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Abstract: The purpose of this study is to predict the mass loss of newly devel-
oped aluminium based alloy. Two different alloys are prepared by cladding process
and the sliding friction and wear properties of this alloy against high carbon high
chromium steel are investigated at different normal loads (50 N, 60 N and 70 N)
under different sliding distances. Tests are carried at a constant speed of 1 m/sec
under oil lubricated conditions by preheating the circulating engine oil 20w40 at a
temperature of 800C. The mass losses are measured and recorded for every interval.
An artificial neural network (ANN) model is developed to predict the mass loss of
newly developed aluminium-based alloy. It is observed that the predicted values
have shown good agreement with experimental values with a correlation coefficient
of 0.999973. This model can also be used to predict the mass loss of any material.
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1. Introduction

Aluminium alloys and other lightweight materials have emergent applications in
the automotive industry, with respect to reducing the fuel consumption and shield-
ing the environment, where they can successfully put back steel and cast iron
parts. These alloys are widely used in buildings and constructions, containers and
packaging, marine, aviation, aerospace and electrical industries because of their
lightweights, corrosion resistance in most environments or combination of these
properties [1]. Aluminum alloys have higher conductivities (electrical and thermal)
than most other metals, and they are usually cheaper than the alloys that are
superior conductors (copper, silver, gold, and so on) [2]. Aluminium based alloy
provides good combination of strength, corrosion resistance, together with fluidity
and freedom from hot shortness [3].
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The additions of Sn or Si with Al-based alloys are commonly used in plain
bearings and internal combustion engine components [4-5] because of their fine
tribological and mechanical properties. The addition of Sn will improve the anti-
frictional characteristic as well as decrease the coefficient of friction [6-7]. Likewise
addition of Si will exhibit excellent wear resistance [8], but it has poor seizure re-
sistance under poor lubricating conditions, particularly during starting or warming
up of engines. This problem can be overcome by addition of Si in Al-Sn alloys
and this combination of the alloy will be able to support heavy loads, resistance
to seizure gets improved [9] and also improves the corrosion resistance [10]. The
increase of Sn and Si content in Al-based alloys will decrease the wear rate, and
the friction factor decreases hardly varies with increase in Si content while slightly
with increase in Sn content [11]. So, the Al-based alloys are used in most of the
structural components, predominantly in bearing applications in which the wear
property is of considerable importance.

Durmus have used ANN to predict wear loss and surface roughness of AA6351
aluminium alloy, at various aging temperatures, load, sliding speed and abrasive
grit diameter. It was shown that the experimental results coincide with ANN
results [12]. Taskin have modelled adhesive wear resistance of Al-Si-Mg-/SiCp
MMC compacts which fabricated by powder metallurgy hot pressing process at
different reinforcement fractions (5-10-15% SiCp), loads and wear resistance [13].
Microhardness values of Al/SiCp metal matrix composite material processed with
diffusion method was investigated by Taskin [14]. Cetinal et al have developed the
Mo coatings in ductile iron substrate using the atmospheric plasma-spray system.
The mass loss of this substrate was measured by pin-on-plate type friction/wear
test equipment, which was subjected to slide against the AISI 303 steel under
dry and acid environments at different loading conditions. The results obtained
from trained neural network model and the experimental results were found to be
reasonably close [15].

The prediction of mass loss of A390 aluminium alloy using feed-forward back
propagation neural network at different loads, sliding speed and time was done
by John Presin Kumar [16] and the same algorithm was used to build a model to
predict the material removal rate in machining of Al/SiCp which had shown a good
agreement with the experimental values [17]. The abrasive wear characteristics
of sintered steels containing Molybdenum di Sulphide powders sliding against SiC
abrasive sheet at room temperature was predicted by using ANN [18]. The wear loss
of aged 2024 and 6063 aluminium alloys were predicted by using back-propagation
ANN approach at different aging temperature, aging time and applied load. In
this model 2 hidden layers and 4 neurons in hidden layers were used. The overall
performance was satisfactory and the result showed that ANN could be considered
an alternative to practical technique and for no experimental cost [19].

