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Abstract: Paper presents the results in quantum informatics where two or more
quantum subsystems are connected. For modelling the links amongst quantum
subsystems the quantum quasi-spin is the most important parameter. We derive a
quantum quasi-spin from the condition of logical requirement for the unambiguous-
ness of wave probabilistic function assigned into quantum subsystem. With respect
to these results we can define information bosons with integer quasi-spin, informa-
tion fermions with half-integer quasi-spin and information quarks with third-integer
quasi-spin. The methodology can be extended to other variants of quasi-spin.
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1. Introduction

Models of complex systems are based on knowledge from information science, statis-
tics or the knowledge that has been gathered over the years in classical physics,
a specialized part of which is called information physics. Currently, a number of
interesting results have been discovered in the field of quantum information sci-
ence [4], taking as their basis the foundations of quantum physics [1] and using for
modeling of complex systems those principles [2, 8] that do not arise in classical
physics, such as entanglement and quantization [7, 10].

1.1 Wave probabilistic functions

Let us imagine that we are flipping a coin, so that every toss comes out as heads
or tails. Someone else, who is assigned the role of an observer, is counting the
frequency of the individual coin tosses and is estimating the probability of the
phenomenon of it landing heads or tails in a simple manner, by counting the number
of times it has fallen as heads or tails in the past, and by dividing that number by
the number of observed or registered tosses.

Let us now try to extend further this simple example for possible variants involv-
ing errors by the observer, and let us imagine what would happen if our observer
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were imperfect and made errors when observing. The observer, for example, might
wear thick glasses and have difficulty telling heads from tails, with the result that
from time to time, she would incorrectly register a toss as heads or tails, and this
would then show up in the resultant probability as a certain error. Because there
is only one observer, we automatically, and often even unconsciously, assume that
her observations are exclusive. Exclusivity means that when our observer registers
a toss of heads, he/she automatically does not register a toss of tails, and to the
contrary, when registering a toss of tails, he/she does not at the same time register
a toss of heads. Thanks to this property, the sum of the resultant probabilities
of heads and tails always equals one hundred percent regardless of the size of the
observer’s error. The error of the observer shows up only by increasing the prob-
ability of one side of the coin, while at the same time lowering the probability of
the opposite side by the same value.

Now let us assume that we are observing the same phenomenon of coin tossing,
but now with two observers who are not consulting each other about their obser-
vations. There might be two persons, one of whom watches for and registers only
tosses of heads and the other only tails. Let us deal with the geometric interpre-
tation of the errors of two observers. Because the condition must be fulfilled that
the length of the hypotenuse of a right triangle must always equal one in Fig.1, we
can model the error rates of our observers using the angle between the triangle’s
legs, so that the square root of the probability determined by the first observer
(including his or her errors) will be depicted on the x-axis and the square root of
the probability found by the second observer (including that observer’s errors) will
be depicted on the y-axis.

Unlike classical information science, where the state of a system, or more pre-
cisely, information about its state, is described with the use of a probability func-
tion, in quantum information science, the information about the state of the system
is described using a complex wave probabilistic function [5].

Probability values have analogies to energies and can be modeled as the squares
of the values assigned to individual phenomena (concrete values). By the square
roots of the probability of event phenomena, one may interpret how dominant a
given phenomenon is in a random process, or how often the phenomenon occurs.
In this conception, phase indicates the degree of structural links between the indi-
vidual phenomena, i.e. by analogy the shift with respect to the defined beginning.
This beginning may be a phenomenon with a zero phase, to which we relate all of
the structural links of the other phenomena.

In accordance with the general principle, we see that we obtain the classical
theory of probability by raising the complex wave function to the second power,
whereby we automatically lose the phase characteristic of our model.

