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Abstract: A well known problem in unit selection speech synthesis is designing
the join and target function sub-costs and optimizing their corresponding weights
so that they reflect the human listeners’ preferences. To achieve this we propose
a procedure where an objective criterion for optimal speech unit selection is used.
The objective criterion for tuning the cost function weights is based on automatic
speech recognition results. In order to demonstrate the effectiveness of the proposed
method listening tests with 31 naive listeners were performed. The experimental
results have shown that the proposed method improves speech quality and intel-
ligibility. In order to evaluate the quality of synthesized speech the unit selection
speech synthesis system is compared with two other Croatian speech synthesis sys-
tems with voices built using the same recorded speech corpus. One of these voices
was built with the Festival speech synthesis system using the statistical parametric
method and the other is a diphone concatenation based text-to-speech system. The
comparison is based on subjective tests using MOS (mean opinion score) evaluation.
The system using the proposed method used for cost function weights optimization
performs better than other compared systems according to the subjective tests.

Key words: Speech synthesis, statistical parametrical synthesis, unit selection, weight
tuning

Received: October 6, 2011
Revised and accepted: September 17, 2012

1. Introduction
Currently two different corpus based methods dominate in speech synthesis re-
search. The unit selection method is based on selecting and concatenating units
of natural speech from the available corpus. If there is more than one instance of
each unit spoken in different styles, the system can choose the sequence of units
that best conforms to desired prosody and has the least audible joins. In most
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systems the selection is guided by two cost functions, join and target cost, and
the string of acoustic units with minimal total cost is selected. The cost functions
may include contributions of several features calculated as sub-costs. Ideally, these
functions should predict the human perception of quality of the resulting speech.
To this end, an optimal set of join and target sub-costs and their corresponding
weights should be determined. Various approaches based on perceptual evaluation
involving human listeners have been proposed e.g., [7, 10, 11, 18, 23]. The eval-
uation process can be both time consuming and expensive to conduct, which is
especially a problem if it needs to be done many times during the course of system
development, e.g. when a voice using a new speaker is developed. Approaches
based on objective measures have also been proposed [2, 9, 13], with an advantage
that the optimization can be repeated easily as many times as necessary, with con-
sistent and comparable results between runs. However, an objective measure may
not be a good predictor of human perception. Objective measures are sometimes
designed for tuning a specific part of the cost function, and cannot be generalized
for tuning all the weights, complicating the process. For example, in [9] the target
cost weights are set according to the criterion of minimal cepstral distance between
the natural reference target utterances and the synthesized utterances. The same
measure would be difficult to apply to join cost, and may also penalize utterances
that a human would rate as good, but are acoustically further from the reference
waveform.

Quality of speech produced by unit selection can vary widely, depending on
availabilty of units in the database and the selection algorithm itself. Variants
of unit selection synthesis have been implemented in systems such as ν-talk [19],
CHATR [9], and Festival [8].

Statistical modeling of speech has recently been successfully applied in speech
synthesis, leading to the statistical parametric speech synthesis. The method is
based on parametrization of speech that can be both reversed and modeled. A
set of models is trained on examples of natural speech. At synthesis time, these
models can produce speech parameter vectors from which speech waveform is gen-
erated. Typically, hidden Markov model (HMM) formalism is used along with
mel-frequency cepstral coefficients (MFCC) [24, 4], but other parameters such as
formant trajectories have been used as well [1]. The reported quality of such sys-
tems is generally very good [3], although it still has some drawbacks compared to
unit selection systems, especially the buzziness of generated speech resulting from
the filtering process used to generate the waveforms.

In this work, the possibility of using automatic speech recognition (ASR) results
as the optimization criterion for weight tuning is explored. The criterion was tested
on a Croatian speech synthesis system, and the optimization results are presented.
A formal evaluation listening test was conducted to validate the approach. A
statistical parametrical system was also built using the same speech corpus that
was used for the unit selection voice so the systems can be compared. The two
systems were also compared with a diphone concatenation system based on the
PSOLA [15] method, also built using the same corpus. A subjective evaluation of
the systems was conducted using the mean opinion score (MOS) scale.

In the next section, the basic unit selection speech synthesis method is pre-
sented. Croatian speech synthesis and recognition systems are described in Sec-
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tion 3. In Section 4 the proposed criterion for weight tuning and the tuning pro-
cedure are presented. Section 5 presents the results of weight tuning and the
perceptual evaluation. In Section 6, comparison of the 3 systems and the results
of subjective system evaluation are presented. Finally some conclusions and sug-
gestions for future work are given.

