EXPLICIT NEURAL NETWORK IN
SUSPENDED SEDIMENT LOAD ESTIMATION
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Abstract: Correct estimation of sediment volume carried by a river is very im-
portant for many water resources projects. Traditionally, artificial neural networks
(ANNs) are used as black-box models without understanding what happens inside
the box. The question is that, how anyone who may be unfamiliar with ANNs can
apply this kind of models in any other study, while the model has not been formu-
lated. This paper proposes an explicit neural network (ENN) formulation which is
simple and can be used, by anyone who is even not familiar with ANNs, for mod-
eling daily suspended sediment-discharge relationship. The daily streamflow and
suspended sediment data from two stations on Tongue River in Montana are used
as case studies. Two different sediment rating curves (SRC), multi-linear regres-
sion (MLR) and nonlinear regression (NLR) are also applied to the same data. The
ENN estimates are compared with those of the SRC, MLR and NLR models. The
root mean square errors (RMSE), mean absolute errors (MAE), correlation coeffi-
cient (R) and model efficiency (E) statistics are used to evaluate the performance
of the models. The comparison results reveal that the suggested model performs
better than the conventional SRC, MLR and NLR.
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1. Introduction

Modeling suspended sediment concentration is vital important for many water
resource projects related with channel navigability, reservoir filling, hydroelectric-
equipment longevity, river aesthetics, fish habitat and scientific interests (Kisi et
al. 2006). The estimation of suspended sediment is enormously difficult because
it is closely related to flow and the mechanism of their relationship is non-linear
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and they have sophisticated interactions to each other (Sivakumar and Wallender,
2005).

Artificial neural networks (ANNs) have been successfully used in a number of di-
verse fields including water resources (Ozkan et al. 2011; Yalkin & Korkmaz, 2012;
Balara et al. 2013). In the hydrological forecasting context, recent experiments
have reported that the ANNs may offer a promising alternative for rainfall-runoff
modeling (Shamseldin, 1997; Tokar & Johnson, 1999; Solomatine & Dulal, 2003;
Giustolisi & Laucelli, 2005; Nourani et al. 2009; 2011), streamflow prediction
(Kang et al., 1993; Chang & Chen, 2001 ; Campolo & Soldati, 2003; Cigizoglu,
2003; Cigizoglu, 2005a, 2005b; Kisi, 2004a, 2005a; Hu et al., 2005; Cigizoglu &
Kisi, 2005; Jayawardena et. al., 2006; Kisi & Cigizoglu, 2007; Zhang et al., 2011;
Yilmaz et al. 2011), reservoir inflow forecasting (Saad et al., 1996; Jain et al.,
1999; Bae et al., 2007), and suspended sediment estimation (Jain, 2001; Tayfur,
2002; Cigizoglu, 2004; Kisi, 2004b; 2005b; Cigizoglu, 2006; Cigizoglu & Alp, 2006;
Cigizoglu & Kisi, 2006; Kisi, 2008; Kisi et al., 2012; Lafdani et al. 2013; Liu et
al. 2013). Jain (2001) used a single ANN approach to establish sediment-discharge
relationship and found that the ANN model could perform better than the rating
curve. Tayfur (2002) developed an ANN model for sheet sediment transport and
indicated that the ANN could perform as well as, in some cases better than, the
physically-based models. Cigizoglu (2004) investigated the accuracy of a single
ANN in estimation and forecasting of daily suspended sediment data. Kisi (2004b)
used different ANN techniques for daily suspended sediment concentration predic-
tion and estimation and he indicated that multi-layer perceptron could show better
performance than the others. Kisi (2005b) developed an ANN model for modeling
suspended sediment and compared the ANN results with those of the rating curve
(RC) and multi-linear regression (MLR). He found that the ANN model performed
better than the RC and MLR. Cigizoglu & Kisi (2006) developed some meth-
ods to improve ANN performance in suspended sediment estimation. Kisi (2008)
proposed a data driven algorithm for obtaining ANN models in daily sediment es-
timation. Kisi et al. (2012) modeled discharge-sediment relationship using ANN
with artificial bee colony algorithm. Lafdani et al. (2013) used ANN and support
vector machine for prediction of daily suspended sediment load. Aytek and Kisi
(2008) developed new formulae based on genetic programming for estimating sus-
pended sediment. Recently, ANN models have been developed by using field data,
experimental results, atmospheric variables and even numerical data. ANNs are
traditionally used as black-box models and no one is interested in the fundamental
hidden formulation. The output is obtained from black-box by introducing input
data without understanding what happens inside the box. The accuracy of the
models is then evaluated by comparing the models’ output with the observed data.
The question should be that, how anyone who may be unfamiliar with ANNs can
apply this kind of models in a study, while the model’s formulation does not exist.
Recent studies such as Aytek et. al (2008), Guven et al. (2006) and Khorchani &
Blanpain (2005) are observed in civil engineering literature to overcome this prob-
lem by providing the explicit formulation on which the neural network system is
based.

