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Abstract: Simple and accurate models based on adaptive-network-based fuzzy
inference system (ANFIS) to compute the physical dimensions of open supported
coplanar waveguides are presented. The ANFIS is a class of adaptive networks
which are functionally equivalent to fuzzy inference systems. Four optimization
algorithms, hybrid learning, simulated annealing, least-squares, and genetic, are
used to determine optimally the design parameters of the ANFIS. When the per-
formances of ANFIS models are compared with each other, the best results are
obtained from the ANFIS models trained by the hybrid learning algorithm. The
results of ANFIS are compared with the results of the conformal mapping tech-
nique, the rigorous spectral-domain hybrid mode analysis, the improved spectral
domain approach, the synthesis formulas, a full-wave electromagnetic simulator
IE3D, and experimental works realized in this study.
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1. Introduction

Coplanar waveguides (CPWs) have the advantages such as low dispersion, high
flexibility in the design of characteristic impedance, and easy connection to the
shunt lumped elements, or devices without using via holes [1-14]. CPWs and
supported CPWs have received great attention due to their attractive features
over the conventional microstrip lines in designing and manufacturing microwave
integrated circuits (MICs) [1-14].

CPWs are often considered to have free space above and below the dielectric
substrate. This configuration has not been found suitable for monolithic MICs
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(MMICs), where the substrate is typically thin and fragile. A solution is to mount
the substrate directly on a conductor backed ground plane [5]. In this case, the
ground plane will support the fragile substrate, thus increasing both the mechanical
strength and the average power handling capability of the structure. However, it
has been shown in [6, 7] that the ground plane backing introduces some undesirable
effects on the CPW behaviour of the structure due to the presence of the microstrip
mode. This mode can be suppressed by increasing the substrate thickness, but
this is not always possible especially in MMIC applications where semiconductor
substrates are usually thin. An alternative solution is to mount the semiconductor
substrate on a low-permittivity material such as quartz then mount the entire
assembly on a ground plane [6]. Another solution given in [8] is to grow a high-
quality GaAs layer on a Si substrate and then mount the entire assembly on a
ground plane. In both cases [6, 8], the presence of supporting dielectric material
under the main substrate will enhance the effect of the microstrip mode [9]. Hence,
supported CPWs with infinitely thick supporting dielectric material under the main
substrate have been proposed by Bedair and Wolff [10]. The thickness of the
supporting dielectric material in supported CPW is large enough so that the effect
of microstrip mode may be ignored.

Bedair and Wolff [10] have obtained the analytical formulas by using the con-
formal mapping technique (CMT) for computing the characteristic parameters of
supported CPWs. In [10], the results of CMT were compared with results of rig-
orous spectral-domain hybrid mode analysis (RSDHMA). The quasi-TEM param-
eters of supported CPW configurations have been determined by using a numeri-
cally improved spectral domain approach (ISDA) [11]. The effective permittivities
and characteristic impedances of the overlayed supported asymmetric CPWs were
calculated in [12]. The artificial neural networks have been used to calculate the
characteristic parameters of open supported CPWs (OS-CPWs) [13]. The formulas
were proposed in [14] for synthesis of OS-CPWs.

