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Abstract: As an important artificial neural network, associative memory model
can be employed to mimic human thinking and machine intelligence. In this
paper, first, a multi-valued many-to-many Gaussian associative memory model
(M3GAM) is proposed by introducing the Gaussian unidirectional associative mem-
ory model (GUAM) and Gaussian bidirectional associative memory model (GBAM)
into Hattori et al’s multi-module associative memory model ((MMA)2). Second,
the M3GAM’s asymptotical stability is proved theoretically in both synchronous
and asynchronous update modes, which ensures that the stored patterns become
the M3GAM’s stable points. Third, by substituting the general similarity metric
for the negative squared Euclidean distance in M3GAM, the generalized multi-
valued many-to-many Gaussian associative memory model (GM3GAM) is pre-
sented, which makes the M3GAM become its special case. Finally, we investigate
the M3GAM’s application in association-based image retrieval, and the computer
simulation results verify the M3GAM’s robust performance.
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1. Introduction

Associative memory model (AM) is an important artificial neural network which
can be employed to mimic human thinking and machine intelligence [1-2]. In the
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past decades, researchers have proposed many AMs such as the unidirectional as-
sociative memory model (UAM), bidirectional associative memory model (BAM)
and many-to-many associative memory model (M2AM). Among all the existing
AMs, Hopfield associative memory model (HAM) [3] is the most popular, which has
yielded a great impact on the development of neural networks. However, HAM only
addresses unidirectional association. The original bidirectional associative memory
(BAM) is a two-layer neural network introduced by Kosko [4-5] as a variant of
HAM. Kosko’s BAM extends unidirectional auto-association to the bidirectional
hetero-association. Owing to adoption of the Hebbian correlation learning scheme
[6], the HAM and Kosko’s BAM suffer from extremely low storage capacity and
error-correcting capability. In addition, since Kosko’s BAM only deals with two
input/output patterns, Humpert tried to extend it to more input/output patterns
and constructed the bidirectional associative memory with several patterns named
BAMq [7]. The storage capability of the BAMq can be improved significantly by
adopting outer-product schemes or high order connection schemes, but it only ad-
dresses association with binary patterns. Therefore, some researchers continue to
explore new architectures or learning schemes to enlarge the processed data range
from just binary to multi-value, and simultaneously improve the AMs’ performance.
Among these works, Dembo and Zeitouni proposed the Potential-function correla-
tion associative memory model (PCAM) [8]. Although the PCAM’s capacity grows
exponentially with the number of neurons, the primary disadvantage of this model
is that hardware implementation can be cumbersome. Later, Chieuh and Goodman
[9] employ the exponential correlation learning scheme and proposed the exponen-
tial correlation associative memory model (ECAM) with comparable storage capac-
ity to PCAM which has an advantage of easier hardware implementation. Chiueh
also proposed the multi-valued exponential correlation associative memory model
(MV-ECAM) [10] by utilizing the same exponential correlation learning scheme to
enlarge the correlation between stored pattern pairs. Furthermore, based on the
concept of exponential correlation learning, Wang et al. proposed the multi-valued
exponential bidirectional associative memory model (MV-eBAM) and investigated
the impressive storage capacity and error-correcting capability of the MV-ECAM
and MV-eBAM theoretically and experimentally [11].

The UAM and BAM deal with only one-to-one associations. In contrast, hu-
man memory can recall several related patterns satisfied with two or more query
conditions simultaneously. For example, we can deal with many-to-many associa-
tion such as an apple and cherry are recalled by red and fruit. The multi-module
associative memory model ((MMA)2) proposed by Hattori and Hagiwara [12-13] is
the first successful neural network model which can realize many-to-many associa-
tion. The (MMA)2 adopts the modular architecture. In each module, the (MMA)2

employs the modified HAM and BAM with the intersection learning algorithm to
reconstruct the correct pattern from noisy or incomplete input. Nevertheless, the
(MMA)2 has two critical shortcomings as follows: (1) (MMA)2 can deal with only
binary patterns; (2) (MMA)2 cannot store the training patterns online, that is,
when a training pattern is stored, the weight matrix of (MMA)2 must be recalcu-
lated.

In this work, in order to address these shortcomings, we first propose the multi-
valued many-to-many Gaussian associative memory model (M3GAM) by introduc-
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ing the Gaussian unidirectional associative memory model (GUAM) and Gaussian
bidirectional associative memory model (GBAM) into Hattori et al.’s (MMA)2.
Then we prove that the M3GAM is asymptotically stable in both synchronous (all
neurons in the output layer update themselves at the same time) and asynchronous
(only one neuron in the output layer updates itself at a time) update modes by
designing a bounded energy function, which can ensure that the stored patterns
can be properly recalled theoretically. Further, by introducing the general sim-
ilarity metrics, we propose the generalized multi-valued many-to-many Gaussian
associative memory model (GM3GAM), which makes the M3GAM become its spe-
cial case. Finally, we present an M3GAM’s application case for association-based
image retrieval, and the computer simulation results verify the M3GAM’s robust
performance.

