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Abstract: Extreme learning machine (ELM) is an emergent method for train-
ing single hidden layer feedforward neural networks (SLFNs) with extremely fast
training speed, easy implementation and good generalization performance. This
work presents effective ensemble procedures for combining ELMs by exploiting di-
versity. A large number of ELMs are initially trained in three different scenarios:
the original feature input space, the obtained feature subset by forward selection
and different random subsets of features. The best combination of ELMs is con-
structed according to an exact ranking of the trained models and the useless net-
works are discarded. The experimental results on several regression problems show
that robust ensemble approaches that exploit diversity can effectively improve the
performance compared with the standard ELM algorithm and other recent ELM
extensions.

Key words: Single layer feedforward neural networks, extreme learning machine,
ensemble, regression

Received: February 17, 2011
Revised and accepted: September 20, 2013

1. Introduction

Single layer feedforward neural networks (SLFNs), as universal approximation mod-
els, have shown their usefulness in many research areas over the last decades [1].
Nevertheless, its main drawback is that their traditional training methods do not
provide an efficient design and implementation because many parameters have to
be properly tuned by slow (often gradient-based) algorithms for achieving a good
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enough model. Besides, the training stage has to be repeated several times in or-
der to select the model structure, for example the selection of hidden layer size. In
order to address it, the extreme learning machine (ELM) has been recently pro-
posed as an emergent method for training single layer feedforward neural networks
(SLFNs) [2]. Its main advantages are extremely fast training speed, easy imple-
mentation and good generalization performance [2–4]. This method assigns random
values to the hidden neuron parameters, i.e., weights and biases for multi-layer per-
ceptron (MLP) networks or the centers and widths for radial basis function (RBF)
networks and, then, the output weights are computed using the Moore-Penrose
generalized inverse. Nowadays, ELM have attracted many attentions and it has
been successfully used in several applications, such as gene classification [5], image
watermarking [6] or survey analysis [7]. Although the advantages of the ELM algo-
rithm are clear, it has been found that the obtained networks tend to require more
hidden nodes than traditional training methods because the random assignment of
parameters may introduce inappropriate values for them. Numerous growing and
pruning improvements have been proposed in order to obtain a more compact net-
work and to avoid an extensive search of the optimal hidden layer size. It has been
shown that, in general, the growing techniques are more sensitive to initial con-
ditions than pruning procedures and, then, they can be trapped in a sub-optimal
solution. From the different pruning approaches, the Optimally Pruned ELM (OP-
ELM) methodology stands out as a robust and fast technique for automatic design
of ELM networks [8].

Other enhancements have also been obtained by combining the outputs of L
different ELMs, i.e, a set of ELM networks jointly solves the problem. An en-
semble system tries to exploit the individual different behaviours of the L models
to improve the performance of a single model. The simplest way to construct
an ensemble is to average the predictions of L individual ELM models (with the
same number of hidden neurons and different weight initializations) [9], but other
combination schemes are also possible. Liu and Wang [10] present an ensemble
ELM method that uses a cross-validation scheme in order to increase the diver-
sity between the individual models, but they use the same hidden layer size for
all networks and do not perform a selection of appropriate candidates for the en-
semble. Van Heeswijk et al. [11, 12] introduce an adaptive ensemble of random
ELM networks where its ensemble weights are iteratively updated according to a
predefined learning rate. In order to discard inaccurate individual models, Chen
et al. [13] measure the Pearson correlation coefficient between each ELM network
(with a predefined hidden layer size) and the ensemble output and, then, compute
its product with the mean square error (MSE) of each network. These product
values are used to discard networks with large MSE and small diversity.