2. Unit Selection Speech Synthesis
The unit selection speech synthesis method is based on concatenation of recorded
segments, or units, of natural speech stored in a corpus. A general unit selection
scheme was proposed in [9]. The input to the synthesizer is a target specifica-
tion S = {s1, s2, . . . , sN}, which is a sequence of N units described with fea-
ture vectors. The goal of unit selection is to find the optimal sequence of units
U = {u1, u2, . . . , uN} in the corpus corresponding to the specification S. The
choice of best unit sequence is presented as the problem of finding the path with
a minimal total cost through a network where each node is a unit in the database,
and the edges are possible joins. Two cost functions are defined: target and join
cost. The target cost T (ui, st) is a difference measure between a unit ut in the
corpus and a target unit st, i.e. the desired rendition of this unit. The target cost
is effectively the cost of a given node. The join cost J (ut, ut+1) is a measure of how
perceptible is the join between two consecutive units ut and ut+1, and corresponds
to the cost of the edge from unit ut to ut+1. Both target cost and join costs are
defined as weighted sums of p and q sub-costs, where p and q depend on the number
of features that contribute to each cost:

T (ut, st) =

p∑
j

wt
jTj (ut, st) (1)

J (ut, ut+1) =

q∑
j

wj
jJj (ut, ut+1) (2)

and the factors wt and wj are target and join weights. The target and join sub-cost
functions measure contributions of individual features to the cost, usually in a form
of difference of feature values. These features may be a combination of linguistic
and acoustic features for the join cost, and linguistic features for the target cost
because acoustic features usually are not available for the target specification. The
weights determine the relative importance of sub-costs and are an important part
of cost functions design, as they should reflect the subjective perception of human
listeners. The total cost of a sequence of units is a sum of target and join costs for
N units in the utterance:

C (U, S) =
N∑
t=1

T (ut, st) +
N−1∑
t=1

J (ut, ut+1) (3)

and the optimal sequence is

Û = argmin
U

C (U, S) . (4)
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The Viterbi dynamic programming algorithm can be used to find the optimal path
through the network. At synthesis time, the system searches the corpus to find a
sequence of units that matches the desired phonetic string and concatenates the
corresponding waveforms.

3. Description of Systems

3.1 Corpus and phoneset

The same speech data from the VEPRAD [12] radio news and weather report corpus
was used to build the voices. The VEPRAD corpus is a multi-speaker database,
containig speech from 11 male and 14 female professional speakers. From this
corpus a subset from a single male speaker with the most data was selected for
building the voices. This subset consists of about 2 and a half hours of transcribed
speech with word level textual transcriptions. The size of this set is 267 MB. Phone
level segment labels were obtained automatically using HMM speech recognition
in forced alignment mode. The recognition is done using the HTK toolkit, with
monophone HMMs trained on the same speech corpus that is used in synthesis.
The ASR system was trained on the whole corpus speech with over 208K uttered
words and 15K unique words [12].

The phoneset that was used to build the voices consists of 30 standard phonemes
of the Croatian language, 5 accented forms of vowels, the syllable-forming /r/, and
the silence phoneme (37 phonemes in total). In the Croatian language, grapheme-
to-phoneme conversion is mostly straightforward, with one to one mapping in a
majority of cases. A basic set of manually produced mapping rules for 30 graphemes
is enough to cover unknown words. Better quality of speech can be obtained with a
more extensive set of rules that take into account various sound changes occurring
in speech, so they were adapted for these voices as well [16]. A lexicon consisting
of about 10000 entries with phonetic transcriptions of words with stress position
information is used in conjunction with the rules, as they do not predict stress
placement.

3.2 Statistical parametric voice for festival

The statistical parametric voice was built using the Festival and Festvox [5] tools,
with the clustergen [4] statistical parametric synthesis module.

Each context dependent phoneme is modeled using a three state HMM with
the set of parameters consisting of 24 MFCCs and log F0, extracted at 5 ms in-
tervals. Duration of each HMM state is predicted using a separate classification
and regression tree (CART) trained on the data used to build the voice, utilizing
linguistic features extracted from input text as questions at tree nodes.

To build the Croatian voice the phoneset was adapted to the Festival system.
For each phoneme linguistic features that are used in CART questions were defined
according to the Croatian phonetic system [20], such as whether the phone is a
vowel or a consonant, its place of articulation, length, voicing etc. Grapheme to
phoneme rules and lexicon were converted from Matlab and Perl to the Scheme
language for Festival.
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To train the context-dependent HMMs acoustic features (MFCCs, voicing in-
formation and log F0) need to be extracted from the data first. This is done using
tools provided with Festvox, as well as preparation of utterance files with linguistic
features. The next phase involves training the actual HMM models. The HMM
training stage requires HMM state level segmentation of speech and as the cor-
pus was segmented to the phone level the data needed to be segmented again.
The state segment labels were generated using the Festvox scripts and the EHMM
recognizer provided with the Festival tools. Finally, the HMM parameters and
duration CART trees were estimated from the aligned utterances and extracted
features. The resulting voice takes up 10.2 MB.

3.3 Diphone voice

A diphone concatenative voice was developed for a custom TTS system. Only one
instance of each diphone was kept, resulting in 923 diphones out of theoretically
possible 37*37=1369 for the chosen phoneme set. Diphones from word middles
were preferred and the instance with duration closest to the average was selected.
Along with the waveform, the glottal closure instances computed using the DYPSA
algorithm [17] were kept. The concatenation procedure was implemented in Matlab
and was based on the PSOLA algorithm [15]. No pitch modification is done at
synthesis time so the resulting prosody depends only on the available diphones.

