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Abstract: A method for identification of parameters of a non-linear dynamic
system, such as an induction motor with saturation effect taken into account, is
presented in this paper. Adaptive identifier with structure similar to model of
the system performs identification. This identifier can be regarded as a special
neural network, therefore its adaptation is based on the gradient descent method
and Back-Propagation well known in the neural networks theory. Parameters of
electromagnetic subsystems were derived from the values of synaptic weights of the
estimator after its adaptation. Testing was performed with simulations taking into
account noise in measured quantities. Deviations of identified parameters in case
of electrical parameters of the system were up to 1% of real values. Parameters
of non-linear magnetizing curve were identified with deviations up to 6 % of real
values. Identifier was able to follow sudden changes of rotor resistance, load torque
and moment of inertia.
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1. Introduction

Identification has been studied for decades from a variety of viewpoints and research
communities, such as statistical regression-estimation, signal processing-filtering,
and control engineering-adaptive control. When a priori information about the
rules that govern a system either do not exist or are too complex, identification
techniques are used to build a model by only observing input-output data. Then,
the system is called a ‘black box’ since the internal behavior is unknown. On the

∗D. Balara, J. Timko, J. Žilková
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contrary, in technical practice we often meet with the case that the system does
not behave just like a ‘black box’, but we have some a priori information about it.
In many physical systems our knowledge of mechanical or electrical laws allow us
to formulate a model which is the fundamental tool for studying and analysis its
properties. However, no matter how deep our physical insight, the parameters of
any model present inaccuracies.

In case of induction motor identification, it is possible to assume that some pa-
rameters are known, the magnetizing curve is linear, identified motor is at standstill
or rotary speed of motor is constant during some time period. Above assumptions
simplify identification, but at the same time they limit the number of identifiable
parameters or they can be used only in special working modes of the motor. Our
aim was to develop an identification procedure of all induction motor parameters,
if possible, with non-linear friction [1–3] and saturation effect taken into account
[4–8]. An inspiration for handling such a complex system may be found in the ar-
tificial neural networks applications, where a complex system is divided into small
units - neurons operating according to local-defined rules. If rules are properly de-
signed, network produces required global effect, although operation of each neuron
is strictly local. Though the whole network may be strongly non-linear, operating
rules of each neuron may be very simple. Proposed identifier of induction motor is
based on the same principle. The identifier is constructed as a model of the motor
with all above non-linearities incorporated. The identifier is properly divided into
neurons. Parameters are replaced with adaptive weights and whole identifier works
as a network of several neurons, each of them operating according to local-defined
rules. Using stator voltages and rotary speed as inputs and stator currents as de-
manded outputs, identifier adapts its weights with use of the well-known gradient
descent method [9]. The deviations of demanded and actual outputs of identi-
fier are transferred to inner neurons with use of the Back-Propagation algorithm
[3]. Many non-linearities and feedbacks influence only input signals of neurons,
therefore neurons themselves are linear and their adaptive rules are very simple.
Proposed identifier identifies stator and rotor resistances, leakage inductances and
course of non-linear magnetizing curve. Testing of the identifier was performed
with simulations. To make testing conditions somewhat more similar to reality,
Gaussian noise was added to signals supposed to be measured from motor. Struc-
ture of the identifier is similar to model of motor in αβ frame of reference [11]. As
a consequence of this transformation, quantities of motor do oscillate and contain
more information for the purpose of identification.

2. Model of Induction Motor

The two phase electrical equations of an induction motor in an arbitrary frame
rotating at a speed ωa are given by [6]:

ŪS = RS ĪS +
dψ̄S
dt

+ j · ppωaψ̄S (1)

ŪR = 0̄ = RRĪR +
dψ̄R
dt

+ j · pp (ωa − ω) · ψ̄R, (2)
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where

ψ̄S = LσS ĪS + ψ̄m and ψ̄R = LσRĪR + ψ̄m (3)

ψ̄m = F̄
(
Īm
)
and Īm = ĪS + ĪR (4)

m =
3

2
ppIm

[
ψ̄∗
S · ĪS

]
. (5)

Symbol * denotes conjugate vector.

