
NEURAL NETWORK BASED

CRYPTOGRAPHY

Apdullah Yayık, Yakup Kutlu∗

Abstract: In this paper, neural network based cryptology is performed. The sys-
tem consists of two stages. In the first stage, neural network-based pseudo-random
numbers (NPRNGs) are generated and the results are tested for randomness us-
ing National Institute of Standard Technology (NIST) randomness tests. In the
second stage, a neural network-based cryptosystem is designed using NPRNGs. In
this cryptosystem, data, which is encrypted by non-linear techniques, is subject to
decryption attempts by means of two identical artificial neural networks (ANNs).
With the first neural network, non-linear encryption is modeled using relation-
building functionality. The encrypted data is decrypted with the second neural
network using decision-making functionality.

Key words: Artificial neural network, asymmetric cryptology, pseudo-random
number generator

Received: November 11, 2013 DOI: 10.14311/NNW.2014.24.011
Revised and accepted: April 14, 2014

1. Introduction

Cryptography uses mathematical techniques for information security. Information
security is now a compulsory component of commercial applications, military com-
munications and also social media implementation. This is a result of the many
threats and attacks that can be made to these networks by people with malicious
intent. Cyber-terrorists, crackers, hackers, so-called ’script kiddies’ and industrial
spies are all masters in the manipulation of information systems [17]. Cryptog-
raphy is, furthermore, the most significant part of communication security [3]. It
maintains the confidentiality that is the core of information security. Any cryptog-
raphy requires confidentiality, authentication, integrity and non-repudiation from
those authorized to have it. Authentication relates to the identification of two
parties entering into communication, while integrity addresses the unauthorized
modification of an element inserted into the system [23]. To date, there has been a
large number of studies intended to advance robust cryptosystems and use them in
communications. Some of these studies concerned the usage of neural networks in

∗Apdullah Yayık, Yakup Kutlu, Mustafa Kemal University, Department of Computer Engi-
neering, Turkey, E-mail: apdullahyayik@gmail.com, ykutlu@mku.edu.tr

c⃝CTU FTS 2014 177



Neural Network World 2/14, 177-192

cryptography. The concept of neural-based cryptography was first introduced by
Laurie in 1990 [15]. In 1993, neural networks’ weights were used as secret keys by
Tanrıverdi [28]. Neural cryptography applications were researched by Pointcheval
in 1994 [20]. Following this, a practical study of neural cryptography appeared in
1996 [24]. Cin also used neural networks for authentication [5]. A symmetric prob-
abilistic encryption scheme based on the chaotic attractors of neural networks was
studied by Guo et al. [11]. Chaotic neural encryption and decryption was studied
by Sue et al. [26]. The Hopfield network and its applications were studied by Chi-
Kwong and Cheng [4]. The implementation of an MLP network using its one-way
property in the hash function was investigated by Yee and Silva [33]. Karras and
Zorkadis presented an ANN-based technique to strengthen traditional generators
such as IDEA and ANS X.9. Neural network-based pseudo-random stream genera-
tors have also been evaluated [14]. Godhavari et al. applied neural synchronization
and shared weights values as a symmetric secret key in the DES algorithm [10].
Ruttor performed the neural synchronization of two tree parity networks with mu-
tual outputs by means of the hebbian learning rule; weight and bias values were
then used as a secret key [22]. Arvandi et al. presented an ANN-based symmet-
ric chipper method [3]. Sağıroğlu and Özkaya studied ANN security for electronic
communications with an algorithm developed by DELPHI, which uses ANNs as a
secret key [23]. Gnanam and Munukur presented a method that aimed to remove
the need for encoding to follow a general rule through use of ANNs. According
to Gnanam and Munukur, there is a way to decode the encrypted data. However,
the plain texts are encoded [17]. İlker and Kenan presented an ANN-based chaotic
generator to overcome the weakness of chaotic cryptosystems [7]. Sivagurunathan
presented a neural network that classifies chipper texts encrypted with Playfair,
Vigenere and Hill chipper [25]. Mohammad and Babak proposed an ANN-based
S-box design scheme [18]. Othman and Jammas developed stream chipper cryp-
tosystem software and hardware in FPGA, a pseudo-random number generator
designed using ANNs [19]. Yayık and Kutlu proposed a neural network model for
improving the randomness of a classical random number generator in 2013 [31].
Yayık and Kutlu proposed a neural network model for hash function that can be
used in electronic signature, in 2013 [30].Yayık and Kutlu proposed a neural net-
work model for asymmetric cryptosystem model that weights, bias and topology of
NN are shared between receiver and sender as secret key, in 2013 [32]. In this study,
a neural network-based pseudo-random number generator and a neural network-
based non-linear cryptosystem are developed. This study is implemented in five
chapters. The first chapter gives information about information security, cryptol-
ogy and existing literature. In the second chapter, the artificial neural network
(ANN), the advantages of neural networks for cryptology, pseudo-random number
generators, neural-based pseudo-random number generators and randomness tests
are all explained. In the third chapter, the implementation of neural cryptology
is explained step by step. In the fourth chapter, the results and conclusions are
given. Finally, in the fifth chapter, discussions are presented.