The rest of this paper is organized as follows. Section 2 describes in detail the
structure of M3GAM, and analyzes its asymptotical stability theoretically. Section
3 proposes the generalized multi-valued many-to-many Gaussian associative mem-
ory model based on general similarity metric. Section 4 investigates the M3GAM’s
application in association-based image retrieval and analyzes the M3GAM’s storage
capacity and error-correcting capability. Finally, conclusions are given in Section 5.

2. Asymptotically Stable Multi-Valued
Many-to-Many Gaussian Associative Memory
Neural Network

In this section, we first describe the structure of M3GAM. Then, we discuss its
stability or convergence in both synchronous and asynchronous update modes.

2.1 Multi-valued many-to-many Gaussian associative
memory model (M3GAM)

In order to describe the M3GAM, we first introduce two basic components: Gaus-
sian unidirectional associative memory model (GUAM) and Gaussian bidirectional
associative memory model (GBAM).

Definition 1. Gaussian unidirectional associative memory model (GUAM)

Suppose
{
Xi | i = 1, 2, · · · ,M

}
are the stored patterns, X = (x1, x2, . . . , xn)

T
is a

current-state pattern to the network, and X ′ = (x′1, x
′
2, . . . , x

′
n)
T

denotes its next
recall state of X in a dynamic update mode, where Xi, X,X ′ ∈ {1, 2, . . . , L}n, L is
the number of finite levels. If the UAM updates its state according to the following
Gaussian exponential correlation learning rule:

x′k = H

∑M
i=1 x

i
k · b

−∥Xi−X∥2
/
σ2

∑M
i=1 b

−∥Xi−X∥2
/
σ2

 , (1)

where b > 1, σ ̸= 0, −
∥∥Xi −X

∥∥2 denotes the negative squared Euclidean distance
used to evaluate the similarity between the stored pattern Xi and the input pattern
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X, H(·) is a staircase function shown as the following equation:

H(uk) =

 1, uk < 1
L, uk > L
⌊uk + 0.5⌋ , uk ∈ [1, L]

. (2)

Then, we call this one Gaussian unidirectional associative memory model (GUAM).
Fig. 1 shows the structure of GUAM.

Fig. 1 Structure of the GUAM.

Fig. 2 Structure of the GBAM.

Definition 2 Gaussian bidirectional associative memory model (GBAM)
Suppose

{(
Xi, Y i

)∣∣ i = 1, 2, . . . ,M
}
are the stored pattern pairs, X = (x1, x2, . . . ,

xn)
T or Y = (y1, y2, . . . , yp)

T
is a current-state pattern to the network, X ′ =

(x′1, x
′
2, . . . , x

′
n)
T

and Y ′ =
(
y′
1
, y′2, . . . , y

′
p

)T
denotes their next recall states in a

dynamic update mode, where Xi, X,X ′ ∈ {1, 2, . . . , L}n, Y i, Y, Y ′ ∈ {1, 2, . . . , L}p.
If the BAM updates its state according to the following Gaussian exponential
correlation learning rule:

Layer-X → Layer-Y : y′k = H

∑M
i=1 y

i
kb

−∥Xi−X∥2
/
∥Xi−X∥2

σ2 σ2∑M
i=1 b

−∥Xi−X∥2/∥Xi−X∥2σ2 σ2

 (3)

Layer-Y → Layer-X : x′k = H

∑M
i=1 x

i
kb

−∥Y i−Y ∥2
/
∥Y i−Y ∥2

σ2 σ2∑M
i=1 b

−∥Y i−Y ∥2/∥Y i−Y ∥2σ2 σ2

 , (4)

where b > 1, σ ̸= 0, H(·) is the same function as Equation (2). Then, we call this
one Gaussian bidirectional associative memory model (GBAM). Fig. 2 shows the
structure of GBAM.
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In order to construct a viable associative memory model for many-to-many as-
sociation, Hattori and Hagiwara introduce the modular structure and the pseudo-
noise code, locally-represented pattern and logical operation into the (MMA)2

[12-13]. The (MMA)2’s main strategies include: (1) each training sample must
be numbered in advance; (2) each element of the training samples should be trans-
formed into a locally-represented pattern; (3) logical operation between the locally-
represented patterns is calculated; (4) each element of the training samples is
memorized with the fundamental pseudo-noise code; (5) each training sample is
memorized with the shifted pseudo-noise code.

The proposed M3GAM follows the same modular structure and association
strategies as that in the (MMA)2. The main differences between the M3GAM and
(MMA)2 are the learning algorithm and the processed data range. The M3 GAM
employs the Gaussian exponential correlation learning algorithm instead of Hattori
et al.’s intersection learning algorithm. More importantly, the M3 GAM can
realize many-to-many association with multi-value patterns, which greatly expand
the (MMA)2’s practical application domains.

