
GMDH METHOD WITH GENETIC

SELECTION ALGORITHM AND CLONING

Marcel Jiřina∗, Marcel Jiřina jr†

Abstract: The GMDH MIA algorithm uses linear regression for adaptation. We
show that Gauss-Markov conditions are not met here and thus estimations of net-
work parameters are biased. To eliminate this we propose to use cloning of neu-
ron parameters in the GMDH network with genetic selection and cloning (GMC
GMDH) that can outperform other powerful methods. It is demonstrated on tasks
from the Machine Learning Repository.

Key words: Multivariate data, GMDH, linear regression, Gauss-Markov conditions,
cloning, genetic selection, classification

Received: July 14, 2009
Revised and accepted: September 17, 2013

1. Introduction

Classification of multivariate data into two or more classes is an important problem
of data processing in many different fields. For the classification of multivariate
data into two classes the well-known GMDH MIA (group method data handling
multilayer iterative algorithm) [1], [4], [5], [6], [7], [10], [20], [21] is often used.
This approach – in contrast to others – can provide even a closed form polynomial
solution [2].

Each neuron of the GMDH network has a quadratic transfer function of two
input variables that has six parameters. The process of adaptation of the GMDH
network is based on standard linear regression.

However, it can be found that the mathematical conditions for linear regression
[19] to get unbiased results are not fulfilled. It can be found that all neurons have
slightly biased parameters and do not give an optimal solution.

Here we introduce a cloning procedure for generating clones of a given neuron
that may be better than the original “parent” neuron with the parameters stated

∗Marcel Jǐrina
Institute of Computer Science AS CR, Pod Vodarenskou vezi 2, 182 07 Prague 8 – Liben, Czech
Republic, E-mail: marcel@cs.cas.cz, http://www.cs.cas.cz /∼jirina

†Marcel Jǐrina jr
Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 160 00
Praha 6, Czech Republic, E-mail: marcel.jirina@fit.cvut.cz

c⃝CTU FTS 2013 451



Neural Network World 5/13, 451-464

by linear regression. We show that cloning together with the use of genetic selection
procedure leads to a new type of GMDH algorithm.

We found that cloning is a simple and effective method for obtaining a less
biased solution and faster convergence than that obtained by standard linear re-
gression. At the same time, the use of genetic selection procedure allows all neurons
already generated to remain potential parents for a new neuron. Thus the problem
of deleting excessive neurons during learning disappears.

We also discuss several causes for biased results of linear regression and show
influence of heteroscedasticity too.

Our results demonstrate that these influences can be easily eliminated by a
simple cloning procedure and faster convergence and so better behavior of GMDH
algorithm can be obtained.

We suppose that our finding of causes for biased linear regression in the GMDH
method and its solution by cloning may lead to finding other more effective proce-
dures based e.g. on robust approaches.

2. GMDH network

The standard GMDH MIA method has been described in many papers since 1971
e.g. in [1], [4], [5], [6], [7], [10], [20], [21]. The basis of the GMDH MIA is that
each neuron in the network receives input from exactly two other neurons with
the exception of neurons representing the input layer. The two inputs, x and y
are then combined to produce a partial descriptor based on the simple quadratic
transfer function (the output signal is z):

z = a+ b · x+ c · y + d · x2 + e · y2 + f · x · y

where coefficients a, . . ., f are determined by linear regression and are unique for
each neuron. The coefficients can be thought of as analogous to weights found in
other types of neural networks.

The network of transfer functions is constructed one layer at a time. The first
network layer consists of the functions of each possible pair of n input variables
(zero-th layer) resulting in n · (n−1)/2 neurons. The second layer is created using
inputs from the first layer and so on. Due to the exponential growth of the number
of neurons in a layer, after finishing the layer, a limited number of best neurons
is selected and the other neurons are removed from the network. In the standard
GMDH MIA algorithm all possible pairs of neurons from the preceding layer (or
inputs when the first layer is formed) are taken as pairs of parents. The selection
consists of selection of a limited number of the best descendants, “children”, while
the others are removed after they have arisen and were evaluated. In this way
all variants of GMDH MIA are rather ineffective as there are a lot of neurons
generated, evaluated and then immediately removed with no other use.