1.2 Principle of quantization

Let us now assume that we have a certain random phenomenon characterized by its
amplitude and phase of wave probabilistic function defined in [5, 6], where these
functions typically depend on time or on space. For the sake of clarity, let us
assume that our function does not depend on time, but depends rather only on its
(x,y) position, i.e. a selected point in an x-y plane. We can also imagine every
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Fig. 1 In this non-right-angled triangle, in case of coin tosses, ‘C’ still must equal
1. ‘A’ represents the probability of tossing heads as registered by the first observer
p (H), and ‘B’ is the probability of tossing tails as registered by the second observer

p (T ). The angle β models the errors of the observers.

point (x,y) in the plane in polar coordinates as a module and phase assigned to
that point.

If we change the phase in an x-y plane by multiples of 360 degrees, we are still at
our point (x,y), so the resultant amplitude and phase function assigned to the point
(x,y) must remain the same for all variant multiples of 360 degrees. If we accept
this completely logical requirement for the unambiguousness of the assignment of
complex probability to a given point (x,y), we arrive at an important condition for
our wave probability function.

Fig. 2 The representation of a point (x,y) with polar coordinates using module r
and phase θ. Ambiguousness of phase means that for all natural numbers ‘n’ there

is also an identical point for the phase (θ + n · 360) .

It now suffices to imagine as a trivial example that the phase function of wave
probability linearly depends on the phase representation of the position of our (x,y)
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point in polar coordinates. This means that the phase parameter of a probability
function ‘k′ is given by the multiple of the spatial phase assigned to the point (x,y).
If the linear multiplying constant ‘k′ is not a natural number, in the phase of the
probability wave function we get ‘k′ multiples of 360 degrees, which lead each time
to a different value. The wave probability function takes the form ψ ∝ ej·k·(θ+n·360),
where the symbol ∝ means equality up to the normalization factor and jrepresents
an imaginary unit.

These different values of the phase of the wave function mean the ambiguous
assigning of a probability wave function to point (x,y). Only in the case that k is a
natural number do k multiples of 360 such as 720 or 1080 represent the same value
of the phase of the wave probability function.

In this way, we arrive at a simple explanation for the principle of quantization.
The phase probability of the wave function must be quantized (k must be a natu-
ral number) in order to maintain the unambiguous assigning of a wave probability
function to a point (x,y) and to all variants of rotating the coordinates of point
(x,y) by multiples of 360 degrees [11]. Or to put it the other way around, we can
guarantee the principle of the unambiguous assignment of a complex probability
to a given point (x,y) only by the quantization of its phase. The constant k rep-
resents a whole-number quantum quasi-spin. In paper [10], I have expanded this
principle to any phase functions, and using the Taylor series, I have proven that
the quantization of phase is of general validity in wave probability functions.

By the extension of the ideas stated above from an (x,y) plane to an (x,y,z)
space, there arises a similar analogy of unambiguousness, but it has more degrees
of freedom and leads to expansion of the quantization of quasi-spin. On an (x,y)
plane, whole numbered quantum quasi-spin or multiples of the constant k were
sufficient, but in an (x,y,z) space, we must introduce halved number values of
quantum quasi-spin [6]. The principle of quantization and its justification, however,
are identical.

This paper continues in this way of thinking and presents how quasi-spin pa-
rameter is important to define probabilistic behavior of quantum systems especially
within the process of quantum connection. The paper is structured as follows:
Section 2 defines the features of quantum subsystems with different quasi-spins.
Section 3 analyses connected two q-bits, and Section 4 covers basic features of
connected two quantum sybsystems. Section 5 presents our conclusions.

2. Quantum subsystems with different quasi-spins

2.1 Comparison of classical and quantum probability rules

Let us define quantum binary subsystem marked as η and suppose it can reach two
values |A⟩η = 0and |A⟩η = 1. With respect to approach presented in Fig. 1 we can
suppose that observer No. 1 monitors the state |A⟩η = 0 and observer No. 2 the
state |A⟩η+1 = 1.

We assume the phase to be the linear function of quantized phase m ·∆. The
phase function must achieve single-valuedness also for the phases (∆ + 2 · π · k)
where k is an integer. Mathematically we arrive at following wave probabilistic
functions assigned to states |A⟩η = 0 and |A⟩η = 1:
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ψ
(
|A⟩η = 0

)
=

√
p0 (1)

ψ
(
|A⟩η+1 = 1

)
=

√
p1 · ej·m·(∆+2·k·π) (2)

where p0, p1 are the probabilities of falling zero or one (they are same for both
subsystems η and η + 1).