The main objective of this study is to determine an explicit neural network
(ENN) formulation that evaluates the amount of suspended sediment in a river
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as a function of input variables. The ENN is applied to daily streamflow and
suspended sediment data of two stations operated by the U.S. Geological Survey
(USGS) and the results are compared with those of the sediment rating curves and
multi-linear and nonlinear regression. To the best knowledge of the authors, no
work has been reported in the literature that addresses the explicit neural network
formulations for estimation of suspended sediment load.

2. Methodology

2.1 Explicit neural network (ENN)

In this study, the multilayer perceptron (MLP) ANN architecture (Rumelhart,
1986) with one single hidden layer is considered. MLP is layered feed forward
networks typically trained with static backpropagation. Their main advantage
is that they are easy to use, and that they can approximate any input/output
map. The disadvantages are that they train slowly, and require lots of training
data (typically three times more training samples than network weights). The
basic element of a neural network is an artificial neuron as shown in Fig. 1, which
consists of three main components; weights, bias, and an activation function. Each
neuron receives inputs x; (¢ =1, 2, ..., n) attached with a weight w;; (j > 1) which
shows the connection strength for a particular input for each connection. Every
input is then multiplied by the corresponding weight of the neuron connection and
summed as

Wi = Zwijxj (1)
7j=1

A bias b;, is a type of correction weight with a constant non-zero value, is added
to the summation in Equation (1) as

U =W;+b; = Zwijxj +b; (2)
j=1

In the architecture tangent-sigmoid transfer function is utilized as

2
Z/iZf(Ui)Zm— (3)
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Fig. 1 The basic element of ANN neuron (Aytek et al. 2008).
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The Levenberg-Marquardt algorithm that is more powerful than the standard back
propagation algorithm (Kisi, 2004b; Cigizoglu & Kisi, 2005) is employed to mini-
mize the RMSE of the network in this study. The back propagation with gradient
descent technique is a steepest descent algorithm, while the Levenberg-Marquardt
algorithm is an approximation to Newton’s method (Marquardt, 1963). If we want
to minimize a function V' (x) with respect to the parameter vector x, then Newton’s
method would be

Ax = —[VV(x)]'VV(x) (4)

where V2V (x) = the Hessian matrix and VV (x) = the gradient. Let assume that
V(x) is a sum of squares function

Ve =3 ) )

then it can be shown that
VV(z) = J" (x)e(x) (6)
V2V (z) = JT(x)J(x) + S(x) (7)

where J(x) = the Jacobean matrix and

S(x) = Z eiV7e;(x) (8)

For the Gauss-Newton method it is assumed that S(x) ~ 0, and the update (4)
becomes

Ax = [JT(x)J(x)] T (x)e(x) 9)

The Levenberg-Marquardt modification to the Gauss-Newton method is

Ax = [J"(x)J(x) + p] 7 TT (x)e(x) (10)

The parameter p is multiplied by some factor (3) when a step increases V (x).
When a step would result in a reduced V (x), u is divided by 8. When p is large the
algorithm becomes steepest descent (with step 1/ p), while the algorithm becomes
Gauss-Newton for small y. The Levenberg-Marquardt algorithm can be considered
a trust-region modification to Gauss-Newton. The computation of the Jacobean
matrix is the key step in this algorithm. The terms in the Jacobean matrix can
be computed by a simple modification to the back propagation algorithm for the
neural network-mapping problem (Hagan & Menhaj, 1994).
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2.2 Sediment Rating Curve (SRC)

The sediment discharge rating curve is sometimes called a suspended sediment
transport graph or a suspended sediment transport relationship. It is a relation-
ship between water and sediment discharge. A rating curve consists of a graph or
equation, relating sediment discharge or concentration to stream discharge, which
can be used to estimate sediment loads from the streamflow record. A sediment
rating curve describes the average relation between discharge and suspended sed-
iment concentration for a certain location. The sediment rating curve generally
represents a functional relationship of the power form:

