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Abstract: With increasing opportunities for analyzing large data sources, we
have noticed a lack of effective processing in datamining tasks working with large
sparse datasets of high dimensions. This work focuses on this issue and on effective
clustering using models of artificial intelligence.

The authors of this article propose an effective clustering algorithm to exploit
the features of neural networks, and especially Self Organizing Maps (SOM), for
the reduction of data dimensionality. The issue of computational complexity is
resolved by using a parallelization of the standard SOM algorithm. The authors
have focused on the acceleration of the presented algorithm using a version suitable
for data collections with a certain level of sparsity. Effective acceleration is achieved
by improving the winning neuron finding phase and the weight actualization phase.
The output presented here demonstrates sufficient acceleration of the standard
SOM algorithm while preserving the appropriate accuracy.
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1. Introduction

Recently, the issue of high-dimensional data clustering has been coming to the fore
with the development of information and communication technologies that support
increasing opportunities to process large data collections. Data collections with
high dimensions are commonly available in the fields such as medicine, biology,
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informational retrieval, web analysis, social network analysis, image processing,
financial transaction analysis and others.

With increasing data dimensionality, two main challenges are being discussed.
The first is dimensionality which rapidly increases computational complexity with
respect to the number of dimensions. Therefore, this issue makes some common
algorithms computationally impractical in many real applications. The second
challenge is specific similarity representation in a high-dimensional space. As pre-
sented in [3], Beyer et al. for any point in a high-dimensional space the expected
distance, computed by Euclidean measure to the closest and to the farthest point,
shrinks with the growing dimensionality. This may be the reason for decreased
effectiveness of common clustering algorithms in many data mining tasks.

The authors of this paper propose an effective clustering algorithm that can
exploit the features of neural networks, and especially Self Organizing Maps, for
the reduction of data dimensionality. The issue of computational complexity is
resolved using a parallelization of the basic SOM learning algorithm. The authors
have focused on acceleration of the presented algorithm using a version suitable for
data collections with a certain level of sparsity. An effective acceleration is achieved
by improving weight actualization within a sequential SOM learning algorithm,
while preserving the appropriate accuracy of SOM output.

2. Self Organizing Maps

Self Organizing Maps (SOM), also referred to as Kohonen maps, proposed by Teuvo
Kohonen in 1982 [10], constitute a kind of artificial neural network that is trained by
unsupervised learning. Using an SOM, the input space of training samples can be
represented in a lower-dimensional (often two-dimensional) space [13], called map.
Such a model is efficient in structure visualization due to its feature of topological
preservation using a neighborhood function. The obtained low-dimensional map
is often used for pattern detection, clustering, or for characterization and analysis
of the input space. The SOM technique has been applied in many areas such as
speech recognition [16, 5], image classification [9, 2], and document clustering [8, 6].

SOM consists of two layers of neurons (see Fig. 1): an input layer that receives
and transmits the input information and an output layer, the map that represents
the output characteristics. The output layer is commonly organized as a two-
dimensional rectangular grid of nodes, where each node corresponds to one neuron.
Other extensions, i.e. a hexagonal grid of the output layer, have been documented
as well. Both layers are feed-forward connected. Each neuron in the input layer
is connected with each neuron in the output layer. A real number, or weight, is
assigned to each of these connections.

It is common knowledge that maps with a smaller grid of the output layer
behave similarly to K-means clustering [1]. Larger output maps have the ability
to describe the topological characteristics of the input data collection (often by
using a U-Matrix for the interpretation of a distance between nodes). A detailed
description of an SOM application is presented in [5]. There are several known
variants of SOM learning algorithms [11, 14]. Depending on the implementation,
we can use sequential or parallel algorithms.

Remark Notation used in the paper is briefly listed in Tab. I.
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Fig. 1 Basic schema of SOM.

Symbol Description

M Number of input vectors
n Dimension of input vectors, number of input neurons, dimension of

weight vectors in SOM output layer neurons
N Number of neurons in SOM output layer

When rectangular shape of SOM is used we can define
Nr Number of rows in SOM output layer
Nc Number of columns in SOM output layer

Then it holds N = NrNc and we can say that SOM with rectangular
shape is “Nr ×Nc SOM”

ni i-th input neuron, i = 1, 2, . . . , n
Ni i-th output neuron, i = 1, 2, . . . , N
T Number of epochs
t Current epoch, t = 1, 2, . . . , T
X Set of input vectors, X ⊂ Rn
x⃗(t) Current input vector in epoch t, arbitrary selected vector from set X

x⃗(t) ∈ X, x⃗(t) = (x1, x2, . . . , xn)
w⃗k(t) Weight vector of neuron Nk, k = 1, 2, . . . , N

w⃗k(t) ∈ Rn, w⃗k(t) = (w1k, w2k, . . . , wnk)
Nc Best Matching Unit (BMU), winner of learning competition
w⃗c(t) Weight vector of BMU

Tab. I Notation used in the article.