The probabilities union that |A⟩η = 0 falling on the subsystem marked η or
|A⟩η+1 = 1at the second subsystem η + 1 is given as:

P
((

|A⟩η = 0
)
∪
(
|A⟩η+1 = 1

))
=
∣∣∣√p0 +√

p1 · ej·m·(∆+2·k·π)
∣∣∣2 =

= p0 + p1 + 2 · √p0 · p1 · cos (m · (∆ + 2 · k · π)) (3)

which is the quantum equivalent of the classical well-known probabilistic rule:

P
((

|A⟩η = 0
)
∪
(
|A⟩η+1 = 1

))
=

= P
(
|A⟩η = 0

)
+ P

(
|A⟩η+1 = 1

)
− P

((
|A⟩η = 0

)
∩
(
|A⟩η+1 = 1

))
(4)

The quantum rule (3) enables both a negative and a positive sign according to a
phase parameter. On the other hand, the classical rule (4) enables only a negative
sign.

2.2 Information bosons with integer quasi-spin

For information bosons with integer quasi-spin m ∈ {0,±1,±2,±3, ...} we can
guarantee the positive sign of (3), no matter which value of k is chosen:

P
((

|A⟩η = 0
)
∪
(
|A⟩η+1 = 1

))
=

= p0 + p1 + 2 · √p0 · p1 · cos [m · (∆ + 2 · k · π)] =
= p0 + p1 + 2 · √p0 · p1 · cos (m ·∆) (5)

From intersection rule of wave probabilities [10] we can alternatively write:

P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
=

= ψ∗
(
|A⟩η = 0

)
· ψ
(
|A⟩η+1 = 1

)
+ ψ

(
|A⟩η = 0

)
· ψ∗

(
|A⟩η+1 = 1

)
=

= 2 · √p0 · p1 · cos (m ·∆+ 2 · k ·m · π) = +2 · √p0 · p1 · cos (m ·∆) (6)

The final wave probability function for information bosons can be given as:

ψ
(
|A⟩η = 0

)
=

√
p0 (7)

ψ
(
|A⟩η+1 = 1

)
=

√
p1 · ej·m·∆ (8)
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2.3 Information fermions with half-integer quasi-spin

For information fermions with half-integer quasi-spin we can find the negative sign
in the following way:

P
((

|A⟩η = 0
)
∪
(
|A⟩η+1 = 1

))
=

= p0 + p1 + 2 · √p0 · p1 · cos[m1

2 · (∆ + 2 · k · π)] =
= p0 + p1 + 2 · √p0 · p1 · cos[m1

2 ·∆+m1 · k · π)] =
= p0 + p1 ± 2 · √p0 · p1 · cos(m1

2 ·∆) (9)

where m1 ∈ {±1,±3,±5, ....}.
From intersection rule of wave probabilities [10] we can alternatively write:

P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
=

= ψ∗
(
|A⟩η = 0

)
· ψ
(
|A⟩η+1 = 1

)
+ ψ

(
|A⟩η = 0

)
· ψ∗

(
|A⟩η+1 = 1

)
=

=
√
p0 · p1 · ej·m·(∆+2·k·π) +

√
p0 · p1 · e−j·m·(∆+2·k·π) =

= 2 · √p0 · p1 · cos (m ·∆+ 2 · k ·m · π) =

=

{
+2 · √p0 · p1 · cos

(
m1

2 ·∆
)

−2 · √p0 · p1 · cos
(
m1

2 ·∆
) with probability 1/2

with probability 1/2

}
= 0 (10)

It means that the plus and minus probabilities given in (10) cancel each other
out and it explains the exclusion rule known for indistinguishable fermions.