The M3GAM consists of four layers: Pseudo-Noise Pattern (PNP) layer, In-
put/Output (I/O) layer, Pre-Shift-Control (PSC) layer and Shift-Control (SC)
layer. Fig. 3 shows the structure of M3GAM. Note that the number of mod-
ules in the M3GAM is arbitrary, which depends on the processed data. In other
words, if the processed data are n-tuple patterns, the number of modules must be
n. As shown in Fig. 3, all the neurons of each module constitute a GBAM which is
employed to realize the transformation between the element of the n-tuple training
samples and the locally-represented patterns. At the same time, the neurons of
the I/O layer in each module constitute a GUAM which is used to suppress the
noise and reconstruct the corrected pattern when the noisy or incomplete query
pattern is inputted to the I/O layer. In addition, the neurons of the I/O layer in
each module and the neurons of the PNP layer constitute the GBAM to realize the
storage between the element of the n-tuple training sample and the fundamental
pseudo-noise code. The SC layer and the PSC layer in each module have the same

Fig. 3 Structure of the M3GAM.
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number of neurons, and the neurons in the PSC layer are connected to the corre-
sponding neurons in the SC layer. Fig. 4 shows the connection between the PSC
layer and the SC layer.

The M3GAM’s implementation procedure for many-to-many association will be
described in detail in Section 4.

Fig. 4 Connection between the PSC layer and the SC layer.

2.2 Asymptotical stability analysis of the M3GAM

Asymptotical stability is an important property of the associative memory neural
network, which means that the network will converge to a fixed point, hopefully
a stored prototype, from the initial input being the stored pattern with error.
In this section, we intend to prove the M3GAM is asymptotically stable in both
synchronous and asynchronous update modes.

Lemma 1 For any m,n ∈ R, if b > 1, then bm − bn ≥ (ln b) · bn · (m− n).

Proof Let f(x) = bx. Obviously, if m = n, then bm− bn = (ln b) · bn · (m−n) = 0.
Otherwise, because f(x) is a continuous on the closed interval [min(m,n),max(m,n)],
and differentiable on the open interval (min(m,n), max(m,n)). According to La-
grange’s mean value theorem, there exists some ξ lying between min(m,n) and
max(m,n) such that

bm − bn = (ln b) · bξ · (m− n).

Case 1: If m > n, then m− n > 0 and bξ > bn, thus bm − bn > (m− n) · ln b · bn.

Case 2: If m < n, then m− n < 0 and bξ < bn, thus bm − bn > (m− n) · ln b · bn.

Therefore, for any m,n ∈ R, if b > 1, then bm − bn ≥ (ln b) · bn · (m− n).

Theorem 1 The GUAM is asymptotically stable in both synchronous and asyn-
chronous update modes,

Proof In order to investigate GUAM’s asymptotical stability, we only need to de-
sign a bounded energy function of GUAM, and then prove that the energy function
will increase as the state of GUAM neural network changes.
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Now, let the energy function be defined as:

E(X) =
∑M

i=1
b
−∥Xi−X∥2

/
σ2

, b > 1, σ ̸= 0 (5)

Obviously, 0 < E(X) ≤M , i.e., the energy function E(X) is bounded.
Suppose X ′ is the next state of X, then the change of E(X) is

∆E = E(X ′)− E(X) =
∑M

i=1
b
−∥Xi−X′∥2

/
σ2

−
∑M

i=1
b
−∥Xi−X∥2

/
σ2

=

=
∑M

i=1
(b

−∥Xi−X′∥2
/
σ2

− b
−∥Xi−X∥2

/
σ2

)

According to Lemma 1, we have

∆E ≥
∑M
i=1 [(ln b) · b

−∥Xi−X∥2
/
σ2

· (
∥∥Xi −X

∥∥2/σ2 −
∥∥Xi −X ′

∥∥2/σ2)]

= (ln b)
/
σ2
∑M
i=1 [b

−∥Xi−X∥2
/
σ2

· (2Xi −X −X ′)T(X ′ −X)]

= (ln b)
/
σ2
∑M
i=1 [b

−∥Xi−X∥2
/
σ2

·
∑n
k=1 (2x

i
k − xk − x′k) · (x′k − xk)]

= (ln b)
/
σ2
∑n
k=1{

∑M
i=1 b

−∥Xi−X∥2
/σ2

·
·[(2

∑M
i=1 x

i
k · b−∥Xi−X∥2/σ2

/∑M
i=1 b

−∥Xi−X∥2/σ2 − xk − x′k) · (x′k − xk)]}

Let uk =
∑M
i=1 x

i
k · b

−∥Xi−X∥2
/
σ2
/∑M

i=1 b
−∥Xi−X∥2

/
σ2

, then

∆E ≥ (ln b)
/
σ2 ·
∑M

i=1
b
−∥Xi−X∥2

/
σ2

·
∑n

k=1
{[(uk − xk) + (uk − x′k)] · (x′k − xk)}

Let sk = [(uk − xk) + (uk − x′k)] · (x′k − xk).
According to Equations (1) and (2), we have the following different cases:

Case 1: If uk < 1, then x′k = 1, xk ≥ 1, thus sk ≥ 0, and sk = 0 iff x′k = xk = 1.

Case 2: If uk > L, then x′k = L, xk ≤ L, thus sk ≥ 0, and sk = 0 iff x′k = xk = L.