There are several works dealing with the genetic optimization of GMDH MIA
method [7], [8], [9]. These approaches use GMDH networks of limited size as to
the number of neurons in a layer and the number of layers. Some kind of random-
ization must be used to get a population of GMDH networks because the original
GMDH MIA neural network is purely deterministic. Individuals in population are

452



Jǐrina M.: GMDH method with genetic selection algorithm and cloning

subjects of genetic operations of selection, crossover and mutation. As each GMDH
network represents a rather general graph, there must be procedures for crossover
of graphs similarly as in genetically optimized other kinds of neural networks, e.g.,
NNSU [10]. For example in [18] the NN architecture is built by adding hidden
layers to the network, while configuration of each neuron connection is defined by
means of GA. An elitist GA with binary encoding, fitness proportional selection,
standard operators of crossover and mutation are used in the algorithm. Differ-
ent genetically optimized GMDH networks in literature differ in the ways how a
population, especially the first population of networks, is formed and by variants
of genetic procedures used. It seems, however, that up to now no approach in
genetically optimized GMDH networks has brought essentially better results than
the standard GMDH MIA algorithm. On the other hand, genetically optimized
GMDH networks eliminate the necessity to set up in advance at least the number
of the best neurons left in each layer. In this way, such GMDH networks became
even less “parameter-less” than before.

The difficult problem with the genetically optimized GMDH method lies in the
fact that a population of GMDH networks must be generated. There must be
crossover of individuals. Individuals are networks, which generally have different
graphs. The crossover of two different graphs is a rather complex task. Its solution
is known and used also in other genetically optimized neural networks [10], [15],
[16], [17].

3. Linear regression

Usually – and we do it as well – the parameters of the new neuron are set up by
linear regression, i.e. with a least mean squared error method. This method uses
the following Gauss-Markov assumptions [19]:

• The random errors have an expected value of 0.

• The random errors are uncorrelated.

• The random errors are homoscedastic, i.e., they all have the same variance.

The errors are not assumed to be normally distributed, nor are they assumed to
be independent, nor are they assumed to be identically distributed.

We suspect that due to the nonlinearity of the problem as well as the GMDH
network, the assumption of homoscedasticity is not met especially for the classifica-
tion problem. In classification problems each class has a different origin from which
a different distribution of regression errors may arise. We show here in an example
that the Gauss-Markov assumptions of an expected value of 0 and of homoscedas-
ticity need not be fulfilled in GMDH network. Therefore the solution obtained by
the least mean squared error method need not be the optimal solution. The truly
optimal solution may lie somewhere in the neighborhood of the solution found by
the LMS method.

Let us suppose the use of the GMDH network for a two-class classification
problem, i.e. data samples belong to one or the other class. Two-class data are
rather often in practice. For illustration we use breast cancer data from UCI

453



Neural Network World 5/13, 451-464

Machine Learning Repository [13]. Classes give a diagnosis, malignant (Class 0) or
benign (Class 1). In Fig. 1 histograms of residuals, i.e. histograms of errors for one
neuron and for both classes separately and for all data are depicted. There it can be
seen that first, the expected value apparently is not zero, and second, residuals are
heteroscedastic. The heteroscedasticity originates in the fact that there is data of
two classes, each of different statistics. On the other hand, heteroscedasticity does
not cause biased results per se. In only enlarges variation of estimate. The GMDH
neuron is highly nonlinear and thus even signal with any symmetrical distribution
is transformed so that resulting distribution is asymmetrical and results in biased
mean after. Negative influence of the heteroscedasticity lies in larger variation and
after nonlinear transformation in lager bias. It is shown in Fig. 2, where histograms
of input signals to neuron analyzed are depicted.

Fig. 1 Histograms of residuals for both classes (Class 0 – malignant, Class 1 –
benign) and for both classes together for the breast cancer data classification problem

[13].

Fig. 2 Histograms of input signals for both classes (Class 0 – malignant, Class 1 –
benign) and for both inputs of the neuron for the breast cancer data classification

problem [13].

454



Jǐrina M.: GMDH method with genetic selection algorithm and cloning

It can be seen that classes have very different statistics. After polynomial
transformation according to (1) the difference increases because the target of the
transformation is to get the output as close as possible to a value of 0 for class
“malignant” and to a value of 1 for class “benign”. From this difference follows
also the difference in the statistics of residuals – see Fig. 1 – after transformation
(1) where coefficients were set up by linear regression.

