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Abstract: Firing properties of single neurons in the nervous system have been
recognized to be determined by their intrinsic ion channel dynamics and extrinsic
synaptic inputs. Previous studies have suggested that dendritic structures exhibit
significant roles in the modulation of somatic firing behavior in neurons. Following
these studies, we show that finite information transmission delay between dendrite
and soma can also influence the somatic firings in neurons. Our investigation is
based on a two-compartment model which can approximately reproduce the firing
activity of cortical pyramidal neurons. The obtained simulation results indicate
that under subthreshold stimulus, spontaneous fast spiking activity is induced by
large values of time delay, while for suprathreshold stimulus, regular bursting,
chaotic firing and fast spiking can be observed under different time delays. More
importantly, the transition mode between these diverse firing patterns with the
variation of delay shows a period-doubling phenomenon under certain stimulus in-
tensity. Consequently, our model results can not only illustrate the influential roles
of internal time delay in the generation of a diversity of neuronal firing patterns,
but also provide us with frameworks for investigating the impacts of internal time
delay on the firing properties of many other neurons in the nervous system.
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1. Introduction

As the elementary units in the nervous system, neurons play key roles in the pro-
cessing and transmission of neuronal signals, thus exploring what firing patterns
neurons would produce under different conditions is of great importance in un-
derstanding how the brain functions. Previous investigations have reported that
dendritic structure exhibits significant influences in modulating the firing behavior
of neurons [1-5]. Based on two-compartment models, which consist of a soma and
a dendrite, some researchers revealed that the smaller the soma is, the more irreg-
ularly the neuron would fire, and they also showed that two-compartment models
can be used as slope detectors when the soma is small [6]. Computational study
on models of pyramidal cells in the neocortex suggested that inter- and intraburst
intervals in the neuronal spike trains can be affected by the total length of the
apical dendrite and the topological structure of its branching pattern, also, these
two factors can determine whether or not a neuron exhibits burst firing [7]. Recent
experimental results on the layer 2/3 pyramidal neurons indicated that hypercom-
plexity of the apical dendritic tuft could influence neuronal excitability by reducing
the occurance of spike frequency adaptation [8]. In addition, there are still some
researchers who have suggested that the experimentally observed firing patterns
in neurons could be approximately reproduced using a two-compartment model by
adjusting the electrical coupling strength between soma and dendrite [9].

Time delay is ubiquitous in most physical and biological systems, and it is
inherent in the transmission of neuronal signals. As the information flow within
neurons and between neurons is not generally instantaneous, taking into account
the impacts of time delay in neurons and neuronal networks is thus reasonable.

During the past decades, many researches have revealed that finite information
transmission delays could play significant roles in some neuronal systems. For in-
stance, it has been suggested that time delays between neurons can facilitate and
stabilize the synchronization of neural networks [10-13], induce multiple stochastic
resonances under noisy environment [14-15], and modulate the oscillatory activity
of neuron assemblies [16-17]. Moreover, in some neuronal circuits with the con-
nection type of scale-free [18-19] and small-world [20-21], synchronous activity can
switch from one state to another with the variation of time delay. Notably, in hy-
brid neuronal networks of the entorhinal cortex, shorter conduction delays tend to
stabilize the synchronization of neuronal network with inhibitory couplings rather
than excitatory couplings [22].

So far, researches related to the impacts of time delay in neuronal systems
were mostly concentrated on coupled neurons and neuronal networks, while the
impacts of information transmission delay within neurons are also very important,
since neural signals transmit not only among neurons, but also within neurons,
especially in neurons with long and complex dendritic structures. Moreover, the
distributions of ion channels over a whole neuron membrane are not generally
homogeneous, thus inevitably, the structure of neural signals would be affected by
these distinctions when they transmit from one location to another in the neurons,
this heterogeneities of ion channel distributions are also the reason for which a
great deal of compartmental models for realistic neurons were developed [23-29].
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Thus, in this study, the role of internal time delay on the firing patterns of single
neuron is explored using a minimal two-compartment model neuron. Simulation
results show that a diversity of firing patterns can be observed by varying time
delay in a proper range, in addition, the transition route between different firing
patterns with the variation of time delay is periodic under certain stimulus.

2. Model and Methods

The model neuron we employed to investigate is a two-compartment cortical pyra-
midal neuron, which is a simplified form the original Pinsky-Rinzel model [28].
This simplified model has been successfully used for capturing the complex burst-
ing (an instance of square-wave bursting) found in the hippocampus of rats [30].
The schematic diagram of this minimal model is shown in Fig. 1, the active inward
and outward ion currents which determine the compartment membrane potentials
are also provided.