Case 3: If 1 ≤ uk ≤ L, we have

(1) If −0.5 ≤ uk − xk < 0.5, then x′k = ⌊uk + 0.5⌋ = xk, thus sk = 0.

(2) If 0.5 ≤ uk − xk, then x
′
k = ⌊uk + 0.5⌋ > xk, −0.5 ≤ uk − x′k, thus sk ≥ 0,

and sk = 0 iff x′k = xk + 1 and uk − xk = 0.5.

(3) If uk − xk < −0.5, then x′k = ⌊uk + 0.5⌋ < xk, uk − x′k < 0.5, thus sk > 0.

From the above deduction, we can observe that ∆E ≥ 0. Therefore, with the
state of GUAM changes, the bounded energy function E(X) will converge to a fixed
point. These facts imply that the GUAM will eventually reach a stable state with
maximal energy level, i.e., the GUAM is asymptotically stable in both synchronous
and asynchronous update modes.

Theorem 2 The GBAM is asymptotically stable in both synchronous and asyn-
chronous update modes.
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Proof The GBAM is one kind of bidirectional associative memory models (BAMs).
Therefore, we can investigate its stability by studying its two phase of evolution,
i.e., Layer-X → Layer-Y and Layer-Y → Layer-X.

(I) Layer-X → Layer-Y phase
We define an energy function similar to that of GUAM,

EX→Y (X,Y ) =
∑M

i=1

∥∥X −Xi
∥∥2 · b−∥Y−Y i∥2

/
σ2

. (6)

Obviously, 0 ≤ EX→Y (X,Y ) ≤ MnL2, i.e., the energy function EX→Y (X,Y ) is
bounded.

Suppose X ′ is the next state of X, then the change of EX→Y (X,Y ) can be
derived to be

∆XEX→Y (X,Y ) = EX→Y (X
′, Y )− EX→Y (X,Y ) =

=
∑M

i=1

[
(
∥∥X ′ −Xi

∥∥2 − ∥∥X −Xi
∥∥2) · b−∥Y−Y i∥2

/
σ2
]
=

=
∑M

i=1

[
(X ′ +X − 2Xi)T (X ′ −X) · b−∥Y−Y i∥2

/
σ2
]
=

=
∑M

i=1
b
−∥Y−Y i∥2

/
σ2

·
∑n

k=1
[(xk + x′k−2 ·

∑M

i=1
xik · b

−∥Y−Y i∥2
/
σ2
/

/∑M

i=1
b
−∥Y−Y i∥2

/
σ2

) · (x′k − xk)].

Let vk =
∑M
i=1 x

i
k · b

−∥Y−Y i∥2
/
σ2
/∑M

i=1 b
−∥Y−Y i∥2

/
σ2

, then

∆XEX→Y (X,Y )=
∑M

i=1
b
−∥Y−Y i∥2

/
σ2

·
∑n

k=1
{[(xk − vk) + (x′k − vk)] · (x′k − xk)}

Let rk = [(xk − vk) + (x′k − vk)] · (x′k − xk).
According to Equations (2-4), we have the following different cases:

Case 1: If vk < 1, then x′k = 1, xk ≥ 1, thus rk ≤ 0, and rk = 0 iff x′k = xk = 1.

Case 2: If vk > L, then x′k = L, xk ≤ L, thus rk ≤ 0, and rk = 0 iff x′k = xk = L.

Case 3: If 1 ≤ vk ≤ L, we have

(1) If 0.5 ≥ xk − vk > −0.5, then x′k = ⌊vk + 0.5⌋ = xk, thus rk = 0.

(2) If xk − vk ≤ −0.5, then x′k = ⌊vk + 0.5⌋ ≥ xk +1, x′k − vk ≤ 0.5, thus rk ≤ 0,
and rk = 0 iff x′k = xk + 1 and xk − vk = −0.5.

(3) If xk − vk > 0.5, then x′k = ⌊vk + 0.5⌋ < xk, x
′
k − vk > −0.5, thus rk < 0.

From the above deduction, we can see that ∆XEX→Y (X,Y ) ≤ 0. Note that
the energy function EX→Y (X,Y ) is bounded. Therefore, the Layer-X → Layer-Y
phase of the GBAM is proved to be asymptotically stable.

176



Lei Chen et al.: Asymptotically stable multi-valued many-to-many associative. . .

(II) Layer-Y → Layer-X phase
By the similar deduction as shown in Layer-X → Layer-Y phase, we can also

prove that Layer-Y → Layer-X phase is asymptotically stable. The only difference
is the definition of the bounded energy function in this phase. The energy function
of this phase is similar to Equation (6),

EY→X(X,Y ) =
∑M

i=1

∥∥Y − Y i
∥∥2 · b−∥X−Xi∥2

/
σ2

. (7)

Since the deduction procedure is the same as that of the Layer-X → Layer-Y
phase, we do not repeat the discussion.

In short, the Layer-X → Layer-Y phase always reduces the EX→Y (X,Y ), while
the Layer-Y → Layer-X phase always reduces the EY→X(X,Y ). The evolution
will be terminated when both EX→Y (X,Y ) and EY→X(X,Y ) reach their respec-
tive local minima at which the pattern pairs are stored. Therefore, we can draw
a conclusion that the GBAM is asymptotically stable in both synchronous and
asynchronous update modes.