Different approaches can be used to find a better solution than the solution
obtained by linear regression. The solution obtained by linear regression can be
used as the first approximation. We use cloning, i.e. we generate neurons with the
same inputs and with parameters a, . . ., f slightly modified with respect to their
original values.

4. GMDH with genetic selection

Here we describe the approaches which result in our construction of a genetically
modified GMDH network with cloning. In fact, the network we propose is not
genetically optimized in a standard sense as there is no population of GMDH
networks and no crossing. The genetic selection and cloning regard the population
of neurons of one GMDH network, not GMDH networks.

4.1 The learning set

We assume the n-dimensional real valued input and a one-dimensional real val-
ued output. The learning set consists of n + 1 dimensional vectors (xi, yi) =
(x1i, x2i, . . . , xni, yi), i = 1, 2, . . . , N where N is the number of learning samples
(patterns or examples). The learning set can be written in the matrix form

[X,Y ] .

The matrix X has n columns and N rows; Y is a column vector of N elements.
In the GMDH the learning set is usually divided into two disjoint subsets, the
training set (or construction or setup set) and the so-called validation set. In the
learning process the former one is used for setting up the parameters of neurons
of the newly created neuron, the latter for the evaluation of an error of a newly
created neuron. Thus N = Ns + NV , where Ns is the number of rows used for
setting up the parameters of neurons (the training set), and NV is the number of
rows used for error evaluation during learning (the validation set).

4.2 New genetically modified GMDH network algorithm

A very interesting and in principal simple application of selection process to GMDH
MIA was published by Hiasaat and Mort in 2004 [8]. Their method does not
remove any neuron during learning. Thus it allows unfit individuals from early
layers to be incorporated at an advanced layer where they generate fitter solutions.
Secondly, it also allows those unfit individuals to survive the selection process
if their combinations with one or more of the other individuals produce new fit
individuals, and thirdly, it allows more implicit non-linearity by allowing multi-layer

455



Neural Network World 5/13, 451-464

variable interaction. The GMDH algorithm is constructed in the same manner as
the standard GMDH algorithm except for the selection process. In order to select
the individuals that are allowed to pass to the next layer, all the outputs of the
GMDH algorithm at the current layer are entered as inputs in the GP algorithm.
It was shown in [8] that this approach can outperform the standard GMDH MIA
when used in the prediction of two daily currency exchange rates. No other test
of this approach classification ability was performed in the literature cited. The
GMDH network [8] has a layered structure where input to the neuron can be output
of any already existing layers or even network inputs. To keep a layered structure
in this context seems rather complicated. One can use generalization where a new
neuron input can be the output of any already existing neuron or even network
input. Thus the strict layered structure disappears.

An operation of a crossover in the GMDH with genetic selection is, in fact,
no crossover in the sense of combining two parts of the parents’ genomes. In our
approach eq. (1) gives a symmetrical procedure of mixing the parents’ influence
but not their features, parameters. The parameters a, . . ., f , see (1), are stated
separately.

4.3 Selection procedure

In genetic algorithms in the selection step there is a common approach that the
probability of being a parent is proportional to the value of the fitness function.
Just this approach is used here. The fitness is simply a reciprocal of the mean
absolute error on the validation set.

The initial state form n inputs only, there are no neurons. In this state two
different inputs are selected randomly with equal probability as parents of a new
neuron.

If there are k neurons already, the probability of a selection from inputs (pi)
and from neuron outputs (pn) is given by

pi = n/(n+ k),

pn = k/(n+ k)

for n/(n + k) > p0, where p0 is minimal probability that one of the network
inputs will be selected as a parent of a new neuron; we found p0 = 0.1 as optimal.
Otherwise, i.e. if n/(n+ k) ≤ p0

pi = p0,

pn = (1− p0).

The probability that an input will be selected as a parent of a new neuron is then
pi/n.

The probability that an already existing neuron will be selected should be in-
versely proportional to the value of fitness function. The fitness function is equal
to the reciprocal error on the verification set. Let ε(j) be the mean error of the
j-th neuron on the validating set. The probability that neuron j will be selected is:

pn(j) = (1− pi)
1/ε(j)

NT∑
s=1

1/ε(s)

.