It is widely known that the success of an ensemble method lies in the diversity
among the individual SLFNs [14–16]. Following the basis of the OP-ELM algo-
rithm, this work presents robust combination procedures for ELM networks by
exploiting diversity. These approaches firstly train a large set of L neural networks
using the OP-ELM algorithm that gives neural architectures with different sizes for
each different random initialization. Once the L models are trained, the ensemble
is constructed through linear combination. In order to discard useless ELM models
from the ensemble system, the L networks are ranked using the MRSR algorithm.
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It is important to remark that this ranking is exact for linear problems [17]. Then,
following the basis of the OP-ELM algorithm, the L∗ models (with L∗ ≤ L) are
chosen as those that give a better linear combination for the target data according
to the PRESS (PREdiction Sum of Squares) statistic [18]. In this letter, we in-
troduce three different alternatives to construct the L initial models: (1) to train
all networks with the same initial input features; (2), to train all networks with a
subset of input variables which is obtained by forward feature selection; and (3), to
train each ELM network with different random subsets of features. The remaining
of this work is organized as follows. Section 2. gives a brief introduction for both the
standard ELM and the OP-ELM algorithms. The enhanced ensemble approaches
for ELM networks are described in Section 3. and Section 4. gives experimental
results on several well-known regression problems. Finally, the main conclusions
and future works are reported in Section 5.

2. Preliminaries

Let us assume a learning task defined by N training input vectors (xj , tj), where
xj = [xj1, xj2, . . . , xjn]

T ∈ Rn and tj ∈ R. This dataset is learned using a SLFN
with M hidden neurons and activation function f(·), which is mathematically mod-
eled as

oj =

M∑
i=1

βif(w
T
i xj + bi) =

M∑
i=1

βihij , j = 1, ..., N ; (1)

where wi = [wi1, wi2, . . . , win]
T is the weight vector connecting the i-th hidden

neuron and the input units, β = [β1, β2, . . . , βM ]T is the output weight vector and
bi is the bias parameter of the i-th hidden neuron. Besides, hij is the i-th hidden
output for xj . Note that these hij are linearly combined to compute the network
outputs, oj . One of the most popular activation function is the sigmoid and, in this
case, the SLFN is widely known as Multi-Layer Perceptron (MLP). The learning
objective is that oj ≈ tj with a good generalization capability.

The standard ELM method is based on the concept that if wi and bi are ran-
domly assigned, then a SLFN can be considered as a linear system and the output
weight vector, β, can be analytically determined through simple generalized inverse
operation of the hidden layer output matrices [2, 4]. Thus, given wi and bi, the

training of a SLFN is simply equivalent to find a LS (Least-Squares) solution, β̂,
for the linear system

Hβ = T, (2)

where

H =

 f(w
T
1 x1 + b1) . . . f(wT

Mx1 + bM )
... . . .

...
f(wT

1 xN + b1) . . . f(wT
MxN + bM )


N×M

(3)

From [4], the solution is given by β̂ = H†T, where H† is the Moore-Penrose
generalized inverse of H, [19]. ELM is much simpler and faster than traditional
learning algorithms for SLFN. Besides, this algorithm can be also used for training
Radial Basis Function (RBF) networks [3]. It is should be noted that the standard
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ELM algorithm requires a cross-validation (CV) technique (such as 10-fold CV) to
choose an appropriate value for M .

2.1 OP-ELM

OP-ELM (Optimally Pruned-ELM) [8] improves ELM by pruning inappropriate
hidden neurons using an exact and efficient ranking criterion, which is based on the
MRSR (MultiResponse Sparse Regression) algorithm and the PRESS (PREdiction
Sum of Squares) statistic. The OP-ELM algorithm provides extremely fast accurate
models and achieves roughly the same level of accuracy as that of other well known
machine learning methods [8], such as Support Vector Machines (SVM) or Gaussian
Processes (GP). In what follows we outline the three main stages of the OP-ELM
method.

1. Random initialization of a large SLFN. This first step is performed using
ELM for a large enough number of neurons, M . From a practical point of
view, it is advised to set the hidden layer size clearly higher than the number
of features: M >> n. While the ELM methodology uses a single type of
activation function or kernel (for example, sigmoid functions), in the OP-ELM
approach three types of functions (sigmoid, gaussian and linear) can be used
in combination for better robustness and generality [8]. For sigmoid functions,
the weights are randomly assigned by following a uniform distribution in an
interval that covers the input data range (previously whitened: normalized
to zero mean and unit variance). Whereas, the gaussian kernels have their
centers taken randomly from data points and widths randomly drawn between
20% and 80% percentiles of the distance distribution of the input data [8].