S =aQ’ (11)

in which @ is water discharge (m3/s) and S is suspended sediment load (mg/1
or ton/day) (Sandy, 1990). Values of a and b for a particular stream are deter-
mined from data via a linear regression between (log S) and (log Q). After log-
transformation to the arithmetic domain and application of the Ferguson (1986)
correction factor, the sediment load occurring at a specific discharge can be esti-
mated using the following expression:

S =CF.a.Q’ (12)
where CF is the log-transformation bias correction factor. Specifically,
CF = 265 (13)

where e is the exponential function and s is the standard error of the regression
equation. In the applications, first sediment rating curve (Eq. 11) is denoted as
SRC1 and the second one with bias correction factor (Eq. 12) is denoted as SRC2.

2.3 Multiple Linear Regression (MLR)

If it is assumed that the dependent variable Y is effected by m independent variables
X1, Xs,..., X, and a linear equation is selected for the relation among them, the
regression equation of Y can be written as:

y=a-+bx; +byxo+- -+ bnrm, (14)

y in this equation shows the expected value of the variable Y when the independent
variables take the values X1 = z1, Xo =29, ..., X;n = T

The regression coefficients a, by, bs, ..., b, are evaluated, similar to simple
regression, by minimizing the sum of the ey, distances of observation points from
the plane expressed by the regression equation (Bayazit and Oguz, 1998):

N N
2
Z 6;- = Z (yi —a — biz1; — baxo; — by Tms) (15)
i=1 i=1
In this study, the coefficients a, b1, bs, ..., by, are determined using least squares

method.
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2.4 Nonlinear Regression (NLR)

Assume that the dependent variable Y is nonlinearly effected m independent vari-
ables X1, Xs, ..., X,, and following nonlinear equation (Eq. 16) can be written for
the relation among them

_ al a2 am
y=apx{ - xg .. (16)

The Eq. (17) is simply obtained by applying logarithm transformation to the Eq.
(16)
logy =logag + a1 logxy + aglogxs + -+ + am log xy, (17)

The coefficients ag, a1, ag, ..., an can be simply determined using least squares
method as explained in the MLR section.

3. Study Area

The daily streamflow and suspended sediment time series data from two stations
on Tongue River in Montana are used. The location of the stations is shown
in Fig. 2. The downstream station (station no: 6308500) at Miles City and
the upstream station (station no: 6307830) below Brandenberg Bridge near Ash-
land are operated by USGS. The drainage areas at these sites are 13932 km? for
the downstream station and 10521 km? for the upstream station. For these sta-
tions, the daily time series data were downloaded from web server of the USGS
(http://webserver.cr.usgs.gov/sediment). Tongue River flows 286 miles from Big
Horn Mountains in Wyoming to the confluence with the Yellowstone River near
Miles City, Montana. The total catchment area is roughly 5,400 square miles.
The river has naturally high suspended solids due to topography, geology and soils
(MDEQ, 2003). Historic references (early 1800s) report that the river (Tongue)
was very muddy and shallow, with shifting sand bars and quicksand present in the
channel near Miles City (NRCS, 2002; USEPA, 2007).

After examining the data and noting the periods in which there are gaps in
one or more of the two variables, the periods for training and testing are chosen.
The data of October 01, 1977 to September 30, 1980 (75% of the whole data) are
chosen for training, and data for October 01, 1980 to September 30, 1981 (25% of
the whole data) are chosen for testing in all applications. It may be noted that the
periods from which training and testing data are chosen span the same temporal
seasons (October—September).

The scatter plots of the downstream and upstream stations data are given in
Fig. 3. It can be seen that there is a nonlinear and scattered relationship between
discharge and sediment data for both stations. Fig. 2 indicates the presence of
outliers (also see Tab. I). In the downstream data set, a suspended sediment load
value of 27200 ton/day is observed while the other values are below 20000 ton/day.
In the upstream data set, the suspended sediment load values of 84400 ton/day
and 81600 ton/day are observed while the other sediment values are below 50000
ton/day. These outliers are also used in the training period. These values give
an additional difficulty to the models in estimation. The models calibrated using
such outliers generally give overestimations of the low sediment values. The daily
statistical parameters of the streamflow and sediment data for each station are given
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Fig. 2 The location of the downstream and upstream stations on Tongue River
(USEPA, 2007).