456



Jǐrina M.: GMDH method with genetic selection algorithm and cloning

Technically, define first a number ri0 = 0, and then number ri1 = pi/n is assigned
to the first network input, number ri2 = ri1 + pi/n is assigned to the second
network input and so on until number rin = pi is assigned to the last network
input. Then number rn1 = rin + pn(1) is assigned to the first neuron (j = 1),
number rn2 = rn1 + pn(2) is assigned to the second neuron a and so on. After it
a random number α between 0 and 1 with a uniform distribution is generated. If
there is rik1 ≤ rik for some k then input k is selected as a parent. Similarly if there
is rnk1 ≤ rnk then neuron k is selected as a parent. This is repeated once more for
another random number to get two parents of a new neuron. Moreover, it must
be assured that the same neuron or the same input is not selected as the second
parent of the new neuron.

After the new neuron is formed and evaluated it can immediately become a
parent for another neuron. Thus the network has no explicit layers. Each new
neuron can be connected to any input or already existing neuron.

The computation of six parameters a, . . ., f , see (1), of the new neuron is the
same as in the GMDH MIA algorithm.

A new neuron added need not be better than all others. Therefore, the index
and error value of the best neuron is stored until a better neuron arises. Thus
every time there is information about the best neuron, i.e. the best network’s
output without need of sorting. After learning, this output is used as a network
output in the recall phase.

4.4 Cloning and mutation mechanism

From the ideas of artificial immune systems (AIS) [11] we use results of clonal
selection theory, especially a cloning procedure derived from Simple Clonalg algo-
rithm [12]. This procedure evaluates antibodies, randomly produces new antibod-
ies, makes them maturate and lets the best of them survive.

In biological systems, clones are not exact copies of the parent cell because some
mutations are in effect. In the case of GMDH cloning, a similar idea is used. The
GMDH cloning consists of two operations: an exact copy of a mother (parent) cell
and a mutation that slightly modifies newly generated child cell.

The actual cloning follows the main idea of the Simple Clonalg algorithm [12].
Cloning is made by copying the best neuron. Mutation is achieved such that to each
parameter a, . . ., f a randomly generated value from normal distribution with zero
mean and 1/6 of the original parameter’s value as a standard deviation is added.
The original values of the parameters are thus slightly modified to fluctuate around
the original values of respective parameters of the best neuron.

The actual algorithm of cloning runs this way:

BEGIN

Let the Best GMDH Neuron with its parents (i.e. input signals

from In 1, In 2) and with six parameters a, b, ..., f is given

REPEAT

Make a copy of the Best Neuron. The clone keeps the same

inputs In 1 and In 2.

Mutate parameters a, ..., f, i.e. add a randomly chosen

457



Neural Network World 5/13, 451-464

value from normal distribution N(0,(parameter/6)2) to each

respective original parameter’s value.

Evaluate fitness of this clone neuron.

If the clone behaves better than the Best Neuron, break

this clone generating cycle and start this cloning algorithm

from the beginning with the clone (the new Best Neuron

again).

UNTIL a terminal criterion is satisfied or the maximum number

of clones is reached.

END

4.5 Error development, and stopping rule

From the new strategy of network building in the GMC-GMDH method there also
follows a stopping rule different from searching for minimal error on the validating
set as in the original GMDH MIA method. In our case error on the validating set
for the best neuron monotonously decreases having no minimum. On the other
hand, the indexes of the best neurons became rather distant. For illustration see
Figs. 4 and 5. The process can be stopped either when a very small change in
error is reached, or too many new neurons are built without the appearance of a
new best neuron or when a predefined number of neurons is depleted.

4.6 Pruning

After learning the best neuron and all its ancestors have their role in the network
function. All others can be removed.

Pruning reduces the size of the network graph to necessary neurons (nodes)
and edges. In the end, the network has no clear layered structure like a network
generated by the original GMDH MIA algorithm and most of the other GMDH
algorithms including those genetically optimized.

4.7 Recall

After learning the resulting network is a feed-forward network. When a sample
is applied to inputs, the outputs of individual neurons are computed successively
according to their order numbers. Thus at any time all information needed for a
neuron’s output computation is known. The last neuron is the best neuron and its
output is the output of the whole network. If the network is used for approximation
or prediction, the output only gives the approximation of the value desired. If the
network is used as a two class classifier, one must set up proper threshold θ and the
output value larger than or equal to this threshold means that the sample applied
belongs to one class or it belongs to the other class. The value of threshold can be
tuned with respect to classification error or to other features of the classifier.