Artificial neural networks (ANNs) [15] have been recently recognized as a fast
and flexible tool in the analysis and design of electronic, electromagnetic and
biomedical devices and circuits [13, 16-23]. They are efficient alternatives to con-
ventional methods such as numerical modelling methods, analytical methods and
empirical models. ANNs models have been used for computing the electroencen-
phalogarphy (EEG) forward solutions [16]. Feed forward neural networks have
been proposed for solving the nonlinear forward problems in electrical capacitance
tomography sensor systems [17]. Electromagnetically trained artificial neural-
network (EM-ANN) models have been developed for CPW components suitable
for use in interactive MMIC design and optimization [18]. Various types of CPW
structures have been analyzed by using the ANNs [19-23]. Fuzzy inference systems
(FISs) have been proven to be strong tools and reliable models for tuning and de-
sign of microwave circuits [24-27]. Miraftab and Mansour have applied the FISs
to the design of Chebyshev filters, elliptic filter, microstrip coupler, and microstrip
filters [24-27]. In this work, a method based on adaptive-network-based fuzzy in-
ference system (ANFIS) [28, 29] is presented to calculate accurately the physical
dimensions of OS-CPWs for the required design specifications. ANFIS combines
the benefits of ANNs and FISs in a single model. It has the advantages of expert
knowledge of FISs and learning capability of ANNs. ANFIS is a class of adaptive
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networks which are functionally equivalent to FISs. The FIS is a popular computing
framework based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy
reasoning. The ANFIS can simulate and analysis the mapping relation between
the input and output data through a learning to determine optimal parameters of
a given FIS. Fast and accurate learning, excellent explanation facilities in the form
of semantically meaningful fuzzy rules, the ability to accommodate both data and
existing expert knowledge about the problem, and good generalization capability
features have made neuro-fuzzy systems popular in recent years [28-43]. In this pa-
per, four different optimization algorithms, hybrid learning (HL) algorithm [28, 29],
simulated annealing (SA) [44] algorithm, least-squares (LSQ) algorithm [45, 46],
and genetic algorithm (GA) [47, 48], are used to train the ANFIS. These optimiza-
tion algorithms are employed to obtain better performance and faster convergence
with simpler structure. The validity and accuracy of the proposed ANFIS models
are verified by comparing their results with the results of CMT [10], RSDHMA [10],
ISDA [11], synthesis formulas [14], a full-wave electromagnetic simulator IE3D [49],
and experimental works realized in this study.

2. Adaptive – Network-Based Fuzzy Inference
System (ANFIS)

The ANFIS [28, 29] is a class of adaptive networks which are functionally equivalent
to FISs. The selection of the FIS is the major concern in the design of an ANFIS.
In this paper, the first-order Sugeno fuzzy model is used to generate fuzzy rules
from a set of input-output data pairs. Among many FIS models, the Sugeno fuzzy
model is the most widely applied one for its high interpretability and computational
efficiency, and built-in optimal and adaptive techniques.

A typical architecture of ANFIS is shown in Fig. 1, in which a circle indicates a
fixed node, whereas a square indicates an adaptive node. For simplicity to describe
the procedure of the ANFIS, we assume that the FIS under consideration has two
inputs x and y and one output z. For a first-order Sugeno fuzzy model, a common
rule set with two fuzzy if-then rules can be written as

Rule 1: If x is A1 and y is B1, then z1 = p1x+ q1y + r1, (1)

Rule 2: If x is A2 and y is B2, then z2 = p2x+ q2y + r2 (2)

where Ai and Bi are the fuzzy sets in the antecedent, and pi, qi and ri are the
design parameters that are determined during the training process. As in Fig. 1,
the ANFIS model has five layers. Each node in the first layer employs a node
function given by

O1
i = µAi(x), i = 1, 2 (3a)

O1
i = µBi−2(y), i = 3, 4 (3b)
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Fig. 1 Structure of an ANFIS model.

where µAi (x) and µBi−2(y) can adopt any fuzzy membership function (MF). In
this paper, the following generalized bell (Gbell) MF is used.

Gbell (x; ai, bi, ci) =
1

1 +
∣∣∣x−ci

ai

∣∣∣2bi (4)

where {ai, bi, ci} is the parameter set that changes the shapes of the MF. Parame-
ters in this layer are referred to as the premise parameters.

Each node in the second layer calculates the firing strength of a rule via multi-
plication:

O2
i = ωi = µAi(x)µBi(y), i = 1, 2 (5)

The ith node in the third layer calculates the ratio of the ith rule’s firing strength
to the sum of all rules’ firing strengths:

O3
i = ωi =

ωi

ω1 + ω2
, i = 1, 2 (6)

where ωi is referred to as the normalized firing strengths.
In the fourth layer, each node has the following function:

O4
i = ωizi = ωi(pix+ qiy + ri), i = 1, 2 (7)

where ωi is the output of layer 3, and {pi, qi, ri} is the parameter set. Parameters
in this layer are referred to as the consequent parameters.