in Tab. I. In the table, the Zyean, Sz, Cy, Csz, Tmax and Zni, denote the mean,
standard deviation, coefficient of variation, skewness, maximum and minimum,
respectively. The skewness and coefficient of variation of flow and sediment data
of the upstream and downstream stations are high, particularly for the training
(calibration) data. In the calibration flow data, iy and Zmax values are 1.9 and
218 m3/s respectively for the downstream station. However, the testing flow data
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set extremes are T, = 0.1 m3/s, Tmax= 62.3 m3/s. The value of z;, for the
calibration flow data is higher than that for the corresponding test set for the
downstream station. This may cause extrapolation difficulties in estimation of low
sediment values.

The auto and cross-correlation coefficients for the downstream and upstream
station data are given in Tab. II. In this table, the S; and @Q); represent the sediment
load and discharge at time t, respectively. It may be seen that the auto-correlations
of the sediment data are good for both stations. However, the correlations between
the sediment load and discharges are normally not good and in fact are very poor
for the calibration period data of the downstream and upstream stations.
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= =
§ 20000 ° § 60000
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< 15000 o <
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Fig. 3 Scatterplots of the (a) downstream and (b) upstream data.

4. Performance Measures

It is important to define the criteria by which the performance of the model and its
prediction accuracy will be evaluated in model development process. The current
study will use various statistical measures to assess the model performance, namely,
the root mean square errors (RMSE), the mean absolute errors (MAE), the cor-
relation coefficient (R) and the coefficient of efficiency (E). The RMSE describes
the average difference between model results and observations. The MAE yields
a more balanced perspective of the goodness-of-fit at moderate sediment values
(Karunanithi et al., 1994). The R measures the degree to which two variables are
linearly related. The coefficient of efficiency, E, measures the differences between
the observations and predictions relative to the variability in the observed data
itself. A wvalue of 0.5 and above indicates a satisfactory performance whereas a
value below 0.5 indicates an unsatisfactory performance (Moriasi et al. 2007). The
RMSE, MAE and E are defined as:

RMSE = 1 3 (Vo) — (Yo))® (18)
N\ &

i=1
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1 N
MAE = Z (o) — (Vo) (19)
S ((Yo)i — (Yo)i)?
E=1-%=! (20)
:Zl (()/e)z - Ym)2

where N is the number of data set, Y,,, Y,; and Y,; are mean, estimated and
observed suspended sediment loads, respectively.

5. Application and Results

The main aim of this study is to derive an ENN formulation for suspended sediment-
discharge relation as a function of input parameters. Input parameters and weights
of the trained ANN are extracted to form an explicit expression in the following
manner.

Each input is multiplied by a connection weight (Eq. 1) and then biases are
simply added to this multiplication (Eq. 2) and finally, the sum is transformed
through a transfer function (sigmoid) (Eq. 3) to generate an output. In order
to acquire accurate results from the ENN, before to the execution of the training
process, input and output parameters are normalized in the range of (—0.95;0.95)
by

Fnormalized =al'+b (21)

where I' represents parameters used in the ENN training process, a and b are
normalization coefficients of that particular parameter. The sediment-discharge
relation for downstream station can be expressed as

30220.556
Suy = — 1509.523 (22)

228.5046 118.3855
( o T — 119.5014)
L4el\l+el e

where U; = W; + b; and estimated as;

Ul - [ —0.02018  0.028144 —0.00006} Que +[ —1.180308

0.036927 —0.03583 0.00007 ggt—l 0.941279 ](2%)
t—1

The sediment-discharge relation for upstream station can be expressed as

93774

St =
__32.1226 53.9930 1.1267  _ _ 2.7208 19.6218
(1 + e( 1+e—2U1 + 14202 + 1+e—2U3 14204 + 1+e—2U5 17'3568)

— 4685.3)

(23)
where U; = W; + b; and estimated as;
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0.138485 —0.153338 —0.000636 —3.008234
0.068515 —0.074774 —0.000315 Qd, —2.256174
U= | —0.173993  0.195361  0.000034 | x | Qdy—1 | + | 0.481494
0.010027 —0.006283  0.000036 Sdy_; —0.590769
—0.032054 —0.015656 —0.000076 16.393527

(23b)