2. Ranking of hidden units. In the second stage, MRSR [17] is applied for
sorting the hidden neurons according to their accuracy. MRSR is in essence
an extension of the well-known Least Angle Regression (LARS) algorithm
and, thus, it is a variable ranking method [20], rather than a selection one.
It must be remarked that the obtained ranking by MRSR is exact for linear
problems [17]. Since the output unit of an ELM network is linear with respect
to the randomly initialized hidden units, the MRSR algorithm gives an exact
ranking of neurons [8].

3. Selection of hidden units. Once the ranking of the hidden neurons has been
obtained and H has been consequently sorted, the best M∗ neurons for the
ELM model are chosen using the PRESS statistic, which provides an exact
estimation of the LOO error for linear models [18]. For the OP-ELM method,
it is as follows [21]:

ELOO =
1

N

N∑
j=1

(
tj − oj

1− hatjj

)2

, (4)

where tj and oj are respectively the j-th training target and its estimation
by the trained machine, and hatjj denotes the j-th value of the HAT-matrix,
which is the matrix which transforms T into O:

O = Hβ = HH†T = H(HTH)−1HTT = HAT ·T. (5)
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Then, HAT-matrix requires to compute H† during the training stage and
its computation can be reused for estimating the LOO error. Note that (4)
only needs the diagonal of the HAT-matrix, which can be easily obtained by
the the row-wise dot-product between H and H†. The optimal number of
neurons can be found by estimating the LOO error for different numbers of
nodes (already ranked by accuracy using MRSR) and selecting the number
of neurons (M∗, with M∗ ≤ M) such that minimizes the LOO error:

M∗ = argmin
k∈{1,...,M}

ELOO,k, (6)

where ELOO,k denotes the LOO error computed using (4) with a SLFN com-
posed of k ≤ M hidden nodes. Note that the hidden nodes are incrementally
incorporated to the SLFN according to the order given by MRSR.

On the contrary that the standard ELM algorithm, OP-ELM does not need
to split up the learning set into training and validation subsets because it directly
determines the optimal hidden layer size by computing the LOO error in a fast
way using the PRESS statistic. OP-ELM provides a fast and valuable tool for
the architecture design of ELM-based neural networks [8]. Note that OP-ELM
provides a different network with different hidden layer size for each initialization
of the input weights.

3. Enhanced combination of ELM networks

The use of multiple models may often improve the performance of an individual
model [14–16]. Rather than generating a set of different models and using the single
‘best’ model in isolation, a combination of these networks would exploit, rather than
ignore, the information contained in the redundant models. Such combination of
networks are sometimes called committees or ensembles. Two main issues arise
when considering the committee based approach: first, the creation of models to
be combined in an ensemble; and second, the method by which the outputs of the
members are combined [14].

This section introduces robust ensembles of ELM networks. In particular, we
consider a linear combination scheme of LOP-ELM networks, ô =

∑L
l=1 λlol, where

ô is the ensemble output and λl is l-th ensemble weight. Thus, given the N input
vectors, the following problem must be solved:

L∑
l=1

λlojl = tj , j = 1, . . . , N ; (7)

where ojl is the prediction of the l-th model given xj and λl is the ensemble weight
vector connecting the l-th model and the output units. The ensemble weights can
be obtained by solving (7) with the LS method: λ̂ = O†T, where O† is the Moore-
Penrose generalized inverse of the network output matrix O, whose l-th column
is the l-th network’s output vector for the N input patterns. In this work, this
ensembling procedure is known as LSC-OPELMs (Least-Squares Combination of
OP-ELMs).
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Instead of using all the L models, we attempt to choose the L∗ networks (with
L∗ ≤ L) whose linear combination provides better generalization capability by ex-
ploiting diversity of the chosen ELMs. From the basis of OP-ELM, a direct and
exact linear combination of the L∗ chosen SLFNs is achieved using the MRSR al-
gorithm and the PRESS statistic, and, then, the useless networks are effectively
discarded. Moreover, in order to exploit diversity, this work presents different alter-
natives by varying the input feature space. On the contrary than other ensembling
methods, proposed approach has more diversity and independence in the individ-
ual ELM networks because they are trained with different hidden layer sizes and
subsets of input features. The next two subsections respectively describe the ini-
tial construction of the ELM candidates for the ensemble and, then, the ensemble
design stage.