458



Jǐrina M.: GMDH method with genetic selection algorithm and cloning

5. Performance analysis

The classification ability of the genetically modified GMDH algorithm with cloning
(GMC GMDH) was tested using real-life tasks from the UCI Machine Learning
Repository [13]. We do not describe these tasks in detail here as all of them
can be found in [13]. Main characteristics are summarized in Table 1. All the
tasks are classification tasks to two classes with a different number of features and
samples as well. These tasks serve as classification benchmarks for the proposed
genetically modified GMDH algorithm. For each task the same approach to testing
and evaluation was used as described in [13] for other methods. We also show the
convergence of the learning process.

Dimension Total Learning Test Cross
Data set (attributes, Classes samples set set validation

features) size size
German 24 2 1000 800 200 1
Adult 14 2 45222 30162 15060 1
Brest CW 30 2 424 212 212 1
Shuttle-small 9 2 5800 3866 1934 1
Spam 57 2 4601 3064 1537 1
Splice 60 3 3175 900 100 10
Vote 15 2 435 300 135 1

Tab. I Characteristics of datasets used for evaluation of the classification ability
of the GMC GMDH algorithm.

The experiments described below show that our genetically modified GMDH
algorithm with cloning (GMC GMDH) outperforms 1-NN method in most cases,
in many cases outperforms näıve Bayes method and also k-NN method where k
equals to the square root of the number of training set points.

For running the GMC GMDH program default parameters were used as fol-
lows for all tasks: No. of neurons generated for stopping computation was 10000.
Probability that the new neuron’s input was one of the input signals was 10 %,
probability that the new neuron’s input was one of the already existing neurons
was 90 %. Maximal number of clones generated from one parent neuron was lim-
ited to int(sqrt(No. of neurons generated up to now)). For all methods optimal
threshold θ for minimal error was used. Fitness function was the reciprocal of the
mean absolute error. An experiment was done also with fitness function equal to
the reciprocal of the square of the mean absolute error to make lower the relative
probability that a bad neuron is selected as a parent for a new neuron.

In Tab. II the results are shown together with the results for four other well-
known and very often used classification methods. In the second column the cross
validation factor is given. The methods for comparison are

1-NN – standard nearest neighbor method

Sqrt-NN – the k-NN method with k equal to the square root of the number
of samples of the learning set

459



Neural Network World 5/13, 451-464

Bayes – the näıve Bayes method using ten bins histograms

LWM1 – the learning weighted metrics method [14] modified with nonsmooth
learning process.

These results are also depicted in digest form in Fig. 3.

Algorithm
Data set 1-NN sqrt-NN Bayes LWM1 GMC GMDH GMC GMDH 2
German 0.4077 0.2028 0.2977 0.2814 0.2947 0.2617
Adult 0.2083 0.2124 0.1637 0.1717 0.1592 0.1562
Brest CW 0.0479 0.0326 0.0524 0.0454 0.0419 0.0436
Shuttle-small 0.0259 0.0828 0.1294 0.0310 0.0259 0.0465
Spam 0.0997 0.1127 0.1427 0.1074 0.1008 0.0917
Splice 0.4035 0.3721 0.2866 0.2587 0.1309 0.1339
Vote 0.1053 0.0602 0.0977 0.0741 0.0667 0.0741

Tab. II Classification errors calculated as a simple ratio of a number of misclassi-
fied cases to a total number of cases on the test set for four methods on some data
sets from UCI MLR. GMC GMDH uses fitness function equal to the reciprocal of
the mean absolute error, and GMC GMDH 2 uses fitness function equal to the re-

ciprocal of the mean squared error.

Fig. 3 Classification errors for four methods on some data sets from the UCI MLR.
Note that for Shuttle small data the errors are ten times enlarged in this graph. In
legend GMC GMDH 2 means GMC GMDH method with fitness equal to the recip-

rocal of square of the mean absolute error.

460



Jǐrina M.: GMDH method with genetic selection algorithm and cloning

The learning process of the GMC GMDH network is stable and convergent.
In Figs. 4 and 5 successive lowering of error is depicted. The error is stated
on the validating set for data VOTE from UCI MLR. In contrast to the GMDH
MIA algorithm there is no minimum and the stopping rule here is based on the
exhausting of a total number of neurons given in advance.

Fig. 4 Error on the validating set count of best neurons successively found during
learning.