Mathematical descriptions for this two-compartment model neuron are modified
from [30-31], as follows:

Cm
dVs

dt
= −Iions(Vs) + Id/s + Is (1)

Cm
dVd

dt
= −Iions(Vd) + Is/d + Id. (2)

Here Is and Id are current inputs to the compartments. The corresponding ions in
each compartment are:

Iions(Vs) = gNam
3h(Vs − ENa) + gKn4(Vs − EK) + gLeak(Vs − ELeak) (3)

Iions(Vd) = gNaPm
3
∞(Vd − ENa) + gKSq(Vd − EK) + gLeak(Vd − ELeak). (4)

The coupling currents between the two compartments are:

Id/s =
gc
p
(Vd(t− τ)− Vs) (5)

Is/d =
gc

1− p
(Vs(t− τ)− Vd). (6)

In Eq. (5-6), Id/s denotes current from the dendritic compartment to the somatic
compartment, conversely, Is/d denotes current from the somatic compartment to
the dendritic compartment. τ is the term of internal time delay between the somatic
and dendritic compartment.

The voltage-dependent gating variables are described using the standard Hodgkin-
Huxley formalism.

dx

dt
= ϕx

x∞(V )− x

τx(V )
(7)

Iy = gya
MbN (V − Vy)(y = Na,K,NaP,KS) (8)

In Eq. (7), x is the activation or inactivation variable like a and b in Eq. (8).
In Eq. (8), gy is the maximal channel conductance, and Vy is the equilibrium
potential.
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Other parameters and expressions contained in the model are as follows:

αm = −0.1(Vs + 31)/(exp(−0.1(Vs + 31))− 1), βm = 4 exp(−(Vs + 56)/18),

αh = 0.07 exp(−(Vs + 47)/20), βh = 1/(exp(−0.1(Vs + 17)) + 1),

αn = −0.01(Vs + 34)/(exp(−0.1(Vs + 34))− 1), βn = 0.125 exp(−(Vs + 44)/80)

m∞ = 1/(1 + exp(−(Vd + 57.7)/7.7)), q∞ = 1/(1 + exp(−(Vd + 35)/6.5)),

τq = 200/(exp(−(Vd + 55)/30) + exp((Vd + 55)/30))

The value of membrane capacitance Cm is 1µF/cm2. The ratio between the ar-
eas of the two compartments is described by the parameter p=somatic area/total
area whose value is 0.15. Coupling conductance is gc=1mS/cm2. The temper-
ature scaling factors are φm = 10, φh = φn = 3.33. The ionic conductances
are gLeak=0.18gNaP=0.12gKS=0.7gNa=55gK=20 (mS/cm2), and the equilibrium
potentials are ELeak=-65ENa=55EK=-90(mV ).

Simulations were performed using the MATLAB software, and the first-order
Euler algorithm was employed to calculate the values of membrane potential with
time step being 0.01ms. We only injected direct current into the dendritic com-
partment, and investigated the somatic action potential in this study. During our
simulation, initial values of the somatic and dendritic membrane potential were set
as -64 (mV), while initial values of the other gating variables were set as 0. In order
to avoid the influence of initial values, we disposed of the values in 0-500 (ms), and
analyzed the somatic action potential values during 500-2000 (ms).

Fig. 1 Schematic diagram of two-compartment model for cortical pyramidal neuron.

3. Results

In analyzing the transitions between different firing patterns, the diagram of in-
terspike intervals (ISI) is introduced, which has been widely used to describe the
transition modes among various firing behaviors in neurons [32-35]. The value of
ISI is represented as the time difference between adjacent peaks within spike trains,
which is illustrated in Fig. 2.

To begin with, we provide examples of the somatic and dendritic membrane
potential in the presence of internal time delay, and the results are demonstrated in
Fig. 3, which vividly show that the somatic membrane potential and the dendritic
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Fig. 2 The schematic of InterSpike Interval (ISI) in neuronal spike trains. Inter-
Spike Interval s denotes ISI between adjacent spikes within a burst, InterSpike

Interval b denotes ISI between adjacent bursts (modified from [36]).