One of the most important tasks in ANN studies is to determine the optimal
network architecture which is related to the number of neurons in the hidden layer.
Generally, the trial and error approach is used. In this study, the best architecture
of the network is obtained by trying different number of neurons. The trial starts
from two until seven, and the performance of each network is checked by R? and
Akaike Information Criterion (AIC) defined as (Akaike, 1974);

AIC = NIn(MSE) + 2k (24)

where IV is the number of exemplars in the training set, k is the number of network
weights and MSFE is the mean squared error. AIC is used to measure the exchange
between training performance and network size. The goal is to minimize AIC to
obtain a network with the best generalization. Seven input combinations (Tab. III
and Tab. V), each with 7 neurons (eg. Fig. 4), totally 49 alternatives are applied to
reach the best architecture of the ENN formulation. The same procedure is used
for both training and test periods. In these alternatives, the input combination (vi)
with 5 neurons for the downstream station and 2 neurons for the upstream stations
are selected as the optimum structure of the ENN. The relationship between the
number of neurons ranging from 2 to 7 and the corresponding AIC and R values
are presented in Fig. 3 for the testing stage. It is clearly seen in Fig. 4a that the
AIC decreases and Rincreases till 5 neurons for the downstream station. The best
hidden neuron number is 5 for the downstream station. From Fig. 4b, the optimum
number of hidden neuron seems to be 2 for the upstream station (R = 0.924 and
AIC = —3022). Based on these analyses, the optimal architecture of the ENN is
constructed as 3-5-1 for the downstream and 3-2-1 for the upstream representing
the number of input, hidden and output neurons, respectively.

For the downstream station, the RMSE, MAE and R of each ENN model in test
period are given in Tab. III. Tab. III indicates that the ENN model whose inputs
are the current discharge and the discharge and suspended sediment load of one
previous period (input combination (vi)) has the smallest RMSE (317 ton/day)
and MAE (34.2 ton/day). The ENN performance for the input combination (i)
(only current discharge) is the worst since the hysteresis effect between sediment
load and discharge. That is the say that the sediment loads for a given level of
streamflow discharge in the rising stage of a streamflow hydrograph are greater than
on the falling stage. This confirms that the practice of using sediment load versus
discharge is misleading as said by McBean & Al-Nassri (1988). The critical issue in
training ENN is avoiding overfitting as it reduces its capacity of generalization. If
too many neurons are used, the network has too many parameters and may overfit
the data. In contrast, if too few neurons are included in the network, it might not
be possible to fully detect the signal and variance of a complex data set. Here, the
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Fig. 4 The effect of number of hidden neurons on the ENN performance in a)
testing period for downstream (6308500) station and b) testing period for upstream
(6307830) station.

hidden node numbers of the ENN are determined using the trial and error method.
For the downstream station, optimum hidden node numbers of the ENN models
are found to vary between 2 and 6. The best way to avoid overfitting is to use lots
of training data. For noise-free data, if we have at least 5 times as many training
cases as there are weights in the network, we are unlikely to suffer from overfitting.
The other way to avoid overfitting problem is to use of different ENN structures
(Sudheer et al., 2002). In this study, different ENN structures are tried and 3-year
of flow data (1096 days) are used for training of the ENN models. The 20 weights
(3 x5+ 5 = 20) are used for the most complex ENN(3,5,1) models comprising 3
inputs, 5 hidden and 1 output nodes (input combination (v)). The training data
seem to be enough to avoid overfitting.

SRC1, SRC2, MLR and NLR formulas obtained for the downstream station

are:

S = 0.7066.Q*05% (25)
S = 0.7066C'F.Q*9%% (26)
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S =401.11.Q¢ — 362.32.Q4—1 + 0.661.5; 1 — 272.8 (27)
S =0.518.Q;%21°Q)_, 57417 (28)

CF is calculated as 1.496 in Eq. (26).

The training and test results of the optimal ENN model whose inputs are the Q,
Q:¢_1, and S;_1 compared with those of the SRC1, SRC2, MLR and NLR models
in Tab. IV for the downstream station. It can be obviously seen from this table
that the ENN model performs better than the rating curves, linear and nonlinear
regression techniques. The RMSE, MAE and E results imply that the bias term CF
increases the rating curve accuracy. The suspended sediment estimates of ENN,
SRC1, SRC2, MLR and NLR models are shown in Fig. 5 in the form of hydrograph
and scatterplot (the latter plotted as double logarithmic for better representation).
As seen from the figure (especially from the scatterplots) that the ENN model
approximates the corresponding observed suspended sediment values better than
the rating curve and regression techniques. The MLR also performs better than the
SRC models. Significantly underestimations are clearly seen for the NLR model.
Among the SRC models, the SRC2 performs better than the SRC1 model.