2.1 SOM learning algorithms

Standard SOM Learning Algorithm is the conventional sequential method of SOM
training, where weight vectors w⃗k(t) corresponding to k-th output neuron Nk, k =
1 . . . N , are updated during training regularly immediately after processing each
input vector x⃗(t). The winner of a learning competition neuron Nc, called a Best

133



Neural Network World 2/13, 131-147

Matching Unit (BMU), is commonly selected using the Euclidean distance:

dk(t) = ∥x⃗(t)− w⃗k(t)∥ (1)

dc(t) = min
k
dk(t) (2)

The weight vectors are then updated using a learning-rate factor σ(t) ∈ [0, 1]
and neighborhood function hck(t):

w⃗k(t+ 1) = w⃗k(t) + σ(t)hck(t)
[
x⃗(t)− w⃗k(t)

]
(3)

The learning-rate factor σ(t) monotonically decreases during the learning phase.
The neighborhood function hck(t) determines the distance between nodes c and k in
the output layer grid. These nodes correspond to neurons Nc and Nk. The value of
hck(t) typically decreases during learning, from an initial value (often comparable
to the dimension or half of a dimension of the output layer grid) to a value equal to
one (the distance between two neighboring nodes in a grid). Gaussian neighborhood
function is commonly used for this purpose.

Several varieties of this SOM learning algorithm have been published to improve
its computational efficiency; i.e. modification for a large dataset WEBSOM [12]
or Fast Learning SOM algorithm (FLSOM) [4] for smaller datasets. Batch SOM
Learning Algorithm is another commonly published variety, where the weights w⃗k(t)
are updated only at the end of each epoch [11, 15]. However, our experiments
showed that a Batch SOM Learning Algorithm applied to high-dimensional sparse
data collections does not provide sufficiently precise outputs compared with the
application of a standard sequential SOM learning algorithm.

Another SOM training algorithm for high-dimensional sparse input data was
published as Sparse Batch SOM Learning Algorithm. This version originated from
the Batch SOM Learning Algorithm, where numerical operations are performed
only with non-zero elements of the input and the weight vectors. Lawrence et
al. [14] demonstrates that updating the process of such weight vectors requires
significantly fewer floating-point operations. A parallel implementation of Sparse
Batch SOM Learning Algorithm was presented and tested in our previous work
[20]. A hybrid approach to the weight actualization based on the combination of
usage of the Euclidean distance and cosine measure have been proposed in the
paper mentioned above. The experiments with the proposed learning algorithm
resulted in sufficient acceleration of the SOM learning process. However, we are
faced with the issue of accurately determining the Euclidean distance and cosine
measure usage.

On the basis of our previous experiments, we have come to the conclusion that
it is best to use a standard SOM learning algorithm. If we are able to improve
this algorithm and propose its sufficient optimizations, we can achieve a significant
acceleration, while preserving the appropriate accuracy of SOM output.

2.2 Parallel SOM learning algorithm

A network partitioning is the most suitable implementation of the parallelization
of an SOM learning algorithm. Network partitioning is an implementation of the
learning algorithm, where the neural network is partitioned among the processes.
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Martinovič J. et al.: Effective clustering algorithm for high-dimensional sparse. . .

Network partitioning has been implemented by several authors [7, 22]. The parallel
implementation proposed in this paper is derived from the standard sequential SOM
learning algorithm, see Algorithm 1.

Algorithm 1 Standard SOM learning algorithm

1. Construction of the SOM map; weight vectors wk(t) are initialized to random
values wkj(t) ∈ [0, 1].

2. Initialization of the neighborhood function hck(t), the learning-rate factor
σ(t) and the number of epochs.

3. SOM learning process:

(a) Reading of the input vector x⃗i(t).

(b) Computing the distance dk(t) for all k = 1, . . . , N , between each neuron
and the input vector x⃗i(t) using the Euclidean distance.