Theorem 3 The M3GAM is asymptotically stable in both synchronous and asyn-
chronous update modes.

Proof The M3GAM adopts loosely coupled modular structure, which includes four
layers: the SC layer, PSC layer, I/O layer and PNP layer. Note that the asyn-
chronous logic operation between SC layer and PSC layer, and the signal transfer
operation between SC layer and PNP layer do not belong to the iterative operation,
the stability of which is self-evident. Therefore, the M3GAM’s asymptotical stabil-
ity mainly depends on the GUAM and GBAM. That is, the M3GAM is asymptot-
ically stable if and only if the GUAM and GBAM are both asymptotically stable.
Since the GUAM and GBAM’s asymptotical stability has been proved theoretically
in Theorems 1 and 2, we can easily draw a conclusion that the M3GAM is also
asymptotically stable in both synchronous and asynchronous update modes.

3. Generalized Multi-Valued Many-to-Many
Gaussian Associative Memory Model Based
on General Similarity Metric (GM3GAM)

In many machine learning problems, the similarity metric has critical impact on
the success of learning algorithms such as clustering, classification, information
retrieval and pattern recognition, etc. An appropriate similarity metric used to
faithfully model the underlying relationships between the processed data is usu-
ally needed for achieving a promising algorithm performance. The commonly used
Euclidean distance metric, as shown in GUAM and GBAM, can deal only with
the data with spherically symmetrical distribution. Therefore, the performance
may not be satisfactory when the data relations cannot be accurately modeled by
the Euclidean distance. In fact, there is a large variety of applications for which
the Euclidean distance fails to reflect the data proximities. Our previous works
[14-16] also show that the Euclidean distance is not appropriate to evaluate web
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services’ similarity and human faces’ similarity. More importantly, the Euclidean
distance assumes that each feature of data is equally important and independent
from others. This assumption may not be always valid in real applications, espe-
cially when dealing with high-dimensional or sparse data where some features may
not be tightly related to the topic of interest. In contrast, an appropriate similarity
metric should identify important features and discriminate relevant and irrelevant
features. Thus, supplying such a similarity metric is highly problem-dependent and
determines the success or failure of the learning algorithm [17].

The general similarity metric includes:

(1) Cosine similarity metric:

SCOSI(X
i, X) =

∑n
j=1 (x

i
j · xj)

/
(
√∑n

j=1 (x
i
j)

2 ·
√∑n

j=1 (xj)
2)

(2) Inner-product similarity metric: SINPR(X
i, X) =

∑n
j=1 (x

i
j · xj)

(3) Minkowski similarity metric: SMINK(Xi, X) = −(
∑n
j=1

∣∣xij − xj
∣∣q)1/q

(4) Mahalanobis similarity metric:

SMAHA(X
i, X) = −(Xi −X)T ∗M−1 ∗ (Xi −X),

where M−1 is the inverse matrix of pattern correlation matrix M .

(5) Canberra similarity metric:
SCANB(X

i, X) = − 1
n

∑n
j=1

∣∣xij − xj
∣∣/(∣∣xij∣∣+ |xj |)

(6) Bray-Curtis similarity metric:

SBRCU (X
i, X) = −

∑n
j=1

∣∣xij − xj
∣∣/∑n

j=1

∣∣xij + xj
∣∣

(7) Pearson correlation coefficient similarity metric:

SPECO(X
i, X) =

(
n∑
j=1

xij∗xj − 1
n

n∑
j=1

xij ∗
n∑
j=1

xj)

(

√
n∑
j=1

(xij)
2 − 1

n (
n∑
j=1

xij)
2 ∗
√

n∑
j=1

(xj)2 − 1
n (

n∑
j=1

xj)2)

Based on the above considerations, we can naturally extend the M3GAM by
substituting the general similarity metric for the negative squared Euclidean dis-
tance in the evolution rules of the GUAM and GBAM, and construct the general-
ized multi-valued many-to-many Gaussian associative memory model (GM3GAM).
Suppose S(Xi, X) denotes the general similarity metric between pattern Xi and
X, the evolution rules used in the GM3GAM can be described as follows:

(1) Evolution rule for the corresponding UAM:

x′k = H

(∑M
i=1 x

i
k ∗ b

S(Xi,X)/σ2∑M
i=1 b

S(Xi,X)/σ2

)
(8)
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(2) Evolution rules for the corresponding BAM:

Layer-X → Layer-Y : y′k = H

(∑M
i=1 y

i
kb

−S(Xi,X)/σ2∑M
i=1 b

−S(Xi,X)/σ2

)
(9)

Layer-Y → Layer-X : x′k = H

(∑M
i=1 x

i
kb
S(Y i,Y )/σ2∑M

i=1 b
S(Y i,Y )/σ2

)
(10)

Obviously, various general similarity metrics can be easily applicable to the
proposed GM3GAM. In particular, when S(Xi, X) denotes the Minkowski similar-
ity metric (−(

∑n
j=1

∣∣xij − xj
∣∣q)1/q, q = 2), the M3GAM becomes the GM3GAM’s

special case.