The final wave probability function for information fermions can be given as:

ψ
(
|A⟩η = 0

)
=

√
p0 (11)

ψ
(
|A⟩η+1 = 1

)
=

{
+
√
p1 · ej·

m1
2 ·∆

−√
p1 · ej·

m1
2 ·∆ (12)

The negative probability was introduced in physics many times e.g. in [15] where it
was argued how negative probabilities as well as probabilities above unity possibly
could be useful in probability calculations: “If a physical theory for calculation
probabilities yields a negative probability for a given situation under certain as-
sumed conditions, we need not conclude the theory is incorrect. Two other possi-
bilities of interpretation exist. One is that conditions (e.g. initial conditions) may
not be capable of being realized in the physical world. The other possibility is
that the situation for which the probability appears to be negative is not one that
can be verified directly. Combination of these two, limitation of verifiability and
freedom in initial conditions, may also be a solution to the apparent difficulty”
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2.4 Information quarks with third-integer quasi-spin

We can also consider the k-multiple of one-third quasi-spin and we can farther away
find the third quantum states assigned to different information quarks as follows:

P
((

|A⟩η = 0
)
∪
(
|A⟩η+1 = 1

))
=

= p0 + p1 + 2 · √p0 · p1 · cos[m2

3 · (∆ + 2 · k · π)] =
p0 + p1 + 2 · √p0 · p1 · cos[m2

3 ·∆+ m2

3 · 2 · k · π)] =

=



p0 + p1 + 2 · √p0 · p1 · cos(m2

3 ·∆)

p0 + p1 + 2 · √p0 · p1 ·
[
− cos(m2

3 ·∆) +
√
3
2 · sin(m2

3 ·∆)
]

p0 + p1 + 2 · √p0 · p1 ·
[
− cos(m2

3 ·∆)−
√
3
2 · sin(m2

3 ·∆)
]

(13)

where m2 ∈ {±1,±2,±4,±5...}.
Alternatively we can rewrite the equation for probabilities intersection as fol-

lows:

P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
=

= ψ∗
(
|A⟩η = 0

)
· ψ
(
|A⟩η+1 = 1

)
+ ψ

(
|A⟩η = 0

)
· ψ∗

(
|A⟩η+1 = 1

)
=

=
√
p0 · p1 · ej·

m2
3 ·(∆+2·k·π) +

√
p0 · p1 · e−j·m2

3 ·(∆+2·k·π) =
= 2 · √p0 · p1 · cos

(
m2

3 ·∆+ 2 · k · m2

3 · π
)
=

=


2 · √p0 · p1 · cos

(
m2

3 ·∆
)

with probability 1
3

−2 · √p0 · p1 · cos
(
m2

3 ·∆
)
+
√
3 · √p0 · p1 · sin

(
m2

3 ·∆
)
with probability 1

3

−2 · √p0 · p1 · cos
(
m2

3 ·∆
)
−
√
3 · √p0 · p1 · sin

(
m2

3 ·∆
)
with probability 1

3

=

= − 2
3 · √p0 · p1 · cos

(
m2

3 ·∆
)

(14)

The wave probability function for information quarks can be written as:

ψ
(
|A⟩η = 0

)
=

√
p0 (15)

ψ
(
|A⟩η+1 = 1

)
=

√
p1 · ej·

m2
3 ·(∆+2·k·π) =


√
p1 · ej·

m2
3 ·∆

√
p1 · ej·(

m2
3 ·∆+ 2

3 ·π)
√
p1 · ej·(

m2
3 ·∆− 2

3 ·π)
(16)

It means that three variants of probabilities given in (14) yield into their mutual
mixture. It is interesting that the final intersection rule goes to negative probability.

In quarks physics [3] the following two quarks can be found (e ≈ 1.6 · 10−19Cis
the charge of electron):

• u (up-quark) with charge spin + 2
3 · e,

• d (down-quark) with charge spin −1
3 · e,

together with their anti-quarks given as:

• u(anti-up-quark) with charge spin −2
3 · e,
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• d(anti-down-quark) with charge spin + 1
3 · e.