3.1 Initial construction of ELM networks

The initial stage is to construct L different SLFNs using the OP-ELM algorithm
and we present three different alternatives (see Fig. 1):

1. First, all SLFNs are trained using the n input variables that defines the
dataset. In this case, the diversity is given by the different networks (with
different hidden layer sizes) obtained with OP-ELM for each input weight
initialization. It is known as OC-OPELMs (Optimal Combination of ELMs)
and it is an improvement of LSC-OPELMs and OP-ELM.

2. Feature selection is an useful approach where the irrelevant inputs, which
can be harmful for modeling the target data, are discarded. Following this,
a second alternative is to obtain a subset of input variables through forward
feature selection, in which features are sequentially added to an empty can-
didate set until the addition of further features does not decrease the LOO
error. Several repetitions (L) of the OP-ELM algorithm have to be done for
averaging the LOO error in each possible feature subset. Once the conver-
gence is reached, we obtain L different SLFNs (with different hidden layer
sizes) which have been trained using OP-ELM in the best subset of inputs.
It is known as OC-OPELM-FFS (Optimal Combination of OP-ELMs based
on Forward Feature Selection).

3. In order to obtain an ensemble system that outperforms the individual net-
works, it is critical that there should be enough diversity among the Lmodels.
For increasing the diversity, the third alternative of this work is to consider
different random subsets of features during the OP-ELM training of each
network. Thus, we obtain L different SLFNs which are composed of different
number of hidden units and input features. It is known as OC-OPELMs-RFS
(Optimal Combination of OP-ELMs based on Random Feature Subsets). In
this case, it may be required a enough large set of SLFN candidates with
random input subsets because inaccurate models can be obtained from cer-
tain feature subsets. Due to this, high-dimensional datasets require a larger
number of random networks. Note that these inappropriate models (i.e.,
inappropriate random feature subsets) will be automatically omitted in the
next pruning stage.
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3.2 Ensemble design

Once the L different ELMs have been trained, their network outputs are previously
ranked using the MRSR method [17] and the network output matrix is consequently
ordered. Then, according to this work, the better L∗ models are selected to mini-
mize the LOO error, which can be exactly measured with the PRESS statistic [18].
The inappropriate and useless models are discarded from the ensemble. This en-
semble pruning reduces the storage needs, speeds up the operation stage and has
the potential of improving the performance of the single neural architecture. We
would like to remark that the obtained ensemble system is optimal. Note that this
stage is the same for the above three alternatives.

4. Experimental results

First of all, a toy example is used to illustrate the performance of the standard ELM
algorithm on a simple problem that can be plotted. In this case, the ELM method is
compared with the standard back-propagation (BP) algorithm for training SLFNs.
In particular, MLP schemes are trained using the scaled conjugate gradient (SCG)
method that is a computationally efficient and widely used algorithm to train
artificial neural networks. Besides, we also evaluate the training of FFNN with
ELM and BP in a real-world regression problem. These first simulations are done
for a predefined hidden layer size. Once the advantages of ELM are shown, in
the next subsection, we evaluate the different ensemble procedures based on ELM,
described in Section 3.

4.1 First evaluation of ELM: Toy problem

First, a set of 1000 cases are generated following a sum of sines. This gives a one-
dimensional dataset which is known as Sinusoidal, and it is divided into two subsets
with equal number of samples (500 cases) for training and test stages. In order to
compare BP and ELM training approaches, both of them are assigned the same
number of hidden neurons (from 1 to 30 neurons) with sigmoid activation function.
For each hidden layer size, 20 simulations (i.e., 20 different weight initializations)
of the standard MLP training (BP with SCG optimization, BP-SCG) and the ELM
algorithm are performed. In the case of MLP training, the maximum number of
training iterations is established to 500 and, in order to avoid overfitting, the MLP
learning is early stopped when the training error gets saturated [1]. Fig. 2 shows
the evolution of the training time (in seconds) with respect to the hidden layer
size with both training procedures: MLP -line with squares- and ELM -line with
circles-. Note that this plot uses logarithmic scaling on the vertical axis. As it can
be observed in this figure, the ELM algorithm runs around 100 times faster than
the BP-SCG training for MLP, without considering that C executable environment
may run much faster than MATLAB environment. It is straight-forward to see that
the training time increases as the hidden layer size is larger.