4. Application Case: Association-Based Image
Retrieval

Currently, text-based and content-based image retrieval are the two dominant im-
age retrieval approaches [18]. In the text-based image retrieval (TBIR) systems,
the images must be manually annotated by text descriptors. There are two main
disadvantages with this approach [18-19]. The first is that a lot of human labor is
required for manual annotation. The second is the annotation inaccuracy due to the
subjectivity of human perception. In order to overcome the above disadvantages,
content-based image retrieval (CBIR) was introduced [18-20]. In CBIR systems,
images are indexed by their visual content, such as color, texture, shapes. How-
ever, CBIR systems depend on human interaction and the query results returned
rely heavily on the similarity measure between query image and stored images. In
contrast, the human memory can naturally associate several related images from
some noisy or incomplete query images. Inspired by the idea of association, Kulka-
rni et al. first proposed a novel approach for image storage and retrieval named
association-based image retrieval (ABIR) [21-22]. They use a generalized binary
bidirectional associative memory model to store the relation between feature vectors
that represent images stored in the database. Although Kulkarni’s ABIR system
is theoretically viable and shows the promising results on their test datasets, they
still suffer from some disadvantages. For example, the Kulkarni’s ABIR system is
difficult to realize many-to-many association or conditional association. In other
words, it only enables context association-based image retrieval, but cannot realize
intersection association-based image retrieval and union association-based image
retrieval. In this section, we will employ the proposed M3GAM to carry out the
context/intersection/union association-based image retrieval.

As shown in Tab. I, there are nine 4-tuple training samples stored in the
M3GAM. Each training sample consists of four related images that represent faces,
fruits, buildings and landscapes, respectively. The M3GAM includes 4 modules and
module 1 stores faces, module 2 stores fruits, module 3 stores buildings, and module
4 stores landscapes. All the images are the 256-level grayscale images with 60×60
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pixels. In the data preprocessing stage, each image is turned into a 256-level vector
by the row by row concatenation way. First, each 4-tuple training sample is num-
bered from 1 to 9, respectively. Then, each element (image) of the 4-tuple training
sample is transformed into a locally-represented pattern (as shown in Tab. II). For
example, since the ‘face 2’ appears in the No. 2, No. 5, and No. 6 training sample,
it is transformed into the locally-represented pattern (010011000). In this locally-
represented pattern, the length of (010011000) indicates the number of the training
samples, and 0 indicates the ‘face 2’ appears, while 1 indicates the ‘face 2’ does
not appear. With the same way, we have the other locally-represented patterns, as
shown in Tab. II. In order to carry out many-to-many association, all the training
samples must be stored in the M3GAM with a set of shifted Pseudo-Noise (PN )
codes (the detailed explanation of pseudo-noise code can be found in Reference
[23]). Let the fundamental PN code be PN 0 for example: (100010011010111).
Then, each element of the training sample is memorized with PN 0 in the GBAM
between the I/O layer and the PNP layer so that PN 0 can be recalled by each
element of the training sample. On the other hand, each training sample is memo-
rized with the corresponding shifted PN code in the GBAM between the I/O layer
and the PNP layer so that training sample can be recalled by the corresponding
shifted PN code. For example, the No. 1 training sample is memorized with the
shifted PN code-PN 1 which is generated by shifting PN 0 with one bit. The No. 2
training sample is memorized with PN 2 which is generated by shifting PN 0 with
two bits. With the same way, the No. 3 – No. 9 samples are memorized with
PN 3-PN 9, respectively.

When the noisy or incomplete images are inputted to the I/O layer in the
M3GAM, first the auto-association is carried out by the GUAM. After the stable
state is reached, the corresponding locally-represented patterns and the fundamen-
tal pseudo-noise code are recalled by the GBAMs, respectively. As for the module
which has no input, the states of all neurons in the PSC layer are set to 1 (context
and intersection association) or 0 (union association) for the logical AND (con-
text and intersection association) or OR (union association) operation in the SC
layer. Then, the neurons in the SC layer calculate logical AND or logical OR
asynchronously and compete to change their states. Suppose that the state of the
SC layer is (000100000), the PN 0 is shifted with 4 bits. Thus, using the GBAM
between the PNP layer and the I/O layer, the No. 4 training sample is recalled by
the PN 4 as one of the output results. Then, the winner neuron in the SC layer is
inhibited afterward. Therefore, another desired output is recalled successively by
the similar retrieval procedure.

In this simulation, since each image has 60×60 pixels, the I/O layer in each
module consists of 3600 neurons. At the same time, the number of neurons in the
PNP layer is 15, which equals to the number of bits of the PN 0-(100010011010111).
Since only nine training samples are stored in the M3GAM, the number of neurons
in the PSC layer and the SC layer are 9 and 9, respectively. In addition, we
set the parameters of the GUAM and GBAM to be b = 2, σ = 3 due to their
experimentally proven better performances.
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No. Module 1 Module 2 Module 3 Module 4 Pseudo-Noise code

1 000100110101111

2 001001101011110

3 010011010111100

4 100110101111000

5 001101011110001

6 011010111100010

7 110101111000100

8 101011110001001

9 010111100010011

Tab. I The stored training samples and their Numbers and Pseudo-Noise codes.