Fig. 3 Examples of the ping-pong phenomenon between the somatic and dendritic
membrane potential in the presence of time delay when Id=3.0 µA/cm2. A: Regular
bursting, B: Regular spiking. From A to B, the value of delay is 0.2 and 0.53
respectively, and the bottom diagram is the enlargement of part of the top diagram

in A and B.

membrane potential vary interlaced, similar as the ping-pong phenomenon. In Fig.
3(A), the initiation of membrane potential in soma would induce the generation
of dendritic potential with relatively low amplitude, while during the intervals
between interspikes, the amplitude of dendritic potential is higher than that of
somatic potential, thus the generation of the next spike in soma may probably be
caused by this higher-amplitude potential in dendrite. Similar case can be observed
in Fig. 3(B), in which the value of delay is larger.

3.1 Spontaneous activity induced by large values of time
delay under subthreshold stimulus

Traditionally, spontaneous firing activities of neurons are assumed to be evoked
by their intrinsic ion channel dynamics [37-39]. For example, electrophysiological
recordings on mouse retina demonstrated that spontaneous firing of retinal ganglion
cells is induced by the activation of persistent sodium current and low threshold
T-type calcium current [40]. In addition to these endogenous factors, experimental
observation on the stratum oriens interneurons revealed that spontaneous cortical
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firings could be generated under extrinsic synaptic inputs [41]. Here we suggest that
internal time delay within neurons can also play a potential role in the generation
of neuronal spontaneous activities.

Fig. 4 Spontaneous fast spiking induced by internal time delay. Time courses of
somatic membrane potential under different time delays, A: τ = 0.54, B: τ =
0.55ms. C: ISI diagram with respect to τ (the increment is 0.01), D: Raster plot of
neuronal spikes under different delays. In B, the bottom diagram is the enlargement
of part of the top diagram, and in D, the enlargement of part of the raster plot is

provided.

Under subthreshold stimulus (Id=0.4µA/cm2), the neuron fires no spikes in the
absence of τ . While if τ is considered, small delays still failed to evoke any action
potentials (Fig. 4(A)), thus the ISI values are zero. However, for larger time delays
(bigger than 0.55), the fast spiking behavior is observed (Fig. 4(B)), and the ISI
values are relatively small due to the dense spikes that the neuron fires. Simulated
results in Fig. 4(C) and (D) could further manifest these spontaneous fast-spiking
property evoked by internal time delay.

3.2 Periodic bursting gradually switches to fast spiking with
the increase of time delay

Burst firing is prevalent in many biological and physical systems, especially in
neural systems where it plays a pivotal role in neural information processing and
transmission [42], and it has also been thought to have significant functions in
reliable signaling [43-45] and synaptic plasticity [46-47]. The model neuron we
investigated in this research is a simplified two-compartment model, which could
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successfully exhibit the complex bursting behavior of cortical pyramidal neurons.
Thus in this section, we begin to study whether this complex bursting activity can
be affected or regulated by neuronal internal time delays.

Fig. 5 Transition from periodic bursting to fast spiking with the increase of time
delay. Time courses of somatic membrane potential under different time delays,
A: τ = 0.2, B: τ = 0.52, C: τ = 0.53ms, D: ISI diagram with respect to τ (the
increment is 0.01). E: Raster plot of neuronal spikes under different delays. In B,

the bottom diagram is the enlargement of part of the top diagram.

Simulation results in Fig. 5 vividly illustrate that the neuron can fire periodic
bursting under a proper value of stimulus (Id=3.0µA/cm2) when internal time
delay is not considered (τ = 0). When we increase the delay, it is seen that the
burst durations become longer and the spike number in each burst also increases
with significance (Fig. 5(A-B)), however, when time delay reaches a critical value
(0.53 in this simulation), the periodic bursting disappears but the fast spiking
behavior emerges (Fig. 5(C)). ISI diagram and raster plot shown in Fig. 4(D&E)
further demonstrate the transition from periodic bursting to fast spiking induced
by internal time delay.