Fig. 5 Error on the validating set vs. index of the best neuron, i.e. the number of
neurons generated.

461



Neural Network World 5/13, 451-464

In Fig. 4 it is shown how an error of the best neuron on the validating set
decreases with the number of best neurons successively found during learning. It is
seen that in this figure the order number of the best neuron, i.e. the true number
of neurons generated during the learning process is not seen.

The dependence on the true number of neurons generated is shown in Fig. 5.
There on the horizontal axis is the number of neurons generated and points on
the line show individual best neurons successively generated. For each point the
corresponding value on the horizontal axis is the order number of the best neuron.

6. Discussion

It was found that our expectation was upheld, that the homoscedasticity condition
is not fulfilled in the GMDH network and the true optimum may lie somewhere in
the neighborhood of parameters computed by linear regression. Cloning is a useful
technique to get closer to the true minimum. The cloning with large changes of
parameters has little effect, but with small changes a new best neuron often arises.
From it one can deduce that in practice differences between pairs of parameters
corresponding to the minimum found by linear regression and the minimum found
by cloning is not too large but not negligible.

The new genetically modified GMDH method with cloning (GMC GMDH) has
no tough layered structure. During learning when a new neuron is added it is
connected to two already existing neurons or to network inputs randomly with
some probability derived from fitness and keeping some minor probability that an
input is selected. The fitness, i.e. the reciprocal of the mean absolute error is
evaluated using the validating set. If a new neuron generated is found to be the
best neuron the clones are derived to reach even better fitness. The clones have the
same two “parent” signals as the best neuron. The mutation operation changes
slightly the values of the six parameters of the best neuron and thus clones are
similar to, but not exact copies of the best neuron.

Classification errors also for four other methods on some data sets from the
UCI MLR are depicted in Fig. 3. Note that for Shuttle small data the errors
are ten times enlarged in this graph. In Tab. II and in Fig. 3 it is seen that the
GMC GMDH method outperforms other methods in tasks Adult, Shuttle small,
and Splice or nearly outperforms Brest CW, Spam, and Vote. The GMC GHMDH
is the second best with very small differences with respect to the best method
considered. It is the second best in task German. The experiments described
above show that the GMC GMDH approach outperforms 1-NN method in most
cases, in many cases outperforms näıve Bayes method and also the k-NN method
where k is equal to the square root of the number of training set samples.

It is also seen here that for fitness function equal to the second power of mean
absolute error, the error may be slightly different from the case of fitness function
equal to mean absolute error. Then the sensitivity to fitness function definition is
rather small in these cases.

In Figs. 4 and 5 it is seen that the learning process converges rather fast, i.e.
for the relatively small number of neurons generated the error on the validating set
decreases fast and then for the large number of neurons generated the error only
decreases slightly. Practical tests show that further enlargement of the number of

462



Jǐrina M.: GMDH method with genetic selection algorithm and cloning

neurons generated up to the order of hundreds of thousands has no practical effect.
As there is no searching or sorting like in the nearest neighbor-based methods or
in classical GMDH MIA algorithm, the GMC GMDH is much faster than methods
mentioned especially for large learning sets.

Here we have presented a new method of building the GMDH network with the
genetic selection of parents for each new neuron and with cloning of the best neuron.
We have shown efficiency and good behavior for two class classification tasks. As
GMDH networks serve also as approximators and predictors the possibility is open
to use GMC GMDH for approximating and predicting tasks in further research.

References

[1] Ivakhnenko, A. G.: Polynomial Theory of Complex System. IEEE Trans. on Systems, Man
and Cybernetics, Vol. SMC-1, No. 4, Oct. 1971, pp. 364-378.

[2] Farlow, S. J.: Self-Organizing Methods in Modelling. GMDH Type Algorithms. Marcel
Dekker, Inc., New York, 1984.

[3] Tamura, H., Kondo, T.: Heuristics-free group method of data handling algorithm of generat-
ing optimal partial polynomials with application to air pollution prediction. Int. J. Systems
Sci., 1980, vol. 11, No. 9, pp. 1095-1111. See also Farlow 1984 p. 225.

[4] Ivakhnenko, A. G., Müller, J. A.: Present State and New Problems of Further GMDH
Development. SAMS, Vol. 20, 1995, pp. 3-16.