The mechanical property of Al-Si-Cu alloy was predicted using neural network
with different chemical compositions and cooling rate. The result showed good
compatibility with experimental data and accuracy is much higher than using the
classical, experimental models [20]. The prediction of tool wear used in universal
milling machine is an important role in industry for higher productivity and prod-
uct quality. The use of feed forward back propagation neural network, the flank
wear at different cutting speed, feed, depth of cut were found to be capable of bet-
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ter predictions within the trained range [21]. The computer neural networks have
introduced to predict the tribological properties of a given material/mechanical sys-
tem in order to reduce the amount of experimental test. In this study, experimental
and ANNs results have been compared [22].

All the above researches show that the ANN is a meaningful technique in mod-
eling. Hence in the present work, an attempt is made to develop an ANN model
to predict the mass loss of the newly developed alloy. Based on the experimental
records, optimized and trained neural networks are used to predict the mass loss.

2. Material Preparation and Testing

2.1 Alloy Preparation and Its Chemical Composition

In this work, Aluminium-based alloys are prepared by cladding process. This is
the most popular method to avoid the adverse effect of tin with a bonding layer
of pure aluminum before steel backing. The continuously cast strip of aluminium
bearing alloy together with a strip of low carbon steel is achieved by cold rolling
[23-24]. Fig. 1-2 show the different layers used in aluminium-based alloy.

Fig. 1 Layer of alloy 1. Fig. 2 Layer of alloy 2 (heat treated).

The second specimen prepared is subjected to heat treatment (T6) with the
following conditions: solutioning at 5480C for 8 hour, water quenching and artificial
aging at 160±50C for 6 hour. The lining thickness of the alloys is measured by
using permascope. The chemical composition and the lining thickness of newly-
developed alloy and pin are referred in Tab. I.

2.2 Friction and Wear Tests

Wear tests were carried out on the pin-on-disc tribometer under lubricating sliding
conditions (Fig. 3). The pin material used in this study is prepared with shaft
material of AISI D3 (High Carbon High Chromium Steel) having a diameter of
5.041 mm and hardness 720 BHN, and the disc with newly developed alloy having
a dimension of 100 mm diameter and 15 mm thickness. The normal load to the
pin can be varied from 196 to 1962 N and the disc speed can be varied from 100
to 1200 rpm.
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Chemical Composition Lining thickness, µm
2-2.5 % C

0.25-0.3 % Mn

Pin
0.25-0.3 % Si

–0.2 % V
0.8 % Mo

Fe remaining
9.0-12.5% Sn

Alloy 1
0.8-1.25% Cu

575
2.7-3.35% max Si

Al rest of composition
7.5-12 % Sn

Alloy 2
1.25-1.65 % Cu

425
2.25-2.85 Si

Al rest of composition

Tab. I Composition and Lining thickness of Pin and Alloy.

Fig. 3 Pin-on-disc tribometer.

The following test conditions are followed in the investigation:

Sliding speed (m/s) – 1

Track diameter (mm) – 75

Normal load (N) – 50, 60, 70

Oil temperature (0C) – 80

Lubrication method – Dropping oil onto the revolving disc

The disc is driven by an electric motor and the wear tests are performed under
different normal loads and for various sliding distances of 9 km, 18 km, 27 km,
36 km, 45 km and 54 km. The tests are replicated at least three times for each
experimental condition. During the test, the wear is measured through an LVDT

132



Ramesh Kumar T., Rajendran I.: Mass loss prediction of newly developed. . .

(Linear Variable Displacement Transducer) and digital displacement monitor. The
tangential frictional force is measured continuously through a 20 kg load cell and a
digital load indicator and also the readings are recorded for every 10 minutes. The
value of friction coefficient is calculated from the equation (1)

Friction coefficient =
Friction Force

Applied Load
(1)

The mean value of the friction coefficient is determined. At the end of each test,
the experiment is stopped, the disc is removed and the mass loss is measured using
electronic precision balance having 0.1 mg sensitivity. These mass losses of the alloy
are used to study the effect of load and sliding distance on the wear resistance of the
alloy against shaft material. Finally, the worn surfaces of the alloy are examined
with SEM.

3. Modeling Using Artificial Neural Network

The neural networks can be used with many complicated functions, because of
their sophisticated nature. This technique brings out in almost every technological
field to solve ample range of problems in convenient and in an easier way [25-26].
Owing to natural self-learning nature of neural networks, their activities can be
sometimes unpredictable and unexpected.