The single node in the fifth layer computes the overall output as the summation
of all incoming signals, which is expressed as:

O5
1 =

2∑
i=1

ωizi =
ω1z1 + ω2z2
ω1 + ω2

(8)
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The main objective of the ANFIS is to optimize the parameters of the fuzzy system
parameters by applying an optimization algorithm using input-output data sets.
The parameter optimization is done in a way such that the error measure between
the target and the actual output is minimized. During the optimization process of
the ANFIS, the premise parameters in the layer 1 and the consequent parameters
in the layer 4 are tuned until the desired response of the FIS is achieved. In this
paper, four different optimization algorithms, HL, SA, LSQ, and GA, are used to
identify the parameters of ANFIS.

3. ANFIS Models for the Synthesis of OS-CPWs

The cross-section of an OS-CPW is illustrated in Fig. 2. In this figure, s is the
central strip width, w is the slot width, εr1 is the relative permittivity of sup-
porting dielectric substrate, and h is thickness of the main substrate with relative
permittivity εr2.

It is clear from the literature [10] that five parameters εr1, εr2, h, s, and w are
needed to determine the characteristic impedance of an OS-CPW. The first design
step is the selection of a suitable main substrate (εr2, h) and supporting substrate
(εr1) for an OS-CPW having a required characteristic impedance Z0. Then, the
physical dimensions w and s are determined. In this work, two simple and accurate
ANFIS models are proposed for computing the slot and strip widths of OS-CPWs.
The inputs of the first ANFIS model are εr1, εr2, Z0, and s/h, and the output is slot
width w, as shown in Fig. 3(a). The first ANFIS model calculates the slot width
w for a given main substrate (εr2) and supporting substrate (εr1) and a required
characteristic impedance Z0 by choosing an appropriate normalized strip width
s/h. The inputs of the second ANFIS model are εr1, εr2, Z0, and w/h, and the
output is strip width s, as shown in Fig. 3(b). The second ANFIS model computes
the strip width s for a given main substrate (εr2) and supporting substrate (εr1)
and a required characteristic impedanceZ0 by choosing an appropriate normalized
slot width w/h.

The accuracy of a properly trained ANFIS depends on the accuracy and the
effective representation of the data used for its training. A good collection of

Fig. 2 Cross-section of an OS-CPW.
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Fig. 3 ANFIS models for the synthesis of OS-CPWs a) First ANFIS model and
b) Second ANFIS model.

the training data, i.e., data which is well-distributed, sufficient, and accurately
simulated, is the basic requirement to obtain an accurate model. If the training
data sets are insufficient or do not cover all necessary representative features of
the problem, it can cause large errors with testing data sets. If the training data
sets are too much, this may cause overfitting and training may take quite a long
time. There are two types of data generators for microwave applications. These
data generators are measurement and simulation. The selection of a data generator
depends on the application and the availability of the data generator. The training
data sets used in this article have been obtained from the CMT [10]. 2732 data
sets are used to train the ANFIS models. Data sets are in the range of 2 ≤ εr1 ≤
10, 10 ≤ εr2 ≤ 20, 0.1 ≤ s/h ≤ 4, 0.1 ≤ w/h ≤ 1, 20 µm ≤ h ≤ 2000 µm, and the
respective characteristic impedance is 19 Ω ≤ Z0 ≤ 117 Ω. 562 checking data sets
obtained from CMT [10] are used to control the potential for the ANFIS models
overfitting. The type of MFs for the input variables of ANFIS models is selected
by using the checking errors. 971 data sets containing the results of CMT [10],
RSDHMA [10], ISDA [11], synthesis formulas [14], IE3D [49], and experimental
works realized in this study are used to test the ANFIS models. Checking and
testing data sets are completely different from training data sets.

Training the ANFIS models with the use of an optimization algorithm to cal-
culate slot widths w or the strip widths s involves presenting them sequentially
and/or randomly with different sets (εr1, εr2, Z0, and s/h or w/h) and corre-
sponding physical dimensions (w or s). Differences between the target output and
the actual outputs of the ANFIS are evaluated by the optimization algorithm. The
adaptation is carried out after the presentation of each set (εr1, εr2, Z0, s/h or
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w/h) until the calculation accuracy of the ANFIS is deemed satisfactory according
to some criterion or when the maximum allowable number of epochs is reached.