3.3 Chaotic firings intermittently occur with the increase
of time delay

In the absence of internal time delay, the model neuron fires chaotically when
Id=4.0µA/cm2, and small time delays maintain this irregular firing behavior, e.g.
τ = 0.03 in Fig. 6(A). However, the spike patterns become much periodic when
τ increases bigger than 0.03 but less than 0.15, the corresponding instance is il-
lustrated in Fig. 6(B) in which the value of τ is 0.1. The chaotic firings appear
again when τ continues to increase from 0.16 to 0.19, see Fig. 6(C) for more detail.
A long duration of periodic burst firings then emerges when τ varies between 0.2
and 0.52, the corresponding examples are shown in Fig. 6(D-E). Finally, the firing
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Fig. 6 Chaotic firings intermittently appear with the increase of time delay. Time
courses of somatic membrane potential under different time delays, A: τ = 0.03,
B: τ = 0.1, C: τ = 0.19, D: τ = 0.3, E: τ = 0.52, F: τ = 0.53ms, G: ISI diagram
with respect to τ (the increment is 0.01), H: Raster plot of neuronal spikes under

different delays.

pattern turns into fast spiking when τ is bigger than 0.52 (Fig. 6(F)). The ISI
diagram and raster plot presented in Fig. 6(G) and (H) can further describe how
this complex transition mode is evolved.

3.4 Period-doubling phenomenon induced by time delay
under large stimulus

In this section, we perform our simulations under a relatively larger stimulus, that
is Id=4.7µA/cm2, then we gradually increase the value of time delay the same as in
Section 3.1−3.3. When τ = 0, the model neuron fires periodic spiking (Fig. 7(A)),
while the spike patterns undergo a period-doubling cascade when τ increases from
0 to 0.32, the corresponding transition route is clearly demonstrated in the insert
figure of ISI diagram in Fig. 7(G). When we continue to increase the value of τ ,
the irregular neuronal firings are induced (Fig. 7(C)), and then, the neuron turns
to fire periodic bursting with the increase of time delay (Fig. 7(D-E)), and finally,
the fast spiking behavior appears with large value of τ (Fig. 7(F)).
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Fig. 7 Period-doubling phenomenon induced by internal time delay under large
stimulus. Time courses of somatic membrane potential under different time delays,
A: τ = 0, B: τ = 0.28, C: τ = 0.35, D: τ = 0.39, E: τ = 0.5, F: τ = 0.55ms, G:
ISI diagram with respect to τ (the increment is 0.01), H: Raster plot of neuronal

spikes under different delays.

4. Discussions

As the fundamental building elements in the nervous system, single neurons have
been subject to extensive researches due to their complex firing properties and
potential roles in information processing. Moreover, understanding how these
exquisitely structured components behave under various environments is an impor-
tant step in exploring how the brain works [48]. In the present study, we introduce
an independent variable-internal time delay in a two-compartment model neuron,
and investigate the firing patterns of this model neuron by changing the value of
time delay. Simulation results indicate that a variety of firing patterns can be in-
duced when the time delay varies in a proper range, and the transitions between
these firing patterns appear to be periodic under some stimulus.

The influence of time delay on neuronal firing properties have been thoroughly
investigated during the past decades. However, these studies were mainly concen-
trated on coupled neurons and neuronal networks. It is reasonable that informa-
tion transmission from one neuron to the other neurons through the synapses are
not generally instantaneous, which need delays to realize these processes. While
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we argue that neuronal signals transmitted within single neurons are also not in-
stantaneous, especially when neurons have long and complex dendritic structures,
accordingly the transmission of external synaptic inputs the dendrites receive to
the soma needs time due to the complex morphology of neuronal dendrites. Our
model results show that the existence of internal time delay between compartments
displays functional effects in modulating the dynamical firing behavior of neurons.

In this study, the method we employed to describe the transition modes between
different firing patterns is the ISI diagram, which has been widely used in the field
of nonlinear analysis of neuronal systems [32-35]. Although widely applicable,
and easy to be calculated numerically, ISI diagram has still failed to characterize
the specific geometric structures of the corresponding bifurcation maps, thus for
future considerations, other useful approaches, the phase plane analysis [59-50] and
the fast/slow dynamical analysis [51-53] can be introduced to study the detailed
bifurcation cascades like many other studies.

It should be noted that we mainly discussed the potential role of internal time
delay on the firing patterns of single neurons in a two-compartment model, while
real neurons in the nervous system often have complex morphologies, thus, subse-
quent attempts can concentrate on analyzing the influence of internal time delay in
more complicated model neurons with multi-compartments. Moreover, due to the
distinctions in the dynamical firing properties among different neurons, the numer-
ical results about different firing pattern transitions shown in this paper may not
be applicable, but the method we used here is universal and can be employed to
study the firing properties of other neurons. Finally, internal time delay can also
be introduced in neuronal networks or simply coupled neurons, and to investigate
whether and how the variation of time delay within single neurons affects the whole
activities of neuronal networks.
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