(c) Finding the BMU Nc with the smallest distance dc(t).

(d) Weight actualization of the BMU and the other neurons from its neigh-
borhood.

4. The step 3 is repeated until desired number of epochs is reached.

After analyzing the serial SOM learning algorithm we have identified the two
most processor time-consuming areas. These parts were selected as candidates for
the possible parallelization. The selected areas were:

Finding BMU – this part of SOM learning can be significantly accelerated by di-
viding the SOM output layer into smaller pieces. Each piece is then assigned
to an individual computation process. The calculation of the Euclidean dis-
tance among the individual input vector and all the weight vectors to find
BMU in a given part of the SOM output layer is the crucial point of this part
of SOM learning. An effective calculation of the Euclidean distance on sparse
vectors is described in Sect. 3.1. Each process finds its own, partial, BMU
in its part of the SOM output layer. Each partial BMU is then compared
with other BMUs obtained by other processes. Information about the BMU
of the whole network is then transmitted to all the processes to perform the
updates of the BMU neighborhood.

Weight actualization – Weight vectors of neurons in the BMU neighborhood
are updated in this phase. The updating process can also be performed using
parallel processing. Each process can effectively detect whether or not some
of its neurons belong to BMU neighborhood. If so, the selected neurons are
updated.

A detailed description of our approach to the parallelization process is described
in Fig. 2.

The parallelization of SOM learning has been performed on an HPC cluster,
using Message Passing Interface (MPI) technology. MPI technology is based on
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Fig. 2 Improved parallel SOM algorithm.

effective communication among processes. That means that one application can run
on many cores. The application uses MPI processes which run on individual cores.
The processes are able to send and receive messages and data, communicate etc.
Detailed information about HPC and MPI technology is described, for example,
in [17].1

Before any implementation of an experimental application began, we had to
decide how the parallelization would be done. Initially, we supposed that the
most effective approach is to divide the SOM into several parts or blocks, where
each block is assigned to the individual computational process. For example, let
us suppose that an SOM with neurons N = 20 in the output layer is given. The
output layer is formed as a rectangular grid with rows Nr = 4 and columns Nc = 5.
Then the output layer of the SOM is divided into 3 continuous blocks which are
associated with three processes.2 A graphical representation of block division of
the SOM output layer is shown in Fig. ??.

During the parallel learning process each block is matched with the individual
process and, at best, one process corresponds to one physical core of a CPU. A de-
tailed description of this approach was presented in our previous paper [21]. Unfor-
tunately, unbalanced loading of the cores is the main problem with this approach.
This happens especially in cases where the training of an SOM with a large number
of neurons in the output layer is performed on a low amount of CPU cores.

To remove the unbalanced load, the approach to the parallelization process
has been modified. Based on our previous work, the division of the SOM output

1A specification of MPI is available on the web: http://www.mpi-forum.org/ Functions used in
the experiment with a link to MPI.Net are available on the web: http://osl.iu.edu/research/
mpi.net.

2If there is no possibility of dividing the output layer into a block with the same number of
neurons, some blocks have one extra neuron.

136
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layer was changed from a block load to a cyclic one. The individual neurons were
assigned to the processes in a cyclic manner. A nearly uniform distribution of
the output layer’s neurons among processes is the main advantage of this kind of
parallelization. The uniform distribution of the neurons plays an important role in
weight actualization because there is a strong assumption that neurons in the BMU
neighborhood will belong to different processes. An example of a cyclic division of
the SOM output layer with a dimension of 4 × 5 neurons can be seen in Fig. ??,
where each neuron is labeled with a color of the assigned process.

Fig. 3 Divisions of SOM 4× 5 rectangular output layer.

2.2.1 Description of proposed approach

This subsection includes a detailed description of our approach. Initially, each
process reads the training input vectors and then a two-dimensional pointer field
in the memory for representation of the output SOM map is created. Consequently,
only the neurons allocated to these neurons are assigned to each process. After this
step, we do not store the complete output SOM map. We only store its parts in
the appropriate computational nodes.

This approach results in the following significant advantage: neurons are equally
distributed among the processes corresponding to the used cores, contrary to the
sequential approach, where the whole map is allocated to only one core (and where
there may not be enough memory). For a more precise illustration: consider having
three computation servers, each with a 16 GB of memory. If we use the sequential
SOM version, we can only use 16 GB of memory on one server. But in the case of
the parallel SOM version, we can use all the memory, all 48 GB. (The map can be
up to three times larger.)