178



Yayık A., Kutlu Y.: Neural network based cryptography

2. Material and Methods

2.1 Artificial Neural Network

The human body renovates itself and generates a variety of reactions against the
incidents that occur during physical, biological or chemical changes, in order to
become used to them. The structures of this system, which complement with each
other, have inspired a great number of scientists. Variations occurring in our envi-
ronment are detected by neurons in our bodies, which are then transmitted to our
brains. The brain works as a decision-maker, alerting sub-systems to produce the
optimum reaction. In other words, the neuron system in the human body is a won-
derful structure that carries out sensing, decision-making and practicing functions
[6]. As in nature, connections between artificial neural networks determine the
network’s function. A new neural network can be designed by changing the con-
nections between elements (weights). The weights of this network can be changed;
in other words, the system can be trained until it obtains optimum output values
by using optimum input values [1]. Neural networks are, therefore, adjusted or
trained based on a comparison of the desired target and the output, until the net-
work output matches the target [12]. Multilayer perceptron (MLP) networks are
feed-forward and supervisor-training algorithm structures that have several middle
layers. In this network, a large number of training algorithms can be used. The
amount of neurons in the input, output and middle layers change according to
problems or complications, so that the number is defined by experience. In MLP
networks, error between expected and achieved target (output) value is minimized
by changing weights until a determined iteration number is reached [6].

2.2 Advantages of Neural Network for Cryptology

Neural networks’ most important property is their generalization capability. This
ability ensures they produce reasonable results when they are fed with inputs not
previously encountered. This makes them extremely useful for many applications.
Assuming that xk denotes inputs of a network and denotes targets of a network,
it is easy to compute yk from xk. But if target yk is different from input xk, it is
difficult to compute the input from the target. As a result of this property, hash
functions can be generated using ANNs.

yk = θ

 m∑
j=1

wkxi + bk

 (1)

The other important property of ANNs is parallel implementation. Each layer
is paralleled, so they can independently implement certain functionality. A special
property of neural networks is confusion, which is caused by the non-linear struc-
ture of networks. The output, therefore, depends on the input in non-linear and
complicated cases. Thus, it is not easy to define the exact input. As a result of
this confusion property, NNs could be preferable for cipher design [18].

179



Neural Network World 2/14, 177-192

2.3 Pseudo-Random Number Generators

Pseudo-random number generators (PRNGs) are deterministic functions. A state
is generally mapped to a new state x using an update function in order to gener-
ate pseudo-random data. Pseudo-random numbers are used in many fields; these
include stochastic physical and statistical simulation, computer science, cryptog-
raphy, etc. The resultant numbers cannot be said to be truly random on account
of the deterministic nature of these functions. Therefore, the primary aim of PRN
generation is to create truly random numbers which have statistically identical val-
ues [13, 16]. There are many studies in the literature on this subject. Vernam
invented a simple one-time pad in which the secret key is a sequence of randomly
generated hits [35]. PRNG is an algorithm used to generate a sequence of num-
bers which approximates the properties of randomness. The security of algorithms
which use PRNGs are based on the assumption that it is infeasible to distinguish
when a random sequence is being used and when a PRNG.