The estimation of total sediment load is also considered for comparison due to
its importance in reservoir management. The ENN, SRC1, SRC2 and NLR models
respectively estimate the observed total sediment load of 134689 t as 129348, 79169,
118423 and 95297 t with underestimations of 4, 41.2, 12.1 and 29.2% while the
MLR method computes the total sediment load as 162903 t, with overestimation
of 20.9%. The ENN model provides better total sediment load estimate.

For the upstream station, RMSE, MAE, R? and E of ENN models are given in
Tab. V. Here, also the ENN model provides best accuracy for the input combination
(vi).

SRC1, SRC2, MLR and NLR formulas obtained for the upstream station are:

S =0.4296.Q>19*
S = 0.4296C'F.Q* 10?2

29

30

S =131.9.Q; — 110.52.Q; 1 4 0.641.5, ; — 163.1
S = 0.991.Q7 000 QP43 54526

CF is calculated as 1.389 in Eq. (30).

The comparison of the ENN, SRC, MLR and NLR models were presented in
Tab. VI. For the upstream station, the ENN model also shows better accuracy
than the rating curve and regression techniques. Here also the SRC2 performs
better than the SRC1 model with respect to RMSE and MAE. The MLR performs
much better than the SRC models from the RMSE, R? and E viewpoints. The
suspended sediment estimates of each model and observed values are compared in
Fig. 6. It can be seen from scatterplots that the ENN model predictions are much
closer to the exact fit line than those of the SRC1, SRC2, MLR and NLR models,
especially for the high values (>100 ton/day). The MLR seems to perform better
than the SRC models. Here also the NLR gives significantly underestimations.
The ENN and MLR predictions of the total sediment load, 85731 t are 97470 and
89403 t, with overestimations error of 13.7 and 4.3%, while the SRC1, SRC2 and
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NLR yield as 59754, 82972 and 67254 t, with underestimations of 30.3, 3.2 and
21.6%, respectively. The SRC2 model estimate is closest to the observed one.

Conventionally, the current suspended sediment load is only related to the cur-
rent discharge in the rating curves. However, the current suspended sediment load
is not only depended on the discharge at the current time but also the discharges
and suspended sediments at the previous times. For that reason, if the suspended
sediment load is related to the current discharge and antecedent discharge and
suspended sediment values through a MLR, better results are obtained. However,
the MLR is incapable of setting up river discharge-sediment load relationship in
comparison to the ENN models, since the MLR technique assume linear relation-
ship amongst the variables. Such models require that the variables have normal
distribution. The ENN models seem to be more adequate than the SRC1, SRC2,
MLR and NLR for the process of establishing a rating relationship between river
discharge and suspended sediment load. Such problems arise behave in a nonlin-
ear manner. The main advantages of using ENNs are their flexibility and ability
to model nonlinear relationships. Mathematically, an ENN may be treated as a
universal approximator (ASCE Task Committee, 2000). This technique has al-
ready become a prospective research area with great potential due to the ease of
application and simple formulation.

6. Concluding Remarks

Previously given ANN-based formulations are all implicit. Therefore, explicit
neural network formulations have been proposed for modeling daily suspended
sediment-discharge relationship in the present study. The ENN is very simple and
it can be used by anyone who may be not familiar with ANNSs, in a spreadsheet on
a very simple PC or in a hand calculator. The ENN models were tested applying to
different input combinations of daily streamflow and suspended sediment load data
of two stations on Tongue River in Montana. The suspended sediment estimates
based on ENN models were compared with two different sediment rating curves
and multi-linear regression. The results obtained with ENN models were found to
be better than those obtained using the conventional rating curve, MLR and NLR
techniques. The comparison results suggested that the ENN approach may pro-
vide a superior alternative to the sediment rating curve techniques and regression
techniques used in the current study. The difficulties in estimation of suspended
sediment load using only current discharge, resulting from the hysteresis effect,
were also indicated. The MLR technique performed better than the rating curves.
The SRC2 model with a bias term is found to be much better than the unbiased
SRC1 model. The study only used data from two areas and further work using
more data from various areas may be required to strengthen these conclusions.
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