It has similar structure of brain cells of human neural networks and is inter-
connected with each other. The performance of the ANN model is evaluated by
separating the data into two sets: the training set and the testing set. During
the training set, the parameters of the network are calculated. Then the learn-
ing process is stopped when the error goal is reached and finally the network is
evaluated with the data from the testing set. It consists of large number of sim-
ple synchronous processing elements called neurons, and is assembled in different
layers in the network such as an input layer, an output layer and hidden layers as
shown in Fig. 4.

Fig. 4 Feed-forward neural network architecture.
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The input layer receives input from external environment and the output layer
that communicate the output of the system to the user or external environment.
There are usually a number of hidden layers between these two layers. The process
continues until the network outputs fit the targets. Once the network is trained, the
neural network may be used to calculate the output for any arbitrary set of input
data through the fixed weight factors and the errors are also calculated. Finally,
normalized Root Mean Square Error value (RMSE) is used to evaluate the training
performance of the ANN.

ANN has the potential to minimize the need for expensive experimental inves-
tigation and/or inspection of aluminum alloys used in various applications, hence
resulting in large economic benefits for organizations. The training phase can be
finished in few minutes whereas the experimental study lasts for a number of days.

In the present work, the neural network models are designed and trained using
the MATLAB 7.5.0.342 package. Back propagation algorithm is used for predicting
the mass loss under lubricated conditions. The input selection is a very important
aspect of neural network modelling [27]. In this work, the network has three neurons
in input layer (load, sliding distance and different alloying element), one neuron
in output layer (mass loss) and 15 neurons in each hidden layer is used. So the
architecture of ANN is 3:15:15:1 as shown in Fig. 5.

Fig. 5 ANN Architecture for this study.

The network has constructed using 36 experimental data, among those 28 data
are used for training process and the remaining data for testing process. All the
input and output values are normalized between 0.1 and 0.9 by using linear scaling.
Sigmoid activation function is selected as the transfer function and learning rate
and momentum are set as 0.8 and 0.8 respectively.

In the learning stage the mean errors are 0.175% and 0.151% for the alloy 1
and 2 respectively. The training process is ended after 15000 epochs. Fig. 6 shows
the Normalized Standard Error (NSE) with training cycles which decreases with
increasing number of iteration and attains 3.01578e-005. The testing process is
carried out, in order to understand whether the ANN is making good predictions.
The mean errors in the testing stage are found to be 6.911% for alloy 1 and 7.498%
for alloy 2.

4. Results and Discussion

4.1 Microstructural Analysis and Wear Tests

Metallographic samples are polished according to standard techniques and etching
and the microstructure of the alloy is obtained using Scanning Electron Microscope
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Fig. 6 ANN training performance graph.

(SEM). Fig. 7-8 shows the microstructure of newly developed aluminium-based
alloy and was investigated using SEM. In both the cases, alloy consists of black
α (Al) phase and white reticulate phase β (Sn) which is uniformly distributed.
The black phase in the matrix is Sn, and phases surrounded with Sn are Si. The
eutectic Si phase appears as needle-like structure and this ‘peritectic-type’ islands
microstructure is the most advantageous to anti-friction characteristics and wear
resistance properties [28].

Fig. 7 Microstructure for alloy 1. Fig. 8 Microstructure for alloy 2.

Relations of sliding distance versus mass loss are presented in fig. 9-10 and wear
curves are obtained in tests for varying applied load is 50, 60, and 70 N with a
sliding speed of 1 m/s. Due to impact load, the initial wear is greater and the reason
for higher initial wear is that the static friction is higher than dynamic friction [29].
Later the wear gradually increases, but comparatively very less than initial wear.
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The asperities of the alloy (disc) is in contact with the asperities of pin material, and
then the shape of asperities gets changed. Initially the upper layer of asperities
will be rough, while in continuing the sliding rough surface turns into relatively
smooth surface. Finally the wear is less compared to previous sliding distance.
This indicates that the surface of asperities gets smoothened and relatively low
frictional force results due to which the wear becomes insignificant [29-30].

Fig. 9 Wear graph for alloy 1.