2.4 Neural-Based Pseudo-Random Number Generator

The neural network is a well-known method that has function approximation capa-
bilities. This makes ANNs a useful tool in many scientific disciplines. For example,
the over-fitting of an ANN could be used as a method for the generation of strong
pseudo-random bit sequences [14]. In this paper, an approach for creating effec-
tive random number generators for use in the security mechanisms of cryptology
is described. It is based on ANN techniques. Pseudo-random numbers that are
generated by a modified subtract with borrow generator [2] have a long period
sequence and are used as the inputs in a neural network structure. After training
with initial values (weights and bias), the reached output is called neural-based
pseudo-random number. A sequence of pseudo-random numbers is generated using
an ANN. They are evaluated by utilizing the statistical tests presented in the next
section.

2.5 NIST (National Institute of Standard Technology) Test
For Randomness

A statistical randomness test is developed to test a null hypothesis (H0) which
states that the input sequence is random. The test takes a binary sequence as an
input and ”accepts” or ”rejects” the hypothesis. Randomness tests are probabilis-
tic. There are two types of error: if the data is random and H0 is rejected, a type
I error has occurred; if the data is non-random and H0 is accepted, a type II error
has occurred. The probability of a type I error is called the level of significance
and is denoted by α. A statistical test produces a real number between 0 and 1
which is called p-value. If p value > α then H0 is accepted; otherwise it is rejected.
Therefore, the level of significance varies according to application. However, for
cryptographic applications it is usually set to 0.01 [27].

There are several statistical tests, such as the Diehard test suite [13], John
Walkers ENT [29], Test01 [29] and the NIST statistical test suite [21]. The NIST
statistical test suite is the most popular one. It was developed by the National
Institute of Standards and Technology. The NIST test suite is the preferred choice

180



Yayık A., Kutlu Y.: Neural network based cryptography

among these randomness tests because of its proven results and its popularity in
many studies [31, 27, 34, 8, 9]. Randomness is a probabilistic property. A random
sequence’s properties can be characterized in term of probability.

The NIST test suite [21] consists of 15 tests. It is used to test the randomness
of binary sequences. These binary sequences are generated by either a hardware-
or a software-based generator. The tests focus on a variety of different types of
non-randomness which could occur in a sequence. Some tests can be broken down
into a variety of subtests.

The tests can be separated into the following:
The Frequency Test: The goal of the test is to define whether zero and one

bits appear in the tested sequence with approximately the same probability. It is a
simple test that can show the clearest deviations from randomness. Further tests,
therefore, depend on this result [27].

Frequency Test Within a Block: This test is a generalization of the frequency
test. The frequency of zeros and ones within M-bit blocks is determined. It es-
tablishes whether zeros and ones are uniformly distributed throughout the tested
sequence [27].

Runs Test: The purpose of this test is to ascertain whether transitions between
zeros and ones in the sequence appear as frequently as expected, based on a random
sequence. The total number of runs of various lengths is counted. A run is an
uninterrupted sequence of identical bits [27].

Longest Run of Ones in a Block Test: The purpose of the test is to define
whether the length of the longest run of ones in a block is consistent with the length
expected, based on a random sequence. The sequence for this test is processed in
M-bit blocks [27].

Cumulative Sum Test: This test focuses on the maximal excursion (from zero)
of the random walk, which is determined by the cumulative sum of adjusted (-1,
+1) digits in the sequence. The aim is to define whether the cumulative sum of the
partial sequences is too large or too small, relative to the expected behavior of that
cumulative sum for random sequences. This cumulative sum may be considered as
a random walk. The excursions of the random walk should be near zero in order
to define a random sequence. The excursions of this random walk from zero will
be large in certain types of non-random sequences [21].

Discrete Fourier Test: This test focuses on the peak heights in the discrete
Fourier transform of the sequence. The purpose is to detect periodic features in
the selected sequence during testing. The tested sequence may show a deviation
from the assumed randomness. The aim of the test is to detect whether the number
of peaks exceeding the 95% threshold is significantly different than 5% [21].