Fig. 3 shows the Root Mean Square Error (RMSE) in the test set with differ-
ent number of neurons in the gradient-based MLP training and the ELM method.
Results are average of 20 simulations. From this figure, we can observe that the
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Fig. 1 Initial construction of L SFLNs for the ensemble using: (a) OC-OPELM;
(b) OC-OPELM-FFS; and (c) OC-OPELM-RFS. Diversity in the ensemble is ex-
ploited by using different input data spaces: all input attributes in (a); the sequential
forward-selected features in (b); and random features for each SLFN in (c). Note
that each SLFN is trained using OP-ELM with different weight initializations and,

then, different hidden layer is achieved for each individual network.
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Fig. 2 Training time (in seconds) vs. Number of hidden neurons in a SLFN when
the Sinusoidal problem is learned using the gradient-based MLP training approach

and the ELM methodology.

standard MLP training performs better than the ELM algorithm when the hidden
layer size is small. It is due to the fact that the input weights are not updated
in the ELM method and, thus, this procedure is quite sensitive to input weights
initialization with fewer hidden nodes. It means that ELM usually needs higher
number of hidden neurons due to the random determination of the input weights
and hidden biases. Note that it can be a limitation in real applications with hard-
ware implementations, but it can be solved using an efficient pruning design. We
would like to remark that, in general, pruning approaches work better than growing
procedures for ELM network because the ELM algorithm requires an enough large
number of neurons and, hence, small ELM models lead to underfit the target data.
The generalization performance obtained by the ELM algorithm is very close (even
better) to the generalization performance of the standard MLP training when the
number of hidden neurons is higher than 15, and of course with less training time.

In order to give an illustrative overview, Fig. 4 plots several examples of the
obtained models (MLP in blue dashed line and ELM in red continuous line) fitting
the input data points for different number of neurons (2, 8, 15 and 25). It can be
seen from this figure that the smaller networks (2 and 8 hidden neurons) trained
with the standard MLP approach fit clearly better than the ELM schemes. Indeed,
the global fitting of the ELM model with 2 hidden neurons is very inaccurate.
Whereas, when the hidden layer size is large enough (15 and 25 neurons), the ELM
models, and the MLP networks, fit very well to the input data.

4.2 Evaluation of neural network ensembles based on ELM

Now, we show the experimental results on six well-known regression problems,
which are summarized in Tab. I. The first four datasets (Friedman, Elevators,
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Fig. 3 Evolution of the Root Mean Square Error (RMSE) in the test set of the
Sinusoidal problem with respect to the hidden layer size of FFNN which is designed
using the gradient-based MLP training approach and the ELM methodology. Results

are averages of 20 different trials.

Fig. 4 Examples of training results using MLP and ELM on the Sinusoidal problem
for different hidden layer size.
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Bank, Stocks) are from L. Torgo’s website [22], the Parkinsons dataset is obtained
from UCI Machine Learning Repository [23] and the Tecator dataset is from the
StatLib archive [24]. These problems belong to several scientific areas (in particu-
lar, aeronautics, economics, biomedical engineering and chemometrics), except for
Friedman that is an artificial problem. Besides, these regression problems have
been selected trying to cover different complexities, such as large datasets or high
dimensional data.

Dataset Training Samples Testing Samples n
Friedman 27179 13589 10
Elevators 8752 7847 18
Stocks 634 316 9
Bank 4499 3693 8

Parkinsons 3525 2350 16
Tecator 172 44 100

Tab. I Regression datasets used in the experiments.