The input and output data sets are scaled between 0 and 1 before training. The
number of epoch is 1000 for training. The number of MFs is chosen as two for all
input variables. The number of rules is then 16 (2×2×2×2 = 16). The type of MFs
for the input variables is selected as the generalized bell. It is clear from Eq. (4) that
the generalized bell MF is specified by three parameters. Therefore, ANFIS used
here contains a total of 104 fitting parameters, of which 24 (2×3+2×3+2×3+2×3 =
24) are the premise parameters and 80 (5×16 = 80) are the consequent parameters.

It is well known that ANFIS has one output. For this reason, in this paper
two separate ANFIS models with identical structure are used for calculating the
slot and strip widths. Although the number of inputs, the number of MFs, and
the types of MFs are the same for each ANFIS model, the values of premise and
consequent parameters for each ANFIS model are different.

4. Results and Discussion

In this paper, two simple and accurate ANFIS models are proposed for OS-CPW
synthesis. In order to check the accuracy of the method proposed in this paper, test
results of ANFIS models are compared with the results of CMT [10], RSDHMA
[10], ISDA [11], synthesis formulas [14], a full-wave electromagnetic simulator IE3D
[49], and experimental works realized in this study.

The HL, SA, LSQ, and GA are used to determine optimally the design parame-
ters of the ANFIS models. The training and test average percentage errors (APEs)
of the first and second ANFIS models are given in Tab. I for computing the slot
and strip widths of OS-CPWs. When the performances of ANFIS models are com-
pared with each other, the best results are obtained from the models trained with
the HL algorithm. Among the ANFIS models, the worst results are obtained from
the models trained with the GA. The APEs values clearly show that the ANFIS
models trained by HL algorithm can be used in computing the physical dimensions
of OS-CPWs.

Optimization First ANFIS Second ANFIS
Algorithm Model (w) Model (s)

Training Test Training Test
HL 0.2005 0.2193 0.4322 0.4856
SA 4.0259 4.1936 5.4603 5.4330
LSQ 10.4860 10.9179 7.9451 8.0792
GA 15.6200 17.0074 15.9932 16.0257

Tab. I Training and test average percentage errors (%) of ANFIS models.

In order to show clearly the validity and accuracy of the ANFIS models trained
by HL algorithm, the results of the first and second ANFIS models are compared
with the results of quasi-static analysis [10] in Figs. 4 and 5. Figs. 4 and 5, re-
spectively, illustrate the quasi-static analysis [10] contours, the slot width w results
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obtained by first ANFIS model and the strip width s results obtained by second
ANFIS model for OS-CPWs with GaAs (εr2 = 12.9 and h= 200 µm) supported
by quartz (εr1 = 3.78) and a required characteristic impedance. It is apparent
from Figs. 4 and 5 that there is a very good agreement between the results of
quasi-static analysis [10] and the ANFIS models. Similar contours are achieved for
the different dielectric substrate materials (2 ≤ εr1 ≤ 10 and 10 ≤ εr2 ≤ 20), but
they are not given here to avoid repetition.

The characteristic impedances computed by using the results of ANFIS models
trained by the HL algorithm are compared with those of quasi-static analysis [10]
for OS-CPWs with hypothetical substrate (εr2 = 20 and h= 250 µm) supported by
alumina (εr1 = 10) in Fig. 6. In this figure, the characteristic impedance results
are plotted with respect to the shape ratio (s + w)/h for s/h= 0.3, 1, 2.5, and
4. It can be seen from Fig. 6 that the results of the ANFIS models are in very
good agreement with the results of quasi-static analysis [10]. It is also evident from
this figure that there is a very good self-consistent agreement between the first and
second ANFIS models.