Other features like quark-flavour or quark-colour come out from three variants of
wave function (14). Quarks are recognized as the main components of particle
physics and e.g. proton is composed from uud quarks (with different colours) and
neutron from ddu quarks (also with different colours).

The presented introduction of information bosons, fermions or quarks comes
from different principle than the well-known ,,standard model of particle physics”
[14] that is defined through Lie group U(1)×SU(2)×SU(3). Our methodology is
set up only on strict requirement for single-valuedness of wave function.

It is believed that such alternative approach can bring new light into quantum
science and can yield into better understanding of connected quantum subsystems,
especially for non-integer quasi-spin quantum systems. Such quantum subsystems
cannot be found in stable state because the state is continuously switching over all
possible (generally infinity) quantum states.

3. Features of Connected q-bits

Let us compare the quantum and classical probability rules (3) and (4). It is evident
that the intersection of probabilities in quantum world can be also negative:

P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
< 0 (17)

despite of the fact that probabilities P
(
|A⟩η = 0

)
≥ 0, P

(
|A⟩η+1 = 1

)
≥ 0 are

positive.
Other probabilities:

P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 0

))
P
((

|A⟩η = 1
)
∩
(
|A⟩η+1 = 0

))
(18)

P
((

|A⟩η = 1
)
∩
(
|A⟩η+1 = 1

))
should be modified to compensate negative value given at (17). The sum of all
possible variants (17) and (18) must be certainly equal to one.

We can distinguish three variants of the intersection of probabilities caused by
the introduction of wave probabilistic functions regardless of probabilities’ values

P
(
|A⟩η = 0

)
, P
(
|A⟩η+1 = 1

)
:

• the events are fully independent – they have no mutual influence:

P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
= P

(
|A⟩η = 0

)
· P
(
|A⟩η+1 = 1

)
(19)

• the events are positively dependent - they have a mutual positive influence
and there exists some “gravitation force” yielding into preference for state
|A⟩η = 0, |A⟩η+1 = 1 (increasing its probability):
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P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
> P

(
|A⟩η = 0

)
· P
(
|A⟩η+1 = 1

)
(20)

The maximum probability value is P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
= 1, which

represents the hundred per cent deterministic occurrence of state
(
|A⟩η = 0

)
∩(

|A⟩η+1 = 1
)
.

• the events are negatively dependent – they have a mutual negative influence
and there exists some “gravitation force” yielding against the preference for

state
(
|A⟩η = 0

)
∩
(
|A⟩η+1 = 1

)
(decreasing its probability):

P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
≤ 0 (21)

The maximum probability value is P
((

|A⟩η = 0
)
∩
(
|A⟩η+1 = 1

))
= 0, which

represents the zero per cent occurrence of state
(
|A⟩η = 0

)
∩
(
|A⟩η+1 = 1

)
.

For information bosons, the principle applies that they mutually attract and
cluster into individual spatial areas, and they are the source of energy. On the other
hand, the famous Pauli Exclusion Principle applies to information fermions, accord-
ing to which it is not possible to find two fermions in the same place. Fermions
therefore create spatial structures and are responsible for the origin of matter.

4. Features of connected quantum subsystems

Let us have two quantum subsystems A, B described by wave probabilistic functions
ψA (.) , ψB (.). First of all we suppose that we are able to distinguish between A
and B quantum subsystems. Let us assign features1 p1 or p2 to them. The final
quantum system is represented by following wave probabilistic function:

ψA,B = ψA (p1) · ψB (p2) . (22)

In case we are not able to assign the right feature to given subsystems A or B we
must apply the principle of quantum indistinguishability [10]. It means we have to
take into account all variants of possible arrangements:

ψA,B = ψA (p1) · ψB (p2)± ψA (p2) · ψB (p1) (23)

where ±characterizes the symmetry or non-symmetry of both variants (bosons or
fermions described above).

Let us suppose that we have the “gravitation energy” between our two subsys-
tems UA,B (p1, p2). How many energy will be used for connection between A and
B under condition of quantum indistinguishability?