In the main computational phase, a BMU is founded for each input vector.
Thus, each processor needs to compute its local BMU within its neurons, after
which each local BMU (and its position in the network) is shifted onto one process
using the MPI functionGatherFlattened to determine the global BMU. It is possible
to use other MPI functions as well, which can provide this selection at one time,
but after testing we have found that the experiments took much more time than
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our presented approach. A global winning BMU is then distributed using the MPI
function Broadcast on all the processes. Next, the neighborhood of the BMU in
each process is computed and, consequently, the weights of the neurons matching
this area are actualized. This procedure is repeated until all the input training
vectors are exhausted (until we have finished one epoch).

2.2.2 Evaluation of SOM learning performance

A standard quantization error (QE) was used to evaluate SOM learning perfor-
mance. The QE was calculated after the finishing of each epoch. Standard quan-
tization error is one of the possible characteristic indicators that can show how
properly the network is trained. This is based on the difference between the neu-
ron weights of BMU and its corresponding input vectors [19]:

QE =
1

M

M∑
i=1

∥x⃗(t)− w⃗c(t)∥. (4)

Initially, we need to find BMU to calculate QE. This phase can be performed
in the same way as in the learning phase, or we can use a more effective approach.
This approach is based on the fact that each process calculates its local BMU; the
computation of the global BMU is then performed using all the processes as well.

For an illustrative explanation, we can describe the following situation: we
have a program running on the P processes; each process needs to compute a
certain value. The complete number of operation is P × L, where L ∈ N is a
number of operations in one process. We have the following options for each set of
computations on each process:

1. We can use the basic parallel function for the computation of the minimal
value (MPI function Reduce). This function works as follows: all the com-
puted values from each process are moved to one single process. Afterwards,
this process finds the smallest value. During this finding, the other processes
wait until the process of finding is finished.

2. We can use the parallel function as well, but in this case only for data trans-
port (MPI function GatherFlattened). All the processes allocate the space
for saving the computed values from the set of P computations. The main
principle of this approach is as follows: after computing all of the values on all
of the processes, the values are moved onto the process which has allocated
free memory, while the minimum value is not computed yet. This step is
repeated until the allocated space is filled on the all processes. Afterwards,
the minimum value is found for the set of P processes. At that moment, all
of the processes are used for the computation. After finishing the computa-
tion, the allocated memory space is released and we can begin the next set
of computations.

In our experiments, we have compared both presented methods using 48 cores.
On the basis of our comparisons, we have found that the second approach is up to
4-times faster.
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Now we have finished the computation of one epoch including the computation
ofQE. This cycle is repeated until we have achieved a set number of epochs, or a set
level of QE. Depending upon individual preference, we determine whether we are
satisfied with achieving the set number of epochs while the network is sufficiently
adopted, or whether we would like to achieve only the set QE level, but with a
larger number of epochs. However, the second case does not ensure that we achieve
the set QE level for certain configurations.

3. Effective Parallel SOM

The basic serial standard SOM algorithm has high computational complexity. Its
disadvantage is in the necessity for weight vector updating for each input vector,
see Eq. (3). Moreover, during the competitive learning phase, where for each input
vector x⃗(t) the distance to all weight vectors w⃗k(t) is computed and where BMU is
founded, we have noted the problem of high computation complexity when working
with higher dimensions.

3.1 More effective Euclidean distance calculation

In place of the standard method for calculation of the Euclidean distance during
the phase of searching dc(t) BMU (see Eq. (5)), we have used its modified version
using multiplication (see Eq. (6)).

dk(t) =

√√√√ n∑
i=1

(xi − wik)2, (5)

where n is the dimension of input vector, xi, and wik is the weight vector corre-
sponding to k-th output neuron Nk, see Eq. (1). We can rewrite the Eq. (5) using
the following formulation:

dk(t) =

√√√√ n∑
i=1

(x2i − 2xiwik + w2
ik) =

√√√√ n∑
i=1

x2i −
n∑
i=1

2xiwik +
n∑
i=1

w2
ik. (6)