IS , IR,Im stator, rotor and magnetizing currents
US , UR stator and rotor voltages
ψS , ψR, ψm stator, rotor and mutual fluxes
pp number of the pole pairs
ωa angular speed
ω mechanical angular speed
m torque
LσS , LσR leakage inductances of stator and rotor
RS , RR stator and rotor resistance

Tab. I Used symbols.

In stator coordinate system [11] αβ frame of reference ωa=0. Based on (1), we
obtain:

ŪS = RS ĪS +
dψ̄S
dt

(6)

ŪR = 0̄ = RRĪR +
dψ̄R
dt

− j · pp · ω · ψ̄R (7)

and the transformation of three-phases stator voltages into stationary α,β reference
frame is by [11]:

uα1 =
1

3
(2ua − ub − uc) and uβ1 =

1√
3
(ub − uc) . (8)

From (6) and (7) follows that

dψ̄S
dt

= ŪS −RS ĪS and
dψ̄R
dt

= −RRĪR + j · pp · ω · ψ̄R (9)

and in component form[ dψα1

dt
dψβ1

dt

]
=

[
uα1
uβ1

]
−RS

[
iα1
iβ1

]
[ dψα2

dt
dψβ2

dt

]
= −RR

[
iα2
iβ2

]
+ pp.ω

[
−ψβ2
ψα2

]
From equation (3):
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ĪS =
ψ̄S − ψ̄m
LσS

and ĪR =
ψ̄R − ψ̄m
LσR

(10)

According to [4], where authors considered controlled induction motor, the vec-
tor version of the saturation function in (3) is defined as F̄ : ℜ2 → ℜ2 such that∥∥ψ̄m∥∥ = f

(∥∥Īm∥∥) and ψαm/ψβm = iαm/iβm. Function f : ℜ → ℜ is a scalar
saturation function that only affects the magnitude of the mutual flux ψ̄m so that
ψ̄m a Īm have the same angle. According to [10] the time constant Tmg, of leeway
of flux after magnetizing current in dynamo sheets, is not zero, but approximately
0.016 ms.

Let us denote

Im =
∥∥Īm∥∥ =

√
I2αm + I2βm. (11)

Components of mutual flux may be written by [4] as follows:

ψαm = iαm
f (Im)

Im
ψβm = iβm

f (Im)

Im
. (12)

According to [10] the first order inertias with very small time constant Tmg were
included into the model. Including by [10] the first-order inertias into (12):

dψαm
dt

=
1

Tmg
iαm

f (Im)

Im
− 1

Tmg
ψαm

dψβm
dt

=
1

Tmg
iβm

f (Im)

Im
− 1

Tmg
ψβm. (13)

The mechanical equation can be expressed as:

m−mL · sgn(ω)−mf = J
dω

dt
, (14)

where m, mL and mf are motor, load and friction torque and J is moment of
inertia.

Substituting (2) into (5), we obtain:

m =
3

2
pp [ iβ1 · ψαm − iα1 · ψβm ] . (15)

Fig. 1 shows transformation of three-phases stator voltages into stationary α,β
reference frame by (8).

The discrete model of an induction motor with non-linear magnetic circuit is

represented in Figs. 2–4, where symbol denotes numerical integrator. Fig. 2
and 3 shows discrete model of stator and rotor of an induction motor by (3), (4)
and (9).

Fig. 4 shows discrete model of magnetizing subsystem of an induction motor
by (10)–(13). Function g comprises non-linear magnetizing curve, the square root
function and dividing by module of Im.
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Fig. 1 Transformation of phase voltages into α, β frame of reference.

Fig. 2 Model of stator of an induction motor.

Fig. 3 Model of rotor of an induction motor.