3. Implementation of Neural Cryptology

In neural cryptology, two neural networks that have the same topology (layer size,
transfer function, neuron number in each layer, weight and bias values) can achieve
the same output when trained for the same input. In other words, two networks
which are trained on their mutual input can synchronize with mutual synaptic
weights. This has been applied in several studies [17, 3, 10, 22, 7, 18, 19, 35]. To
implement this ability for cryptosystems, two partners (receiver and sender) have

181



Neural Network World 2/14, 177-192

to share mutual topological data and chipper text as a secret key. In this study,
in order to decrypt, the ability to predict unforeseen situations using an artificial
neural network is utilized and a neural-based cryptosystem is constructed. There
are six steps in the proposed system: the input step; the neural-based pseudo-
random number; non-linear encryption; design of the neural network topology;
sending neural network topology and chipper text, and simulation of the neural
network and decryption. The first step is the input step in which data or files
including strings, numbers or punctuations are entered. In the next step, neural-
based pseudo-random numbers are generated and tested using NIST randomness
tests. The third step is non-linear encryption, which includes the processes of
converting plain text to ASCII codes, converting ASCII codes to binary codes,
mixing digit numbers of each string’s binary codes and mixing digit numbers of all
strings’ binary codes, in order to create neural-based pseudo-random numbers. In
this step, chipper text is created. The next step is designing the neural network
topology relating to neural-based pseudo-random numbers. The fifth step is the
sending neural network topology and chipper text. The final step is the simulation
of neural network and decryption. This entails designing the topological neural
network using sent data, simulating chipper text with sent weights and bias and
converting output first to decimal numbers and then to strings or punctuations.
The flowchart of the proposed system is depicted in Fig.1.The details of the neural-
based cryptology system are described in the following subsections.

3.1 Generating Neural Based Pseudo-Random Numbers

The aim is to improve the randomness of the random numbers generated by any
algorithm using an NN. In order to improve pseudo-random numbers via a neu-
ral network, random numbers are generated by a modified subtract with borrow
algorithm in MATLAB. The random numbers generated by the modified subtract
with borrow algorithm are tested for randomness by NIST. Then, these random
numbers are used as input values, initial weight, bias values and the neuron num-
ber of hidden layers. The network’s output values are evaluated without training.
The output values of the NN are neural network-based pseudo-random numbers.
Therefore, the algorithm can be called a neural-based pseudo-random numbers gen-
erator (PRNG). The random numbers generated by the NN-based pseudo-random
numbers generator are also tested for randomness by NIST. The results are shown
in Chapter 4. The proposed neural-based PRNG stages are simulated in Fig. 2.
These improved random numbers will be used to construct the cryptosystem.

3.2 Non-Linear Encryption

Plaintext is divided into blocks and the American Standard Code for Information
Interchange (ASCII) values of each block is calculated. These numbers are con-
verted to 7-bit binary forms. Then non-linear encryption is applied to the binary
form of plaintext. Each block’s local digit number is mixed with itself as shown in
Fig. 3. Then, all of the digits are mixed generally as shown in Fig. 4, for a random
number of iterations, like shuffling playing cards. This shuffling is carried out using
the neural-based random number generator.

182



Yayık A., Kutlu Y.: Neural network based cryptography

Fig. 1 Flowchart of proposed neural cryptosystem.

Fig. 2 Neural network based pseudo-random number generator.

183



Neural Network World 2/14, 177-192

Fig. 3 Local mixing of each strings’ binary codes as random times.

Fig. 4 Global mixing of all strings binary codes together as random times.

184



Yayık A., Kutlu Y.: Neural network based cryptography

3.3 Designing Neural Network Topology

Cryptography is the practice and study of hiding information through techniques
based on randomness. So, in neural cryptology, the ANN has to be a form of random
topology. In this study, the structure of networks changes randomly. It means that
the layer size and neuron numbers of each layer are generated by the neural-based
pseudo-random number generator for each network structure. The training and
transfer functions of the network are also selected randomly. A four-layer ANN
with random topology is depicted in Fig. 5. Its input value is chipper text that is
encrypted by non-linear encryption described in chapter 3.2. The neuron numbers
of the layers are generated by the NN-based pseudo-random number generator.
The transfer functions and training algorithms are also selected according to the
NN-based pseudo-random number generator.