In the first epoch, we can calculate
∑n
i=1 x

2
i for all the input vectors; during the

following epochs, this value remains constant. Then we can calculate
∑n
i=1 2xiwik

and
∑n
i=1 w

2
ik for all k = 1, . . . , N for the first input vector, and we can deter-

mine a BMU using Eq. (1). Consequently, we only need to recalculate 2xiwik and
w2
ik and for the next input vectors for the neurons relevant to hck(t). During the

weight actualization, we only need to change the neuron weights relevant to hck(t).
During the following epochs we then recalculate only dk(t) for the neurons from
the neighborhood of BMU and recalculate the weights for the neurons from the
decreased neighborhood of BMU.
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3.2 Improvement of weight actualization

The improvement of weight actualization for high-dimensional sparse data sets is
based on a computation with zero values. In our test datasets (Medlars, Weblogs;
see Sect. 4.) the input vectors consisted of approximately < 1% of non-zero at-
tributes, see Fig. 4.
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Fig. 4 Input vector sparsity.

Consider the neuron weight actualization using the learning-rate factor σ(t)
and the neighborhood function hck(t) (see Eq. (3)), which can be written in item-
notation:

wik(t+ 1) = wik(t) + σ(t)hck(t)[xi(t)− wik(t)], (7)

where hck(t) defines which neighborhood of BMU the neuron weights are updated
for, and σ(t) ∈ [0, 1]. If xi(t) = 0, then wik(t+ 1) < wik(t).

We have found that, when there are input vectors with xi(t− j) = 0 for some i
in several previous vectors, then wik(t) → 0. A non-zero weight value for dataset
Medlars is shown in Fig. 5. As we can see, all the neuron weights had assigned
values from the interval [0, 1] after their initialization. But during the epochs of
the SOM learning phase, the weights decreased to significantly smaller values. As
seen in Fig. 5, it is clear that values higher than 10−10 took approximately only
20%, and the values smaller than 10−19 created the majority of the weight vector
components.

If we set wik(t + 1) = 0, then we can ‘accelerate’ the convergence of wik(t) to
0 for the increasing t. Contrary to the situation described above, in the case of
the input pattern vector with xi(t) ̸= 0, the weight wik(t) can be converted into a
non-zero value.

The non-zero weight values for selected neurons with the highest amount of
assigned input vector patterns founded for two datasets used in the experiments
are presented in Fig. 6(a) (Medlars) and Fig. 6(b) (Weblogs). The selected neurons
are described by their id in the legend; each neuron has the number of assigned
input vector patterns in brackets.

As we can see in Fig. 6, the sparsity of the neuron weights is very low after their
initialization. This is due to the fact that the initialization is random with values
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from the interval [0, 1]. Using our approach, after the second epoch the weight
sparsity is significantly higher (> 90%).

The entire computational process of weight actualization is then significantly
accelerated because we used only non-zero valued weights. For a more detailed
description see the Sect. 4.

3.3 Time complexity

In this section, the time complexity of a standard SOM algorithm and our im-
plementation is described. The time complexity is examined separately for BMU
searching and for weight actualization.

A standard time complexity for BMU searching of a standard SOM algorithm is
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O(T ∗M ∗N ∗n) and for our implementation it is O(T ∗M ∗N ∗nnz), where nnz is a
number of non-zero elements in the input vectors. We use a more effective Euclidean
distance calculation based on a precomputation of the squares, see Sect. 3.2. This
simplification can be used due to the fact that the calculation of the BMU search
phase uses only non-zero elements.

A time complexity of the actualization phase of the standard SOM algorithm is
O(T ∗M ∗q∗n) and, for our implementation, is O(T ∗M ∗q∗r), where q is a number
of neurons that must be updated. This number depends on the actual epoch in
the SOM algorithm. A maximal value for q could be N (for our implementation
N/4). The parameter r is the average number of non-zero elements in the neuron
vectors. In our algorithm, this number rapidly decreases each epoch.

The time complexity of the BMU search phase of the presented parallel SOM
is:

T ∗M ∗
(
tV ∗N
p

+ tC + tM

)
, (8)

and for the actualization phase of the presented parallel SOM is:

T ∗M ∗ tV ∗ q
p

, (9)

where tV is a time associated with the calculation of one neuron for the specific
phase (search or actualization), p is a number of the processors, tC is the time
needed for communication and tM is the time of the calculation on the master
node.

4. Experiments

Our experiments were divided into two parts. The first part was focused on the
parallelization of a standard SOM learning algorithm, while the purpose of the sec-
ond part of the experiment was to test the impact and effectiveness of our proposed
improvements of the parallel SOM learning algorithm on high-dimensional, large,
sparse datasets.