In order to make a further comparison, the given geometrical values, the geo-
metrical values calculated from the first and second ANFIS models, and the char-
acteristic impedances determined by using the geometrical values calculated by the
ANFIS models trained by the HL algorithm, CMT [10], RSDHMA [10], and ISDA
[11] are listed in Tabs. II–IV for three different cases of OS-CPWs. These cases
are: hypothetical substrate (εr2 = 20) supported by alumina (εr1 = 10), GaAs (εr2
= 12.9) supported by quartz (εr1 = 3.78), and GaAs (εr2 = 12.9) supported by
alumina (εr1 = 10). The results of the synthesis formulas [14] in the literature are
also given in these tables for comparison. In Tabs. II–IV, w’ and s’ represent the
given geometrical values of slot and strip widths of OS-CPWs, respectively. Z0(w’,
s’) represents the characteristic impedance values obtained from CMT, RSDHMA,
and ISDA by using the given geometrical values w’ and s’. w∗ and s∗ represent
the slot and strip widths obtained from the first and second synthesis formulas [14]
by using the s’ and w’, respectively. Z0(w

∗, s’) and Z0(w’, s
∗) are the final-check

quasi-static analysis results calculated by using the w∗ and s∗ values, respectively.
w and s represent the slot and strip widths obtained from the first and second
ANFIS models by using the s’ and w’, respectively. Z0(w, s’) and Z0(w’, s) are
the final-check quasi-static analysis results calculated by using the w and s values,
respectively. As it can be seen from Tabs. II–IV, there is a very good agreement
between the geometrical values (w and s) calculated by the ANFIS models and
the given geometrical values (w’ and s’). This very good agreement supports the
validity of the proposed ANFIS models. The accurate determination of the geo-
metrical values (w and s) by using ANFIS models leads to good accuracy in the
calculation of the characteristic impedances. It is also clear from Tabs. II–IV that
ANFIS models provide more accurate results than the synthesis formulas presented
in [14].

In this paper, five different OS-CPWs are fabricated on RT/duroid laminates
(εr1 = 6.15, εr2 = 10.2, and h = 1270 µm) by using the printed circuit board
(PCB) excavation technique. The characteristic impedances of these OS-CPWs
are calculated from the measured S-parameters for 2 GHz [3]. We also calculated
the characteristic impedances by using a full-wave electromagnetic simulator IE3D
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Fig. 4 Comparison of the slot width (w) results obtained by using the first ANFIS
model and the quasi-static analysis [10] contours for OS-CPWs (εr1 = 3.78, εr2 =

12.9, and h = 200µm).

Fig. 5 Comparison of the strip width (s) results obtained by using the second ANFIS
model and the quasi-static analysis [10] contours for OS-CPWs (εr1 = 3.78, εr2 =

12.9, and h = 200µm).
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[49]. In Tab. V, the results of the ANFIS models trained by the HL algorithm are
compared with the results of CMT [10], synthesis formulas [14], IE3D [49], and
experimental works realized in this study. As it can be seen from Tab. V, a good
agreement is obtained between the theoretical and experimental results.

A prominent advantage of ANFIS computation is that, after proper training,
an ANFIS completely bypasses the repeated use of complex iterative processes for
new cases presented to it. Thus, the ANFIS is very fast after training. The AN-
FIS structure can be implemented in real time by using state-of-the art hardware
devices, such as FPGAs (Field Programmable Gate Array). In this way, the com-
putation time of the system is limited only by the response time of the FPGA,
which is in the order of a few microseconds.

5. Conclusion

In this paper, simple and accurate ANFIS models are presented for computing the
physical dimensions of OS-CPWs. The HL, SA, LSQ, and GA are used to identify
the parameters of ANFIS. The best result is obtained from the ANFIS trained by
HL algorithm. The results of ANFIS are in good agreement with the measurements,
and better accuracy with respect to the previous synthesis formulas is obtained.
The ANFIS models allow the designers to determine the physical dimensions of OS-
CPWs for the required design specifications by a very simple and convenient way,

Fig. 6 Comparisons of the characteristic impedances calculated by using the result
of the first ANFIS model for a given s; the result of the second ANFIS model for a
given w; and the quasi-static analysis [10] for OS-CPWs (εr1 = 10, εr2 = 20, and

h= 250 µm).
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rather than by the iteration approach of applying analysis technique. ANFIS is a
very powerful approach for building complex and nonlinear relationship between a
set of input and output data. The high-speed real-time computation feature of the
ANFIS recommends its use in microwave CAD programs.
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