[5] Ivakhnenko, A. G., Ivakhnenko, G. A., Mller, J.A.: Self-Organization of Neural Networks
with Active Neurons. Pattern Recognition and Image Analysis, Vol. 4, No. 2, 1994, pp.
177-188.

[6] Ivakhnenko, A. G., Wunsch, D., Ivakhnenko, G. A.: Inductive Sorting/out GMDH Algo-
rithms with Polynomial Complexity for Active neurons of Neural network. IEEE 6/99, 1999,
pp. 1169-1173.

[7] Nariman-Zadeh, N. et al.: Modelling of Explosive Cutting process of Plates using GMDH-
type neural network and Singular value Decomposition. Journ. of material processes tech-
nology, Vol. 128, 2002, No. 1-3, pp. 80-87.

[8] Hiassat, M., Mort N.: An evolutionary method for term selection in the Group Method
of Data Handling. Automatic Control & Systems Engineering, University of Sheffield,
www.maths.leeds.ac.uk/statistics/ workshop/lasr2004/Proceedings/hiassat.pdf.

[9] Oh, S. K., Pedrycz, W.: The Design of Self-organizing Polynomial Neural Networks. Infor-
mation Sciences (Elsevier), Vol. 141, Apr. 2002, No. 3-4, pp. 237-258.

[10] Hakl, F., Jirina, M., Richter-Was, E.: Hadronic tau’s identification using artificial neural
network. ATLAS Physics Communication, ATL-COM-PHYS-2005-044, last revision: 26
August 2005,
http://documents.cern.ch/cgi-bin/setlink?base=atlnot&categ=Communication&id=com-
phys-2005-044.

[11] Ji, Z.: Negative Selection Algorithms: From the Thymus to V-Detector. Dissertation Pre-
sented for the Doctor of Philosophy Degree. The University of Memphis, August, 2006.

[12] Guney K., Akdagli A., Babayigit B.: Shaped-beam pattern synthesis of linear antenna arrays
with the use of a clonal selection algorithm. Neural Network world, Volume 16 (2006), pp.
489-501.

[13] Bache, K., Lichman, M.: UCI Machine Learning Repository [http://archive.ics.uni.edu/ml].
Irvine, CA, University of California, School of Information and Computer Science, 2013.

[14] Paredes, R., Vidal, E.: Learning Weighted Metrics to Minimize NearestNeighbor Classifica-
tion Error. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 7,
July 2006, pp. 1100-1110.

463



Neural Network World 5/13, 451-464

[15] Zhang, M., Cieselski, V.: Using Bask propagation Algorithm and Genetic Algorithm to Train
and refine neural networks for Object Detection. In: Bench-Capon T., Soda, G., Tjoa, A.
M. (Eds.): Proceedings of 10th International Conference and Workshop on Database and
Expert Systems Applications (DEXA 99), Lecture Notes in Computer Science, Vol. 1677,
Springer, Heidelberg, 1999.

[16] Chun Lu, Bingxue Shi: Hybrid back-propagation/genetic algorithm for multilayer feed for-
ward neural networks. 5th International Conference on Signal Processing Proceedings, 2000.
WCCC-ICSP 2000. (IEEE), Volume 1, 2000, pp. 571-574.

[17] Kalous, R.: Evolutionary operators on ICodes. In: Proceedings of the IX PhD. Conference.
Institute of Computer Science, Academy of Sciences of the Czech Republic, F. Hakl, Ed.,
Matfyzpress, Prague 2004, pp. 35-41. Held: Paseky nad Jizerou, Sept. 29 – Oct. 1, 2004.

[18] Vasechkina, E. F., Yarin, V. D.: Evolving polynomial neural network by means of genetic
algorithm: some application examples. Complexity International, Vol. 09, 2001, pp. 1-13.
http://www.complexity.org.au/vol09/vasech01/

[19] Wikipedia – Gauss–Markov theorem [online] http://en.wikipedia.org/wiki/Gauss-
Markov theorem, 2009.

[20] Buryan, P.: Enhanced MIA GMDH algorithm. Proceedings of International Workshop on
Inductive Modeling, 2007.

[21] Kord́ık, P., Náplava, P., Šnorek, M., Berezovskyj, G. M.: The Modified GMDH Method
Applied to Model Complex Systems, In: International Conference on Inductive Modeling
– ICIM 2002 (2002), pp. 150-155. http://link.springer.com/chapter/10.1007%2F978-3-642-
01530-4 6

464




