first cycle signals to one, when the HNN starts its operation
and it’s neuron output calculate for first time first cycle signal value is changed to
zero then the HNN operation continues until network reach to a stable state when
further iterations do not change the output value of neurons (when ctrl=‘0’).

5.2 Experimental examples

To evaluate the proposed architecture a network topology shown in Fig. 6 is con-
sidered. The proposed network consists of 4 nodes and 5 links. The shortest path
between node pair (0, 2) is proposed where S = 0 and D = 2. The HNN model of
proposed network includes 12 neurons. Initial state of all neurons is randomly con-
sidered in the range of [0,1], constant τ for all neuron is unit, τ = 1, and the other
network parameters are considered as follows; z1 = 950, z2 = 2500, z3 = 1500,
z4 = 475, z5 = 2500, ∆t = 10−5.

As shown in Fig. 6, the path P0,2 = {0, 1, 2} was found by HNN as the shortest
path and the cost (length) of shortest path is CP0,2 = 0.875 which the minimum
between the cost of all possible paths. Fig. 7 shows the timing diagram. As shown
after 2558 iterations the shortest path was found.

As a comparison study, the performance of proposed neuron shown in Fig. 3
is compared by the typical neuron, Fig. 2, for interesting hardware implementing
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Fig. 5 The block diagram of implemening Hopfield neural network for solving short-
est path routing problem.

Fig. 6 4-node network topology test-bench.

issues. The results are described in Tab. I. As shown proposed architecture uses 19%
and 2% of total logic elements and registers respectively where typical architecture
uses 38% and 7% of logic elements and registers. The typical architecture use all
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multipliers on FPGA chip, 100%, where proposed architecture uses just 32% of
multipliers which means 68% register saving.

The performance of proposed HNN architecture was also evaluated for two
main important topologies; the ring topology (6 nodes, 6 links, node degree 2) and
the star topology (6 nodes, 6 links, node degree 2), shown in Fig. 8 and Fig. 9
respectively. These topologies were considered as many applications use these
practical topologies and other complex mesh networks could be considered as a
combination of some star and ring topologies. In ring topology, the shortest path
between node pair (1, 3) is proposed where the path P1,3 = {1, 2, 3} was found by
HNN as the shortest path and the cost (length) of shortest path is CP1,3 = 1.5
which the minimum between the cost of all possible paths. In star topology, the
shortest path between node pair (1, 3) is proposed where the path P1,3 = {1, 5, 3}
was found by HNN as the shortest path and the cost (length) of shortest path is
CP1,3 = 0.665 which the minimum between the cost of all possible paths.

Fig. 8 The ring network topology. Fig. 9 The star network topology.

Figs. 10 and 11 show the initial-state and steady-state timing diagrams of HNN
for Ring topology, respectively. As shown after 2914 iterations the HNN reached
the steady state. The timing diagram of HNN for Star topology is shown in Fig. 12
where after 2409 iterations the HNN reached the steady state. The hardware
utilization summary, maximum operating frequency and power dissipation for both
star and ring topologies are described in Tab. II. As shown in Tab. II both networks
have the same performance due to the same number of nodes and consequently the
same number of neurons. The energy evolution for both Star and Ring topologies
for finding shortest path between node pair (1, 3) is shown in Fig. 13.

To evaluate the proposed architecture on real-world communication networks,
the pan-European optical network [30] shown in Fig. 14 is considered. The network
includes 18 nodes and 35 connecting links. The shortest path between node pair
(5, 12) is proposed; S = 5 and D = 12. The HNN model for the pan-European
network includes 306 neurons.

Figs. 15(a), 15(b), 15(c) and 15(d) show the output state of all neurons versus
the number of iterations. The output of all neurons at initial state is shown in
Fig. 15(a) where all neurons begin their operation from 0.5 approximately. After
starting network operation, the output of neurons changes and some converge to
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Fig. 13 The energy evolution for both star and ring topologies.

Fig. 14 The pan-European network topology.

zero and the output of some others become greater than 0.5 to determine the
shortest path between source and destination nodes which has the minimum length,
shown in Figs. 15(b) and 15(c).

Fig. 15(d) shows the final state of all neurons where, instead of two neurons
representing source and destination nodes, two more neurons are in ON-situation
which are connecting inter-mediate nodes. All of these nodes and corresponding
links constitute required loop, and shortest path is generated from these links.
The path P5,12 = {5, 7, 3, 12} is considered as a sequence of nodes from source to
destination nodes connected by links.
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(a) (b)

(c) (d)

Fig. 15 Evolution of output state of all neurons in the HNN (a)-Initial state (b)-
After 200 iterations (c)-After 3000 iterations (d)-Steady state (After 10116 itera-

tions).

The timing diagram is shown in Fig. 16. The evaluation of the network overall
energy is presented in Fig. 17 where the energy of network is decreased versus the
number of iterations until network find the stable state and shortest path.

6. Conclusion

The Hopfield neural network is a recurrent and single layer neural network which is
suitable for modelling and solving routing problem in communication networks. In
this paper a digital hardware FPGA based implementation of Hopfield neural net-
work for solving shortest path problem in communication networks was proposed.
Modelling shortest path problem in a network with n nodes used n×(n−1) neurons
where states of neuron outputs were updated using energy evaluation functions.
The Cyclone Π-EP2C70F896C6 FPGA chip from ALTERA Inc. was considered
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Fig. 17 Energy evolution of pan-European network..

for hardware implementing and VHDL language was employed for hardware de-
scription. The results demonstrated that the proposed approach is efficient for
solving shortest path problem in communication networks. Furthermore, multi-
ple processing cores could be employed in parallel architectures for implementing
practical routing protocols and algorithms in large-scale networks.
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