4.1 Context association-based image retrieval

Context association is the basic function of the M3GAM. When a single original
image or its low-noisy one was inputted to the M3GAM as the query request,
all the stored training samples containing this image will be recalled correctly.
For example, suppose 9 training samples shown in Tab. I have been stored in the
M3GAM. Even if the testing image ‘face 2’ with 25% salt & pepper noise is applied
to the M3GAM, we can clearly see from Fig. 5 that the M3GAM is still able to
exactly retrieve the No. 2, No. 5, and No. 6 training sample.
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name image Locally-
represented
pattern

name image Locally-
represented
pattern

face 1 100000000 building 1 100000100

face 2 010011000 building 2 010000000

face 3 000000110 building 3 001000000

face 4 000100000 building 4 000100000

face 5 001000000 building 5 000010011

face 6 000000001 building 6 000001000

fruit 1 100000100 landscape 1 100000000

fruit 2 010001010 landscape 2 000101100

fruit 3 001000001 landscape 3 001000000

fruit 4 000100000 landscape 4 010000010

fruit 5 000010000 landscape 5 000010001

Tab. II The elements of training samples and the corresponding locally-represented
pattern.
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(a) The initial input image with 25% salt (b) The first recalling sample
& pepper noise

(c) The second recalling sample (d) The third recalling sample

Fig. 5 Context association-based image retrieval.

4.2 Intersection association-based image retrieval

When the logical AND operation is adopted in the SC layer, and the initial states of
all neurons in the PSC layer are set to 1, the M3GAM can carry out the intersection
association-based image retrieval. If the multiple inputs are applied to the M3GAM,
the outputs to be recalled will be determined by the intersection of the data sets
which include these inputs. Suppose the M3GAM stored the training samples as
shown in Tab. I. Even if the testing images ‘fruit 1’ with 25% salt & pepper noise
and ‘building 1’ with Gaussian white noise (0 mean, 0.05 variance) are applied to
the M3GAM as an intersection query request, we can clearly see from Fig. 6 that
the M3GAM is still able to exactly retrieve the No. 1 and No. 7 training sample.

(a) The initial input images with 25% salt & pepper noise and Gaussian white noise
(0 mean, 0.05 variance)

(b) The first recalling sample (c) The second recalling sample

Fig. 6 Intersection association-based image retrieval.

4.3 Union association-based image retrieval

In addition to the intersection association, the M3GAM can also deal with the union
association by changing the logical AND operation into logical OR operation, and
the initial states of all neurons in the PSC layer should be set to 0. For example,
when the testing images ‘fruit 3’ with Gaussian white noise (0 mean, 0.04 variance)
and ‘landscape 4’ with 25% occlusion are applied to the M3GAM, the No. 3, No.
4, No. 6, No. 7 and No. 9 training sample can be correctly retrieved. Fig. 7 shows
the simulation results.

183



Neural Network World 2/13, 169-189

(a) The initial input images with
25% occlusion and Gaussian white (b) The first recalling sample

noise (0 mean, 0.04 variance)

(c) The second recalling sample (d) The third recalling sample

(e) The fourth recalling sample (f) The fifth recalling sample

Fig. 7 Union association-based image retrieval.

4.4 Performance analysis of the M3GAM

Since the performance of the Associative Memory model is usually evaluated in
terms of storage capacity and error-correction capability, in this subsection, we will
first analyze the M3GAM’s storage capacity, and then investigate the M3GAM’s
error-correction capability.

4.4.1 Storage capacity analysis of the M3GAM

From the structure of the M3GAM, we can clearly observe that its storage capacity
not only depends on the GUAM and GBAM, but also depends on the numbers of
neurons in each layer. On the one hand, previous works [9-11, 15-16] have demon-
strated that exponential correlation learning schemes can lead to the Associative
Memory model’s large storage capacity. Note that the GUAM and GBAM adopt
the Gaussian exponential correlation learning scheme which is the natural gener-
alization of such schemes. In particular, if the parameter σ is set to 1 and the
staircase function H(·) is replaced with that given by Wang et al [11], the GUAM
and GBAM will become the MV-ECAM and MV-eBAM respectively which have
been proved theoretically and verified experimentally to possess a large storage
capacity [11]. On the other hand, although the M3GAM’s storage capacity is re-
stricted by the numbers of neurons in the SC layer, the PSC layer and the PNP
layer, the storage capacity becomes large as the number of neurons in these layers
becomes large. Usually, the number of neurons in the PSC layer should be greater
than or equal to the number of patterns to be stored. While the number of neurons
in the SC layer must be equal to that in the PSC layer. the number of neurons in
the PNP layer must be equal to the length of the PN code selected. In addition,
we can see that the M3GAM can store more patterns by using two or more funda-
mental PN codes even if the number of the neurons in the PNP layer is unchanged.
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Since each PN code has the same characteristics [23], the choice of the PN codes
does not affect the performance of the M3GAM. Hence, we can easily improve the
storage capacity of the M3GAM by increasing the number of neurons in the SC
layer, the PSC layer and the PNP layer.