Initially, we have evaluated the standard ELM algorithm and the OP-ELM
method for training individual SLFNs by considering that the hidden layer size
(M) is between 1 and 150. In order to achieve L different networks, the learning
and testing phases are repeated L = 50 times (50 different weight initializations) in
which the sigmoid function is selected as the activation function. It should be noted
that this previous stage of construction of L different networks has been repeated
10 trials in order to measure the consistence of the obtained predictions by the
ensemble procedures. After that, the ensemble based approaches are validated. In
particular, for each trial, the L trained OP-ELM networks are firstly combined by
the least-squares solution of (7), i.e., the LSC-OPELM method. Next, the three
ensemble procedures (OC-OPELMs, OC-OPELMs-FFS and OC-OPELMs-RFS)
are evaluated. Note that the OC-OPELM method makes use of the same previously
L trained models with OP-ELM for each trial. In the experiments, all approaches
use the original learning and testing sets, except for the standard ELM algorithm
that uses 10-fold CV for selecting the hidden layer size. Thus, the training time of
ELM includes the 10-fold CV procedure. As in the first evaluation experiment, all
simulations have been carried out in MATLAB 7.11(R2010b) environment running
in a computer with 4 GB of memory and 2.67 GHz processor.

Tab. II shows the obtained results using the five aforementioned ELM-based
approaches. For each approach and dataset, this table shows the computational
training time, the test RMSE results and the model size. In particular, for each
trial, L = 50 different models have been trained in all problems, except for Tecator
because this high-dimensional dataset requires to train more networks (L = 100) in
order to OC-OPELMs-FFS obtains different random networks with enough input
feature diversity, as we have already mentioned in the previous section. Note
that the third column of Tab. II for ELM and OP-ELM shows its obtained test
RMSE results (mean and standard deviation) for the best SLFN according to the
CV procedure. Meanwhile, the test RSME results (mean and standard deviation)
of the remaining approaches are given by the different ensemble schemes of the
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Data Learning RMSE Training Model
set Method results Time (s) size

Friedman ELM 2.69 ± 3.0e-2 1.61e+3 139
OP-ELM 2.63 ± 9.0e-3 4.30e+2 98
LSC-OPELM 2.38 ± 6.2e-3 2.26e+3 50
OC-OPELM 2.38 ± 5.9e-3 2.21e+3 30
OC-OPELM-FFS 1.45 ± 3.1e-3 5.46e+4 16
OC-OPELM-RFS 1.28 ± 4.0e-3 2.05e+3 34

Elevators ELM 3.59e-3 ± 8.5e-5 7.54e+4 141
OP-ELM 3.65e-3 ± 3.6e-5 3.94e+1 112
LSC-OPELM 2.93e-3 ± 2.3e-5 2.00e+3 50
OC-OPELM 2.78e-3 ± 2.4e-5 2.02e+3 31
OC-OPELM-FFS 2.29e-3 ± 2.5e-5 8.99e+4 24
OC-OPELM-RFS 2.74e-3 ± 2.7e-5 1.80e+3 40

Stocks ELM 1.12 ± 5.8e-2 4.94e+1 138
OP-ELM 1.11 ± 2.5e-2 2.36e+0 100
LSC-OPELM 0.80 ± 1.6e-2 1.19e+2 50
OC-OPELM 0.78 ± 1.2e-2 1.21e+2 24
OC-OPELM-FFS 0.73 ± 1.0e-2 2.34e+3 17
OC-OPELM-RFS 0.72 ± 1.4e-2 1.00e+2 17

Bank ELM 4.61e-2 ± 1.2e-3 3.82e+2 130
OP-ELM 4.49e-2 ± 5.5e-4 3.40e+1 106
LSC-OPELM 3.62e-2 ± 3.3e-4 1.71e+3 50
OC-OPELM 3.60e-2 ± 3.1e-4 1.69e+3 33
OC-OPELM-FFS 3.29e-2 ± 3.3e-4 2.15e+4 20
OC-OPELM-RFS 3.17e-2 ± 3.8e-4 1.53e+3 33