3. Neural Identifier

General structure of the proposed identifier is shown in Fig. 5. Figs. 6–8 depict
detailed structure of the identifier. After adaptation, identified parameters can be
derived from particular weights of the identifier based on its similarity to identified
motor’s structure.

Symbol ∗ denotes identified signals.

In case of ideal adaptation weights for neurons N1 and N2 by Fig. 6 is wN1
1 =

wN2
1 = −RS , and wN1

O = wN2
O = 1/LσS . The output o of the neuron N1 is

determined by (17) and output of neuron N2 analogically.
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Fig. 4 Model of magnetizing subsystem.

Fig. 5 General scheme of electromagnetic identifier.

Fig. 6 Neural identifier of stator.

In case of ideal adaptation weights for neurons N3, N4, N5 and N6 is wN4
O =

wN6
O = 1/LσR and wN3

1 = wN5
1 = −RR. The outputs of the neurons are determined

analogically with the neuron N1.
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Fig. 7 Neural identifier of rotor.

Fig. 8 Neural identifier of magnetizing subsystem.

Neural identifier of magnetizing subsystem is shown in Fig. 8. The neuron N7
represents the magnetizing curve. In case of ideal adaptation of weights for the
neuron N7, wN7

1 = −d and wN7
O = c. Z1 and Z2 are first order inertias by (13).

4. Rules of adaptation

Identifiers of stator and rotor contain branches with identical parameters. During
adaptation, however, signals in particular branches are different and their informa-
tion value from identification point of view is different too. Therefore, adaptation
of weights in one of the branches is usually slower and it may even stop at a certain
level. It is useful to perform adaptation so that values of corresponding weights are
bound somehow in order to preserve their similar values. In this case, this aim was
achieved by averaging corresponding weights after each step of adaptation. This
approach ensures identical values of corresponding weights in each step and, at the
same time, the information value of signals in both branches is used for adaptation.

To derive adaptation rules for all neurons, the gradient descent method and
Back-Propagation algorithm were used. Let there be objective function E= 1

2e
2,

where e – is the deviation between required and actual output of the neuron.
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For deviation and error function of neuron N1

eN1 = iα1 − oN1 EN1 =
1

2

(
eN1

)2
(16)

oN1 = wN1
O

(
wN1

1 · iN1
1 + 1 · iN1

2 − 1.iN1
3

)
= wN1

O · yN1. (17)

According to the gradient descent algorithm for weights adaptation of neuron N1

dwN1
O

dt
= −ηN1

O

∂EN1

∂wN1
O

= ηN1
O · eN1 · yN1 (18)

dwN1
1

dt
= −ηN1

1

∂EN1

∂wN1
1

= ηN1
1 · eN1 · wN1

O · iN1
1 , (19)

where in is n-th input of the neuron and η is the rate of the adaptation.
Analogically for neuron N2

eN2 = iβ1 − oN2

dwN2
O

dt
= ηN2

O eN2yN2 and
dwN2

1

dt
= ηN2

1 eN2wN2
O iN2

1 . (20)

For neurons N4 and N6

oN4 = wN4
O

(
1 · iN4

1 − 1 · iN4
2

)
= wN4

O · yN4. (21)

If eN4 would be known then

EN4 =
1

2

(
eN4

)2
(22)

dwN4
O

dt
= −ηN4

O

∂EN4

∂wN4
O

= ηN4
O · eN4 · yN4. (23)

In order to derive adaptation rule we can consider the Z1 inertia with a very
small time constant to have almost the same effect as non-inertia element with gain
1. Neuron N4 affects the operation of neuron N1, therefore:

oN1 ∼= wN1
O

(
wN1

1 · iN1
1 + iN1

2 − oN7
(
oN4 + oN1

))
(24)

eN1 = rN1 − oN1 (25)

dwN4
O

dt
= −ηN4

O

∂EN1

∂wN4
O

= ηN4
O eN1wN1

O

(
−oN7yN4

)
. (26)