1The feature in our approach is e.g. the special functionality, set of parameters or the part of
subsystem. Example of such subsystems is e.g. nucleus of molecule.
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From (23) we can compute the probability density:

ρ (p1, p2) = [ψA (p1)]
2 · [ψB (p2)]

2 ± 2 · ψA (p1) · ψB (p2) · ψA (p2) · ψB (p1) +

+ [ψA (p2)]
2 · [ψB (p1)]

2
(24)

The mean value of connection energy is given:

ŪA,B ≈ CA,B ±XA,B (25)

where CA,B is the classical energy integral and XA,B is the exchange integral that
is a consequence of quantum indistinguishability. CA,B and XA,Bcan be computed
by using (24) under symmetry condition [12]:

CA,B =

∫
V1

∫
V2

[ψA (p1)]
2 · [ψB (p2)]

2 · UA,B (p1, p2) · dp1 · dp2 (26)

XA,B =

∫
V1

∫
V2

ψA (p1) · ψB (p2) · ψA (p2) · ψB (p1) · UA,B (p1, p2) · dp1 · dp2 (27)

We can mark the distance between two atomic nuclei (subsystems A and B) as
R = |p1 − p2|. Then equation (25) with minus sign represents the valence binding
in a hydrogen atom. On this example we can see that the principle of quantum
indistinguishability can yield into the understanding of connected quantum subsys-
tems. Fig. 3 describes the energy E of connected two quantum subsystems based
on distance R.

Fig. 3 The connection energy E ≈ CA,B −XA,B of two quantum subsystems.

This easy example can be extended into more sophisticated links among many
quantum subsystems where all possible variants must be taken into consideration
to fulfil the principle of quantum indistinguishability.

Let us analyse the solution of Schrodinger wave equation of hydrogen atom.
In [12] the detailed method of hydrogen wave function computation is presented.
Final solution is composed from many modes. In this paper we will analyse only
three modes represented by following wave functions:

ψ1 (ρ) = e−ρ (28)
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ψ2 (ρ) =
(
1− ρ

2

)
· e−

ρ
2 (29)

ψ3 (ρ) =

(
1− 2 · ρ

3
+

2

27
· ρ2
)
· e−

ρ
3 (30)

where ρ = r
rB

is relative radius, r is radius and rB = ~2

m·e2 is the constant.

Fig. 4 Graph representing three variants (for n = 1, n = 2, n = 3) of wave functions
ψn (r) given by equations (28),(29) and (30).

On Fig. 4 it is clear that wave functions of hydrogen atom could be positive
or negative depending on the radius. If we select the radius we can analyse the
connection between different modes of wave function. In case both wave functions
are positive we can expect “gravitation force” yielding into easy connection of
such modes. On the other hand if one wave function is positive and second one
is negative it could be expected from the general features of wave functions that
there exist “gravitation force” driving our modes away. It is the open question how
such above described feature can be practically used.

5. Conclusion

The above described methodology of quantum links can be extended into more
complex systems and it is evident that we can explain the way of creation of very
complex connections among different quantum subsystems [9].

The presented method can be applied in modelling of macroscopic links amongst
complex macroscopic subsystems. As an example of application of our methodol-
ogy, let us introduce the connections between different companies. We can e.g.
imagine that experts from selected companies are members of special committee
in which experts create documents based on around the table discussion. People
around the table promptly know each other and can easily co-operate even if they
work in competitive companies. Round table can be understood as the environ-
ment for links creation (more popular word is “networking process”). Networking
can be modelled through phase parameters and should represent the quantum links
amongst companies. Naturally, the links could be positive or negative according to
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relation between experts. It is interesting that such personal links are transformed
into real-life relations among companies.

The more personal links, the better relation among companies is set. With
respect to such behaviour we can model the natural clusters of companies (system
alliances). It is interesting to see how a mathematical instrument of quantum
informatics is applicable to modelling of social or business subsystems connections.
We believe that quantum system science can improve modelling of soft features of
very complex systems like human society. The presented connection principle of
quantum subsystems can be for example the powerful instrument for understanding
and modelling of system alliances [13].
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