Fig. 10 Wear graph for alloy 2.
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4.2 Wear Surface Examinations

The worn surfaces of the discs are examined using the Scanning Electron Micro-
scope (SEM). The worn surfaces of the newly developed alloys after the wear tests
are presented in fig. 11-12. Worn surface of Fig. 11(a-b) is not even, when com-
pared to the worn surface of Fig. 11(c). In other words, not greatly distension
and extensive deep wear appeared on the wear surface of Fig. 11(a-b). Some deep
pits, grooves and continuous scratches are observed on the wear surfaces. These
grooves and scratches resulted from the ploughing action of asperities on the alloy
surface. Hard debris originating from fragmented and oxidized asperities of alloy
and abraded surface of steel disc gets entrapped in between the contacting surfaces
and behaves as a cutting tool causing abrasion. With increase applied normal load,
more deformation of worn surface is shown in Fig. 11(c). As the load increase, the
wear behaviour of alloy changes from abrasion to delamination [8] as evident from
the SEM micrographs.

Fig. 11 Wear surface of alloy 1 under the load of (a) 50 N (b) 60 N (c) 70 N.

In the second alloy, when the load is increased (Fig. 12(c)), the worn surfaces of
the alloys are appeared not smooth (even) and also deeper wear grooves, because
of higher temperature rise, and the surface of the alloys gets soften and swell more
easily. It also confirmed many of serration marks and entrapped wear debris. The
greater quantity of material flow over the worn surface is the impact of serration
marks and the occurrence of wear debris caused by fracture. But the same damage
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Fig. 12 Wear surface of alloy 2 under the load of (a) 50 N (b) 60 N (c) 70 N.

is not occurred on the lower normal load 60 N and especially at 50 N (Fig. 12(a-b)),
but also observed that the some pits/caves on the wear surfaces of the alloys.

4.3 Statistical Analysis of ANN Model

The statistical methods of Root Mean Square Error (RMSE), Mean Percentage
Error (MPE), Absolute Percentage Error (APE), and Absolute Fraction of Variance
values have been used for making comparisons. The above values can be evaluated
by the following equations 2-5 [31-32]:

RMSE =

(
1

n

∑
j

∣∣aj−pj∣∣2) 1
2

(2)

MPE =

∑j

((
aj−pj

)
/aj

)
n

×100 (3)

APE (% ) =

∣∣∣∣Model prediction values – Experimental values

Experimental values

∣∣∣∣× 100 (4)
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R2 = 1−

∑j

(
aj−pj

)2∑
j

(pj)
2

 (5)

where p is the predicted value, a is the experimental value, j is the processing
elements and n is the number of samples. Statistical values between the network
predictions and the experimental values using training and testing process have
been shown in Tab. II.

Training performance Testing performance

RMS 0.00019039 0.00659707
R2 0.99998609 0.99267766

MPE -0.000876 0.125696

Tab. II Statistical values of the mass loss of the newly developed alloys.

The experimental values are compared with the predicted values, so that the
performance of the trained network is tested and the results are as shown in Fig. 11-
12.

Fig. 13 Comparison of mass loss at training stage.

The values are within acceptable ranges which meets the reliability of the ANN
training and testing stages and the summary of the proposed model (Fig. 9) is
given in Tab. III.

Very good performance of the trained neural network is attained and the pre-
dictions are in good concord with the experimental values.
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Fig. 14 Comparison of mass loss at testing stage.

Parameters used in ANN model

Object model Mass loss prediction
The number of layers 4
Number of hidden layers 2
The number of neuron on the layers Input: 3; hidden1: 15; hidden2: 15; output: 1
Network type Feed-forward back propagation
Transfer function Log-sigmoid
Training function Trainlm
Learning function Learngdm
Sample pattern vector 28 (for training), 8 (for testing)
Learning rate, lr 0.8
Momentum constant, mc 0.8
Number of iteration 15000
Acceptable mean square error 0.0001
MSE at the end of training 3.01578e-005

Tab. III Summary of ANN model.

5. Conclusions

Speed, ability to learn from the experimental results and ease are the advantages of
ANN when compared to classical method and it can also reduce the conduct of wide
experimental study. Because of the above reasons ANN is chosen. This approach
emerges to be a dominant tool in materials engineering and can be used efficiently
as prediction technique in the area of material characterization and tribology. In
this work, feed-forward backpropagation neural network is developed and used to
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calculate the mass loss of the newly developed alloys. For both training and testing
of ANN, the experimental values of mass of the alloys are used. The error between
the predicted value and experimental value is little, i.e., good compatibility with
the experimental value and also this network can save much time. The overall
performance of the model is relatively agreeable and it can be used to predict the
mass loss with high accuracy.
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