From (23) and (26) follows that

eN4 = −eN1wN1
O oN7. (27)

Analogically

eN6 = −eN2wN2
O oN7 and

dwN6
O

dt
= ηN6

O eN6yN6. (28)
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For neurons N3 a N5

oN3 = wN3
1 · iN3

1 − 1 · iN3
2 . (29)

If eN3 would be known then

EN3 =
1

2

(
eN3

)2
(30)

dwN3
1

dt
= −ηN3

1

∂EN3

∂wN3
1

= ηN3
O · eN3 · iN3

1 . (31)

Since neuron N3 affects the neuron N4, it can be written:

oN4 = wN4
O

(
1 · oN3 − 1 · iN4

2

)
eN4 = rN4 − oN4 (32)

dwN3
1

dt
= −ηN3

1

∂EN4

∂wN3
1

= −ηN3
1 · ∂E

N4

∂eN4
· ∂e

N4

∂wN3
1

= ηN3
1 · eN4 · wN4

O · iN3
1 . (33)

From (31) and (33) follows that

eN3 = eN4 · wN4
O . (34)

Analogically

eN5 = eN6wN6
O and

dwN5
1

dt
= ηN5

O eN5iN5
1 . (35)

For neuron N7

oN7 = wN7
O ·

1− exp
(
wN7

1 · iN7
1

)
iN7
1

= wN7
O · yN7. (36)

If eN7 would be known then

EN7 =
1

2

(
eN7

)2
(37)

dwN7
O

dt
= −ηN7

O

∂EN7

∂wN7
O

= ηN7
O · eN7 · yN7 (38)

dwN7
1

dt
= −ηN7

O

∂EN7

∂wN7
1

= −ηN7
O eN7wN7

O exp
(
wN7

1 iN7
1

)
. (39)

Neuron N4 influences neurons N1 a N2. If for derivation of adaptive rules we
substitute inertias Z1 a Z2 with simple gains 1 then following equations can be
written:

oN1 = wN1
O

(
wN1

1 · iN1
1 + iN1

2 − oN7 ·
(
oN1 + oN4

))
(40)

oN2 = wN2
O

(
wN2

1 · iN2
1 + iN2

2 − oN7 ·
(
oN2 + oN6

))
(41)

eN1 = rN1 − oN1 and eN2 = rN2 − oN2 (42)
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dwN7
O

dt
= −ηN7

O

∂EN1

∂wN7
O

= −ηN7
O

∂EN1

∂eN1

∂eN1

∂oN7

∂oN7

∂wN7
O

=

= ηN7
O · eN1 · wN1

O

(
−
(
oN1 + oN4

))
· yN7 (43)

dwN7
O

dt
= −ηN7

O

∂EN2

∂wN7
O

= −ηN7
O

∂EN2

∂eN2

∂eN2

∂oN7

∂oN7

∂wN7
O

= ηN7
O · eN2 · wN2

O

(
−
(
oN2 + oN6

))
· yN7. (44)

From a comparison of (38) and (43), (38) and (44) follows that error signal of
neuron N7 can be defined in two ways:

eN7 = −eN1 · wN1
O ·

(
oN1 + oN4

)
(45)

eN7 = −eN2 · wN2
O ·

(
oN2 + oN6

)
. (46)

5. Identification of electromagnetic parameters

According to [10] the time constant of leeway of flux after magnetizing current is
approximately 0.016 ms, therefore the time constant of magnetizing circuit was
considered to be Tmg∗ =0.016 ms. Other parameters of a squirrel-cage induction
motor used in the simulation were: mL=0 Nm, b=0 Nms, Uz=190 V, f=50 Hz,
RS=0.181 Ω, RR=0.161 Ω, J=0.11 kgm2, pp=2, LσS=0.00183 H, LσR=0.00183 H,∥∥ψ̄m∥∥ = c

(
1− e−d∥Īm∥

)
, c= 0.32 Wb, d=0.2.