Fig. 5 Designed random topological neural network.

3.4 Sending NN Topology and Chipper Text

The steps described above are carried out in order to defend encrypted text from
cryptanalysts and provide secure communication. The input weights, hidden layer
weights, neuron numbers for each layer, information about transfer function and
information about training functions are sent in a format that can only be under-
stood by the receiver, in a secure channel. Thus, neural network topology and
chipper text are sent to the receiver.

3.5 Simulating Neural Network and Decrypting

The receiver designs a new neural network which is almost a replica of the sender’s.
By simulating chipper text values using sent weight and bias values with the new
neural network, the receiver achieves the ASCII values of plain text’s binary codes.
Then, the binary codes are converted to the ASCII values. The ASCII values are
then converted to strings. Finally, the receiver will be able to create plaintext after
combining these strings side by side.

185



Neural Network World 2/14, 177-192

3.6 Prepared Interfaces of Neural Cryptosystem

Using the proposed algorithm, the neural network-based crypto-tool is developed
in MATLAB graphical user interface (GUI). Fig. 6 shows the prepared interfaces
of the advanced cryptosystem. The user’s initial log-in screen is shown in Fig. 6(a).
End users are allowed to access restricted services or to access all the properties
as system administrators. Then the end user decides the type of encryption: real-
time encryption or file encryption, as shown in Fig. 6(b). In Fig. 6(c), the user
decides to encrypt or to decrypt for the purposes of file encryption. Text files in
any folder of a PC can be browsed and encrypted easily, producing an encrypted
file. Encryption time and ANN topology can also be seen, subject to authorization.
The encrypted file can be sent as an e-mail attachment using Simple Mail Transfer
Protocol (SMTP) across Internet Protocol (IP) networks, as shown in Fig. 6(e).
The real-time encryption module is shown Fig. 6(d). It can be used for any chat
room or real-time conversation tool, such as Line, WhatsApp, Facebook or Twitter.

4. Results and Conclusion

Neural-based pseudo-random numbers and traditional pseudo-random numbers
were explained in Chapter 3 and tested with NIST randomness tests. These tests
are believed to be useful in detecting deviations of a binary sequence from random-
ness [21]. The results of the randomness tests are shown in Tab. I and Tab. II. In
Tab. I, the randomness test results and the details of NN-based PRNGs are ex-
plained. The proposed NN-based PRNG successfully passed the test, as described
in Tab. I. In Tab. II, results for the randomness of numbers generated by a mod-
ified subtraction with borrow random number generator are shown. Frequency
test, runs test, longest run of ones in a block test and cumulative sum test were all
failed. The other tests were passed. Comments on the passed test are described in
Tab. II and the failure results are explained below. The frequency frequency test
is the first randomness testing step. It defines whether zero and one bits appear
in the tested sequence with approximately the same probability. Clearly, classic
RNGs could not pass the basic randomness test. Indeed, there is no need to analyze
other tests when the frequency test is failed [21]. Furthermore, 0.000233 p value (>
0.01) describes the correlation between zeros and ones in the sequence. However,
pseudo-random number sequences must not be in correlation with each other. The
runs test defines whether or not transitions between zeros and ones in the sequence
appear as frequently as expected in a random sequence. 0.000212 p value (> 0.01)
indicates that runs in a random sequence generated using a modified subtract with
borrow random number generator are too slow or too fast, suggesting a non-random
walk. The longest run of ones in a block test determines whether or not the length
of the longest run of ones in a block is consistent with the length expected from
a random sequence. 0.000001 p value (> 0.01) indicates that the length of the
longest run of ones in a random sequence generated using a modified subtract with
borrow random number generator is not consistent according to the x2 test. This
indicates a non-random walk. The cumulative sum test determines whether the
cumulative sum of the partial sequences, consisting of the tested sequence, is too
large or too small relative to the expected behaviour of the cumulative sum for

186



Yayık A., Kutlu Y.: Neural network based cryptography

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Prepared interfaces of the neural cryptosystem.