4.4.2 Error-correction capability analysis of the M3GAM

Many researchers have demonstrated that Associative Memory models contain very
strong robustness to noisy and incomplete inputs [9-11, 15-16]. Now we perform
some experiments to show that M3GAM has a similar performance. Since the
M3GAM employs the GUAM to suppress the noise and reconstruct the pattern
when the noisy or incomplete query pattern is inputted, from Fig. 3 we can eas-
ily observe that the M3GAM’s error-correction capability mainly depends on the
GUAM. Thus, in this subsection, we investigate the GUAM’s error-correction ca-
pability by adding random noises such as Gaussian white noise and salt & pepper
noise to the grayscale images or occluding partly grayscale images with white block
noise.

In this experiment, we gather the 600 256-level grayscale images with 60×60
pixels from public Search Engine—Google as our target database, which consists
of faces, fruits, buildings, landscapes, animals, flowers, etc. Fig. 8(a) shows some
sample images in this database. Figs. 8(b) and (c) show a set of testing images
generated by adding the salt & pepper noise or Gaussian white noise to the original
training images, respectively. Fig. 8(d) shows the testing images corrupted with
6×6 white block noise. In the data preprocessing stage, each one of the 600 original
images is first turned into a corresponding vector by the row by row concatenation
way. When a noisy or incomplete image is inputted to the GUAM, if the output
image matches entirely the original training exemplar, then we call a successful
recognition. The high recognition rate means that the GUAM has a high error-
correction capability.

Tabs. III–V show the average recognition rates of 10 thousand times indepen-
dent repeated runs. From Tab. III, we can clearly observe that GUAM achieves as
high as 100% recognition rate when salt & pepper noise is not greater than 30%.
Meanwhile, Tab. IV also shows that GUAM has an impressive recognition rate
even when the images are corrupted by Gaussian white noise with 0 mean and 0.3
variance. Note that at such Gaussian white noise level as shown in Figure 8(c), the
recognition problem becomes extremely difficult even for the human. In addition,
when 6×6 white block occlusion is not serious, for example, not greater than 15%,
as shown in Tab. V, GUAM obtains almost 100% recognition rate. More impor-
tantly, from all the experiments, we can clearly see that the GUAM converges and
gets stability after only less than three iterations on the average.

In addition, since the GBAM is employed to realize the transformation or re-
call between the grayscale images and the binary locally-represented patterns or
pseudo-noise codes in the M3GAM, we also carry out two preliminary experiments
to investigate the GBAM’s transformation/recall capability by constructing two
sets of pattern pairs, respectively. In the first experiment, we randomly gener-
ate 600 different 30-dimensional binary vectors, whose average hamming distance
is 10.34. Each pattern pair consists of one binary vector and one grayscale im-
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(a) Original training images

(b) testing images with 20% salt & pepper noise

(c) Testing images with Gaussian white noise (0 mean, 0.3 variance)

(d) Testing images with 25% occlusion (corrupted by 6× 6 white block noise
randomly)

Fig. 8 Examples of the training images and the testing images.

age from the above images database. Experimental result shows that the recall
probability is up to 100%. In the second experiment, we specially select another
600 different 30-dimensional binary vectors, whose average hamming distance is
4.18. In other words, for each one of these vectors, there must exist one “close”
vector, and their hamming distance is less than or equal to 4. Here each pattern
pair consists of such one binary vector and one grayscale image from the same
images database. Experimental result shows that the recall probability is as low as
21.52%. Note that although the two experiments are performed on the same image
database, their recall probabilities are obviously different, which may be because
the correlation between the latter binary vectors is much higher than that between
the former binary vectors. Therefore, from the two experiments, we seem able to
infer indirectly that if the patterns are very “close” to each other, the M3GAM
may produce incorrect recall results. Intuitively, this case is indeed consistent with
our human recall mechanism.

5. Conclusions and Future Work

In this paper, we first propose the asymptotically stable multi-valued many-to-
many Gaussian associative memory model (M3GAM) by introducing the GUAM
and GBAM into Hattori et al.’s (MMA)2. Then, inspired by the idea of metric
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learning, we employ the general similarity metric to extend the M3GAM, and
construct the generalized multi-valued many-to-many Gaussian associative memory
neural network (GM3GAM), which makes the M3GAM become its special case.
Finally, we investigate one of the M3GAM’s application cases for association-based
image retrieval, and the computer simulation results show that the M3GAM can
not only exactly carry out many-to-many association, but also exhibit the robust
error-correcting capability even to noisy and incomplete inputs.

In the future, we will investigate the characteristics and the behavior of the
proposed GM3GAM experimentally and theoretically. In addition, we intend to
improve the M3GAM and GM3GAM so that they can better mimic human thinking
to deal with the more complex intelligent information processing problems.
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