Considered was motor loaded with friction with various components [11] and
passive load torque. Measured signals of motor, i.e. stator voltages and currents
and rotary speed, were simulated with Gaussian noise added. Parameters of induc-
tion motor may vary in time and they can considerably affect the quality of control.
Therefore, it is desirable in many cases to use the on-line identification of the rotor
resistance [3], [12–15] which varies with temperature of motor. Though its change
is continuous, the sudden change of resistance value was considered in testing in
order to investigate behavior of the identifier. As the proposed identifier does not
identify the time constant of magnetizing circuit, it must be assumed that exact
value of this time constant is not known. Therefore, robustness of the identifier is
tested with respect to inaccurate value of time-constant in the identifier.

Conditions of simulations

• Loaded motor (b=0.1 Nms, ML=5 Nm)

• Noisy input signals of identifier

• Non-linear magnetizing curve of motor and identifier

• Inaccurate magnetizing time constant of identifier Tmg∗=0.000024 s, i.e. 150
% of accurate value used in model of motor

• Sudden change of rotor resistance to 0.19 Ω, i.e. 118 % of original value after
2000 periods
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• 5 filters added to identifier to filter noisy inputs

• Noise: stator currents noise max. ±5 A, stator voltages noise max. ±2 V,
speed noise max. ±2 rad.s−1

• Steps for adaptation of weights were constant and they were tuned experi-
mentally

• Initial values of weights were chose to be of same scale and sign as expected
identified values

Fig. 9 Stator voltages of the motor.

Fig. 10 The training set of the identifier contains 50 periods of stator voltages,
currents and rotary speed of the motor.

Tab. II contains values of identified parameters after 8000 periods, i.e. 160
repetition of the training set.

In spite of noise, but with respect to the fact that simulations performed testing,
identified parameters are rather accurate. A larger deviation -4.9950 % occurred
when identifying steepness of magnetizing curve d, which may be caused by quick
transition of motor into the saturated part of the magnetizing curve and consequent
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Fig. 11 Adaptation of weights.

Fig. 12 Average absolute deviations of N1 and N2 outputs during adaptation.

Parameter Identified Value Real Value Deviation
RS 0.18088 Ω 0.181 Ω -0.0663 %
RR 0.19138 Ω 0.190 Ω 0.7263 %
LσS 0.0018279 H 0.00183 H -0.1156 %
LσR 0.0018279 H 0.00183 H -0.1156 %
d 0.19001 0.2 -4.9950 %
c 0.32018 0.32 Wb 0.0180 %

Tab. II Identified electromagnetic parameters.

lack of information about non-saturated part of the curve. As can be seen in Fig. 11,
reaction of wN3

1 weight of the identifier on changed value of rotor resistance was
very fast with respect to the dynamic of the whole adaptation process. Noise of
measured signals enriches the frequency spectrum of input signals of the identifier,
which may help identification but, at the same time, it may endanger its stability.

Similar results were obtained with T ∗
mg=0.000012 s, i.e. 75 % of value used in

motor model.
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6. Conclusion

Deviations of identified parameters in case of electrical parameters of induction
motor were up to 1% of real values. Parameters of non-linear magnetizing curve
were identified with deviations up to 6 %. The identifier was able to follow sudden
changes of rotor resistance, load torque and moment of inertia. All testing was
performed with simulations, with a rather strong noise added to quantities, which
would be measured from motor in the real application. The proposed identifier
contains 7 neurons, most of which are linear. Therefore, adaptation rules are very
simple. Identification lasts several thousands of periods of stator voltage, which
means several hundreds repetitions of training set. As all repeated training sets
were the same, it is possible to generate just a single training set from motor’s
quantities and repeat it. Adaptation of neurons was done with constant steps whose
values were found experimentally. It is probable, therefore, that with optimized
steps varying during adaptation the identification process may be much faster.
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Technica ČSAV 47, No. 3, 2002, pp. 305–315.
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