187



Neural Network World 2/14, 177-192

random sequences. A 0.000368 p value (> 0.01) suggests that the cumulative sum
in a random sequence generated by a modified subtract with borrow random num-
ber generator is too large or too small, indicating a non-random walk. Tabs. I
and Tab. II show that the neural-based pseudo-random generator is much more
successful than the modified subtract with borrow algorithm. It can, therefore, be
said that the neural network can be used to improve randomness [31].

Tests p Value Result Comments
Frequency Test 0.14986 Success 0 and 1 bits appear in the sequence

with approximately the same proba-
bility.

Block Frequency
Test

0.911733 Success 0 and 1 bits appear in the blocks
of sequence with approximately the
same probability.

Runs Test 0.85160 Success Transitions between 0 and 1 bits in
the sequence appear as often as ex-
pected from a random sequence.

Longest Run of
Ones in a Block
Test

0.093350 Success The length of the longest run of 1
bits in a block is consistent with the
length expected from a random se-
quence.

Cumulative Sum
Test

0.911733 Success The cumulative sum of the partial
sequences consist of the tested se-
quence is not too large or too small
relative to the expected behavior of
that cumulative sum for random se-
quences.

Discrete Fourier
Test

0.646355 Success The number of peaks exceeding the
95% threshold is not significantly dif-
ferent than 5%.

Rank Test 0.741908 Success The deviation of the rank distribu-
tion of the sequence can be ignored.

Tab. I Randomness testing results of number generated by ANN based pseudo-
random number generator.

Some experimental results relating to the cryptosystem are shown in Tab. III.
Each iteration of the cryptosystem uses a different neural network structure, which
is generated randomly. This means that each time a special model of a key is
generated. The text is encrypted using only its own key. Some neural networks
with different neuron numbers were also trained; encryption and decryption times
and training performance are shown in the Tab. III.

Training with scaled conjugate gradient back propagation, which updates weight
and bias values according to the scaled conjugate gradient method, is much faster
than other approaches.

188



Yayık A., Kutlu Y.: Neural network based cryptography

Tests p Value Result Comments
Frequency Test 0.000233 Failure
Blok Frequency
Test

0.234600 Success 0 and 1 bits appear in the blocks
of sequence with approximately the
same probability.

Runs Test 0.000212 Failure
Longest Run of
Ones in a Block
Test

0.000001 Failure

Cumulative Sum
Test

0.000368 Failure

Discrete Fourier
Test

0.408863 Success The number of peaks exceeding the
95% threshold is not significantly dif-
ferent than 5%.

Rank Test 0.741908 Success The deviation of the rank distribu-
tion of the sequence can be ignored.

Tab. II Randomness testing results of numbers generated by modified subtract
with Barrow random number generator.

Neuron
Size

Encryption
Time (sec)

Decryption
Time (sec)

Performance
(MSE)

4-3-18-97-1 0.3105 0.1215 2,14E-01
4-132-91-86-1 11.816 0.1111 3,60E-32
4-14-7-121-1 10.510 0.1618 1,36E-04
4-196-13-4-1 13.147 0.1978 2,14E-01
4-23-48-51-1 6.114 0.1874 3,15E-12

Tab. III Training informations for some neural network structures.

5. Discussion

By advancing information technology, it is possible to decrypt in a few minutes
a cryptosystem which would previously have been expected to take centuries to
decrypt. Therefore, it can be said that classical cryptography applications are no
longer sufficient. In order to advance cryptographic security, other branches of sci-
ence must support it. Quantum mechanics, artificial neural networks and chaotic
systems are some of these. Many neural cryptosystems are created using chaotic
generator [26, 7], a pseudo-random generator [17, 14, 19], over-fitting [14] or S-
box [18]. The proposed system consists of two parts, which are the neural-based
pseudo-random number generator and the neural-based cryptosystem. Firstly, the
neural-based pseudo-random number generator shows that neural networks im-
prove any PRNG randomness using the ability of the neural network. The plain-
text is encrypted by non-linear encryption techniques which are supported by a
neural-based PRNG. Data encrypted randomly is decrypted in the neural network