4.1 Experimental datasets and hardware

Two datasets were used in the experiments. The first dataset was commonly used
in Information Retrieval – Medlars. The second one was our own dataset generated
from web logs; therefore, we call it Weblogs in the following text.

4.1.1 Medlars dataset

The Medlars dataset consisted of 1,033 English abstracts from medical science.3

The 8,567 distinct terms were extracted from the Medlars dataset. Each term
represents a potential dimension in the input vector space. The term’s level of
significance (weight) in a particular document represents the value of a component

3This collection can be downloaded from ftp://ftp.cs.cornell.edu/pub/smart. The total
size of the dataset is approximately 1.03 MB.

142
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of the input vector. Finally, the input vector space has a dimension of 8,707, and
1,033 input vectors were extracted from the dataset.

4.1.2 Weblogs dataset

A Weblogs dataset was used to test learning algorithm effectiveness on high-
dimensional datasets. The Weblogs dataset contained web logs from an Apache
server. The dataset contained records of two month’s worth of requested activities
(HTTP requests) from the NASA Kennedy Space Center WWW server in Florida.4

Standard data preprocessing methods were applied to the obtained dataset. The
records from search engines and spiders were removed, and only the web site brows-
ing option was left (without download of pictures and icons, stylesheets, scripts
etc.). The final dataset (input vector space) had a dimension of 90,060 and con-
sisted of 54,961 input vectors. For a detailed description, see our previous work
[18], where web site community behavior has been analyzed.

4.1.3 Experimental hardware

All of these experiments were performed on a 2008 Windows HPC server with 6
computing nodes, where each node had 8 processors with 12 GB of memory. The
processors in these nodes were Intel Xeon 2.27GHz. A topology, with the connection
between head node and computing nodes, can be found on the web5 (the topology
number four). Enterprise and Private Networks link speed was 1Gbps, Application
link speed was 20 Gbps.

4.2 The first part of experiments

The first part of these experiments focused on the comparison of the standard SOM
algorithm and the parallel approach to this SOM learning algorithm. Medlars
dataset was used for the experiment. The tests were performed for SOM with
shapes6 10×10, 25×25, 50×50 and 100×100. The parallel version of the learning
algorithm was run using 12, 24, and 48 processor cores.7 The records with an
asterisk (*) represent the results for only one processor core. This is an original
serial learning algorithm and there is no network communication.

All the experiments were carried out for 25 epochs; the random initial values
of neuron weights in the first epoch were always set to the same values for both
learning algorithms. Achieved computing times are presented in Tab. II for the
standard SOM algorithm and in Tab. III for our parallel version of the standard
SOM algorithm.

As we can see from Tab. II and Tab. III, the computing time depends on the
SOM dimension and on the number of used processor cores in both cases. The
computation time increases when the SOM dimension and the number of used

4This collection can be downloaded from http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.

html.
5http://technet.microsoft.com/en-us/library/cc719008(v=ws.10).aspx
6For SOM shape notation see Tab. I.
7In all experiments, the relationship 1:1 among MPI processes and used processor cores was

preserved. In other words, there is no processor core shared among several MPI processes.
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Cores Computing Time [hh:mm:ss]

SOM Dimen. SOM Dimen. SOM Dimen. SOM Dimen.
10× 10 25× 25 50× 50 100× 100

1* 00:23:58 02:06:51 07:49:27 32:38:25
12 00:02:39 00:12:00 00:44:13 02:50:05
24 00:01:40 00:08:36 00:24:47 01:45:28
48 00:01:08 00:04:04 00:14:30 01:02:37

Tab. II Computing time with respect to SOM dimension and number of cores,
standard SOM algorithm, dataset Medlars.

Cores Computing Time [hh:mm:ss]

SOM Dimen. SOM Dimen. SOM Dimen. SOM Dimen.
10× 10 25× 25 50× 50 100× 100

1* 00:00:07 00:01:12 00:03:39 00:12:22
12 00:00:01 00:00:06 00:00:48 00:02:42
24 00:00:02 00:00:04 00:00:16 00:01:20
48 00:00:04 00:00:08 00:00:09 00:00:42

Tab. III Computing time with respect to SOM dimension and number of cores,
parallel standard SOM algorithm, dataset Medlars.

processor cores increase. It is evident in Tab. III that our proposed improvement
of the standard serial SOM algorithm is much faster than the original one. The
most obvious example of this is the experiment for the SOM of 100× 100 neurons
computed on 1 core. The computing time was reduced from 32:38:25 hours to 12:22
minutes. Moreover, using the parallelization on 48 cores, the computing time was
reduced to 42 seconds. In all the experiments, we have achieved identical output
SOM maps, with an identical QE for both standard and improved parallel SOM
algorithms, as can be seen in Tab. IV.