Parkinsons ELM 9.06 ± 9.7e-2 2.12e+2 143
OP-ELM 9.66 ± 1.6e-2 2.44e+1 82
LSC-OPELM 8.98 ± 1.6e-2 1.25e+3 50
OC-OPELM 8.91 ± 1.4e-2 1.25e+3 21
OC-OPELM-FFS 9.00 ± 1.0e-2 6.40e+4 10
OC-OPELM-RFS 8.80 ± 1.7e-2 1.17e+3 38

Tecator ELM 4.89 ± 8.2e-1 8.27e+2 76
OP-ELM 3.51 ± 1.2e-1 5.30e+2 66
LSC-OPELM 2.45 ± 1.2e-1 5.40e+2 100
OC-OPELM 2.29 ± 9.0e-2 5.40e+2 44
OC-OPELM-FFS 1.31 ± 7.9e-2 1.05e+4 15
OC-OPELM-RFS 2.00 ± 9.2e-2 5.29e+2 30

Tab. II Experimental results on six regression datasets.
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L∗ ≤ L networks. With respect to the fourth column, it should be noted that it
shows the average training time (in seconds) for building a single model using ELM
and OP-ELM. Whereas, for the different ensemble methods, we show the average
training time for building L networks with OP-ELM and, then, ensembling them
using the approaches introduced in Section 3.. Finally, in the last column of Tab. II,
we show the average hidden layer size for the ELM and OP-ELM methods and,
meanwhile, the average number of chosen networks is shown for the remaining
ensemble-based approaches.

According to these results (see Tab. II), and as it has been also shown in [8],
OP-ELM outperforms ELM by using smaller models (more compact hidden layer
sizes) and less training time, except for Parkinsons dataset. With respect to the
ensemble-based approaches, all of them provide better generalization capabilities
than ELM and OP-ELM in all problems. Besides, in general, ensemble proce-
dures increase stability (i.e. lower standard deviation) with respect to ELM and
OP-ELM. It is worthy of remark that these advantages are obtained with a negligi-
ble increment of the total computational time for training Lmodels using OP-ELM,
except for the OC-OPELMs-FFS procedure which is based on incremental forward
feature selection and, thus, it needs more computational efforts. In all simulations,
the OC-OPELMs-FFS and OC-OPELMs-RFS provide better results than the en-
semble procedures based on the original input feature space. Moreover, the use of
random feature subsets is beneficial to the ensemble construction. This approach
may be better than performing a previous forward feature selection, except for
Tecator and Elevators datasets. For example, in Tecator, the input data space is
successfully reduced from one hundred to only five features. Whereas, in Friedman
dataset, although OC-OPELMs-FFS chooses the relevant features (which are previ-
ously known by the definition of this artificial dataset), this method achieves worst
performance results than OC-OPELMs-RFS, which uses random feature subsets
(including relevant and irrelevant features). As it is expected, OC-OPELMs-RFS
requires more networks to construct the ensemble system than OC-OPELMs-FFS.
Thus, in general, it is recommended to exploit diversity in the ensemble of ELM
networks by varying the input data space and, also, a feature selection (prior to
the ensemble construction) is clearly useful for high-dimensional datasets.

5. Conclusions

The ELM algorithm and its recent extensions, such as the OP-ELM method, pro-
vide simple, fast and robust learning algorithms for SLFNs with random hidden
nodes. The training process of an ELM model can be several order of magnitude
faster than traditional learning algorithms for FFNN, while attaining comparable
or even better approximation and generalization capabilities.

This paper presents effective ensemble procedures based on ELM in order to
exploit the diversity among the different SLFNs in the ensemble system. The en-
semble procedures discard inaccurate individual models from the ensemble system
using the basis of the OP-ELM methodology and, thus, an optimal combination
of networks is achieved. In contrast to other ELM ensembling methods, note that
each network is automatically constructed without fixing a predefined hidden layer
size. Besides, ELM networks have been constructed with different input feature
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spaces: the original input feature space, the input subset obtained by forward fea-
ture selection and the random feature subsets. The experimental results show that
an ensemble approach of ELM models outperforms an individual ELM model in
terms of generalization capability. The ensemble diversity is increased by vary-
ing the input feature space and it produces a performance improvement. As future
work, it is intended to explore data editing techniques in order to generate different
learning subsets for training the individual ELM networks.
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