189



Neural Network World 2/14, 177-192

using its decision-making ability. Secondly, the neural network, which is also pre-
pared randomly, is used to create a cryptosystem. Neural-based cryptology is also
strengthened by the NN-based pseudo-random number generator. Different neural
network structures are constructed randomly for each occasion. The hidden layer
size, number of neurons in the hidden layers, transfer function and training func-
tion randomly change in every encryption application. If a cryptanalyst wants to
generate a neural network which is the same as one already used, an ANN model
that has the same weights, biases, training function and transfer functions must be
determined from the text, which is sent to the receiver. As a result, this algorithm
is complicated and random enough for any cryptanalyst. Consequently, the pro-
posed system indicates two scenarios. In the first scenario, the created encryption
method is supported by an NN and is completely random. It can be evaluated as
a one-way hash function. The encrypted test by the random encryption method
is decrypted with a neural network-based model. This model is a cryptosystem
which is created independently from the encryption algorithm. The second sce-
nario is that an NN-based secret key is created from completely custom text. Each
time the parameters of the NN are generated completely afresh. The NN-based
crypto-tool is a useful tool for anyone. It will be developed for embedding real-time
conversation tools such as Line, Whats Up, Facebook, Twitter or any chat appli-
cation. When wireless networks are used in the home or office, the information can
be stolen by a sniffer attack. The NN-based crypto-tool is useful for protecting
sensitive information in the home or office against theft of this kind.

Acknowledgement

The study was supported by 8702 numbered Scientific Research Project in Mustafa
Kemal University.

References

[1] Abdi H.: A neural Network Primer. Journal of Biological Systems, 1994.

[2] Annonimous: Matlab toolbox release Notes for mathematics. MathWorks inc, 2013.

[3] Arvandi M., Wu S., Sadeghian A., Melek W. W., Woungang I.: Symmetric Cipher Design
Using Recurrent Neural Networks. International Joint Conference on Neural Networks, pp.
2039–2046, 2006.

[4] Chi-Kwong C., Cheng L. M.: The convergence properties of a clipped Hopfield network and
its application in the design of key stream generator. IEEE Trans. Neural Networks, 12, pp.
340–348, 2001.

[5] Cin İ.: Sifre Sorgulamada Yapay sinir Aglarının Kullanılması. Msc thesis, Osman Gazi
Universitesi, 1996.

[6] Dalkıran İ.: Yapay Zeka Teknigi Kullanan Bilgisayar Tabanlı Yuksek Hassasiyetli Sıcaklık
Olcme Birimi Tasarımı. Msc thesis, Erciyes Universitesi, 2003.

[7] Dalkıran İ., Danısman K.: Artificial neural network based chaotic generator for cryptology.
Turk J Elec Eng & Comp Sci, 18(2), pp. 225–240, 2010.

[8] Desai V., Patil R., Rao D.: Using Layer Recurrent Neural Network to Generate Pseudo
Random Number Sequences. International Journal of Computer Science Issues, 9(2), pp.
324–334, 2012.

[9] Fidan M., Nezih Gerek ’́O.: Randomness analysis of Antimycielski number generator. IEEE
16th Signal Processing, Communication and Applications Conference, pp. 1–4, 2008.

190



Yayık A., Kutlu Y.: Neural network based cryptography

[10] Godhavari T., Alainelu N. R., Soundararajan R.: Cryptography Using Neural Network.
IEEE Indicon 2005 Conference,, (I), pp. 11–13, 2005.

[11] Guo D., Cheng L.-M., Cheng L. L.: A new symmetric probabilistic encryption scheme based
on chaotic attractors of neural networks. Appl. Intell., 10(1), pp. 71–84, 1999.

[12] Hagan M. T., Beale M. H., Demuth H. B.: Neural Network Toolbox User’s Guide. The
MathWorks, Inc, 2009.

[13] Hughes J. M.: Pseudo-random Number Generation Using Binary Recurrent Neural Net-
works. Project Report, Kalamazoo College, 2007.