4.3 The second part of experiments

The second part of our experiments was aimed at testing our proposed SOM algo-
rithm on high-dimensional, large, sparse datasets. A weblog dataset was used for
these experiments. The dataset consisted of 54,961 input vectors with the dimen-
sion of 90,060, as mentioned above. Achieved computing times are presented in
Tab. V.

Similarly, as in the first part of our experiments, testing was performed for
various SOM shapes: 10×10, 25×25 and 50×50 neurons; 12, 24 and 48 processor
cores were used for the parallelization. The records with an asterisk (*) present
the outputs for only one processor core. The number of computed epochs and
initialization of neuron weights was the same as in the first part of the experiment,
see Sect. 4.2. A comparison of the standard SOM algorithm has not been performed
due to its enormous time complexity.
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Map Dimension Cores Quantization Error QE

Standard Alg. Parallel Alg.

10× 10 1* 3.639166241 3.639166241
12 3.639166241 3.639166241
24 3.639166241 3.639166241
48 3.639166241 3.639166241

25× 25 1* 3.263486998 3.263486998
12 3.263486998 3.263486998
24 3.263486998 3.263486998
48 3.263486998 3.263486998

50× 50 1* 2.988572881 2.988572881
12 2.988572881 2.988572881
24 2.988572881 2.988572881
48 2.988572881 2.988572881

100× 100 1* 2.848478695 2.848478695
12 2.848478695 2.848478695
24 2.848478695 2.848478695
48 2.848478695 2.848478695

Tab. IV Quantization error with respect to SOM Dimension, number of cores,
and SOM learning algorithm, dataset Medlars.

Cores Computing Time [hh:mm:ss]

SOM Dimen. SOM Dimen. SOM Dimen.
10× 10 25× 25 50× 50

1* 00:05:10 00:48:09 02:53:14
12 00:00:54 00:05:08 00:32:54
24 00:00:55 00:03:40 00:14:05
48 00:01:39 00:02:29 00:06:57

Tab. V Computing time with respect to SOM dimension and number of cores,
improved SOM algorithm, dataset Weblogs.

As we can see in Tab. V, the acceleration of our improved algorithm is appre-
ciable. With a growing number of processor cores, the computation effectiveness
increases, and the computational time sufficiently decreases, even for such a high-
dimension as in our data collection.

5. Conclusion

Several methods focused on SOM optimization are known, including several ap-
proaches to the parallelization of a standard SOM algorithm. The main achieved
goal of this contribution was the development of an optimized SOM learning al-
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gorithm that is suitable for high-dimensional, large, sparse datasets such that the
resulting SOM is equivalent to the result of a standard SOM algorithm.

To achieve a high acceleration of the SOM algorithm, several partial improve-
ments were proposed. The first one used optimized computation of the Euclidean
distance in the BMU search process. The second one utilized sparsity of a high-
dimensional dataset, based on very small numbers tending to appear in neuron
weights after a neuron update process. Simple threshold filtering was applied on
weight vectors to keep the weight vectors sparse, and to maintain the option of fast
Euclidean distance computation. The third improvement was the implementation
of SOM on HPC cluster that reduced MPI communication among participating
computational nodes.

The proposed improvements were tested in experiments for different SOM di-
mensions and different number of cores. The presented results showed that the
proposed improvement of the standard serial SOM algorithm was much faster than
the original one. In all the experiments, we have achieved identical SOM output,
with an identical QE for both standard and improved parallel SOM algorithms.
Moreover, the last experiments confirmed that the acceleration of our improved
algorithm was appreciable. Using parallelization, the computation effectiveness
increased, whilst the computational time sufficiently decreased, even for such di-
mension as in tested data collection.

We are aware of the fact that our proposed approach with optimizations for al-
gorithm acceleration is appropriate primarily for high-dimensional, sparse datasets.
Nevertheless, it is partially applicable for dense datasets as well, where remarkable
computing times can be achieved for low-dimensional datasets.
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