[14] Karras D. A., Zorkadis V.: On neural network techniques in the secure management of
communication systems through improving and quality assessing pseudorandom stream gen-
erators. Neural networks : the official journal of the International Neural Network Society,
16(5-6), pp. 899–905, 2003.

[15] Lauria F. E.: On Neurocrytology. Proceedings of the Third Italian Workshop on Parallel
Architectures and Neural Networks, pp. 337–343, 1990.

[16] Marsaglia G., Zaman A.: A New Class of Random Number Generators. Ann. Applied Prob,
pp. 462–480, 1991.

[17] Kannan Munukur R., Gnanam V.: Neural network based decryption for random encryption
algorithms. 3rd International Conference on Anti-counterfeiting, Security, and Identification
in Communication, pp. 603–605, August 2009.

[18] Awal Noughabi M. N., Sadeghiyan B.: Design of S-boxes based on neural networks. Inter-
national Conference on Electronics and Information Engineering, 2:V2–172–V2–178, August
2010.

[19] Othman K. M. Z., Jammas M. H. A. L.: Implementation of Neural-Cryptographic System
Using FPGA. Journal of Engineering Science and Technology, 6(4), pp. 411–428, 2011.

[20] Pointcheval D.: Neural Networks and their Cryptographic Applications. Pascale Charpin
Ed. India, 1994.

[21] Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., S. Leigh, Levenson M., Vangel M.,
Banks D., Heckert A., Dray J., Vo S.: A statistical test suite for random and pseudorandom
number generators for cryptographic applications. Special Publication 800-22 National
Institute Standart Technology, 2010.

[22] Ruttor A.: Neural Synchronization and Cryptography. PhD thesis, Bayerischen Julius-
Maximilians-Universitat at Wurzburg, 2006.

[23] Sağıroğlu S., Ozkaya N.: Neural Solutions for Information Security. Journal of Polytechnic,
10(1), pp. 21–25, 2007.

[24] Schneider B.: Applied Cryptography. Protocols, Algorithms, and Source codes in C, 1996.

[25] Sivagurunathan G., Rajendran V., Purusothaman T.: Classification of Substitution Ciphers
using Neural Networks. International Journal of Computer Science and Network Security,
10(3), pp. 274–279, 2010.

[26] Su S., Lin A., Yen J.: Design and realization of a new chaotic neural encryption/decryption
network. IEEE Asia-Pasific Conf.Cir and Syst., pp. 335–338, 2000.

[27] Sulak F.: Statistical analysis of block ciphers and hash functions. Msc thesis, Middle East
Technical University, 2011.

[28] Tanrıverdi H.: Yapay Sinir Aglarının Kriptolojide Kullanılması. Msc thesis, Middle East
Technical University, 1993.

[29] Walker, J.: A pseudorandom number sequence test program, 1998, available in
http://www.fourmilab.ch/random/, 04.14.14.

[30] Yayık A., Kutlu Y.: Metin iç in Yapay Sinir Ağı Tabanlı Hash Fonksiyonu. International
Conferance on Cryptology and Information Security, 2013.

[31] Yayık A., Kutlu Y.: Sozde Rastsal Sayı Uretecinin Yapay Sinir Agları ile Guclendirilmesi.
Sinyal İsleme ve İletisim Uygulamaları (SIU) Kurultayı (SIU2013), 2013.

191



Neural Network World 2/14, 177-192

[32] Yayık A., Kutlu Y.: Yapay Sinir Ağı Tabanlı Kriptoloji Uygulamaları. Msc thesis, Mustafa
Kemal University, 2013.

[33] Pol Yee L., De Silva L. C.: Application of MultiLayer Perceptron Network as a one-way
hash function. Proceedings of the 2002 International Joint Conference on Neural Networks.
IJCNN’02 (Cat. No.02CH37290), pp. 1459–1462, 2002.

[34] Yılmaz R.: Kriptolojik Uygulamalarda Bazı İstatistik Testler. PhD thesis, Konya Selcuk
University, 2010.

[35] Zeng K., Yang C.-H., Wei D.-Y., Rao T. R. N.: Pseudorandom bit generators in stream-
cipher cryptography. IEEE Computer, 24(2), pp. 8–17, 1991.

192