3.4 Unit selection voice

The unit selection voice built for a custom system follows the general unit selection
framework described in [9]. In this system, the diphone was chosen as the funda-
mental acoustic unit. First, the unit database was populated with a number of
units for each diphone class. With each unit a number of features were stored (left
and right phone identity, beginning and ending times of both phones, F0 contour,
glottal closure instants, 12 MFCCs, log energy, first and second formant frequency
at concatenation point and a context identifier).

F0 contours were extracted in 10 ms frames using the RAPT [22] algorithm
and smoothed using a three-point running median filter. For unvoiced regions, the
missing F0 values were inserted using linear interpolation from neighboring values.
The glottal closure instants were detected using the DYPSA [17] algorithm and
the formant contours were extracted using the Snack Sound Toolkit [21]. Twelve
MFCC coefficients and log energy were extracted in 16 ms frames with 8 ms overlap.
A unique context identifier is also stored with each unit so the units that were
originally joined in natural speech may be identified when calculating the join cost.

For the target function, the normalized Euclidean distance between the dura-
tions of phonemes and corresponding phoneme class mean durations was used, as
shown in (5):

T (u) =

√√√√(dl − dl
)2

σ2
l

+

(
dr − dr

)2
σ2
r

, (5)
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where u is the current unit (diphone), dl and dr the durations of left and right
phoneme in the unit u respecively, dl and dr mean durations of left and right
phoneme classes and σvl and σvr are the standard deviations of left and right phoneme
class durations.

Join cost is a weighted sum of absolute difference of F0 value at the point of
concatenation, absolute differences of first and second formant frequencies and the
distance of MFCC vectors. MFCC distance is computed as the Euclidean distance
between MFCC vectors of the first frame of next diphone and one frame after
the last in the current diphone. If two diphones that are adjacent in the original
recording are considered, the MFCC distance becomes zero. When diphones come
from different utterances, the one frame overlap ensures that lower cost is assigned
to the unit with spectral characteristics similar to the continuation of the current
diphone, and not the current diphone itself. This is particularly to account for
phones with abrupt spectral changes, e.g. plosives.

Join cost J(ut, ut+1) between units ut and ut+1 is defined as:

J(ut, ut+1) = wf (|F0t − F0t+1|)+

wm (|F1t − F1t+1|+ |F2t + F2t+1|) + wc

√√√√ 12∑
i=1

(cit − cit+1)
2
, (6)

where wf , wm and wc are the F0, formant and MFCC cost weights, F0 is the
fundamental frequency, F1 and F2 first and second formant frequencies and c is
the MFCC vector.

The total cost S(ut+1) of choosing the unit ut+1 is

S(ut+1) = wtT (ut+1) + wjJ(ut, ut+1) , (7)

where wt and wj are target and join cost weights.
The weights were trained according to the procedure described in the next

section. The unit sequence with the minimal total cost over the whole utterance is
found using the Viterbi algorithm and the speech waveform is generated using the
overlap-and-add technique. No extra signal processing was used. The system was
implemented in Matlab, using Voicebox [6] for MFCC extraction and the RAPT
algorihm for F0 estimation.

3.5 Speech recognition system

The Croatian ASR system is based on continuous hidden Markov models (HMM)
of monophones and triphones trained with the HTK Toolkit [25]. The monophone
models with continuous Gaussian output probability functions were trained for the
30 standard Croatian phonemes and 4 additional models for silence, breathing (in-
spiration) sound, mispronounced words, hesitations and noise. The initial training
of the Baum-Welch algorithm on HMM monophone models resulted in a mono-
phone recognizer, which was used for the automatic segmentation of the speech
signals. The automatically segmented speech database was used to model triphone
HMMs. The resulting phone level segments for the selected speaker were used for
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the speech synthesis system as well. The further training of the ASR system re-
sulted in triphone acoustic models with continuous density output functions (one
to twenty mixture Gaussian density functions), described with diagonal covariance
matrices. The state tying was performed due to the lack of the acoustic material
using proposed Croatian phonetic rules [14]. For speech recognition the speech
signal feature vectors consist of 12 mel-cepstrum coefficients and their derivatives
and acceleration. The feature coefficients were computed every 10 ms for a speech
signal frame length of 20 ms. In the ASR system, a backoff bigram language model
is used with estimated perplexity of 16.94. The achieved word error rate (WER)
for the weather domain recognition task was below 5% [14]. For the purpose of this
work, a unigram language model with 14620 words and uniform word probabilities
was used.

4. Weight Tuning
The proposed objective criterion for optimizing the cost functions weights is the
word correctness metric commonly used in evaluation of ASR system performance.
Word correctness WC of a sentence is defined as

WC = 100%(1− WS +WD

N
), (8)

where WS , and WD are substituted and deleted words, and N is the total number
of words. WS , and WD are computed using the Levenshtein distance between the
reference and recognized sentences. The goal of optimization is thus to find the
weights that maximize the word correctness score for the sentences in the training
set. To tune the weights a limited search of the weight space was done using a
procedure similar to the approach described in [9] employing the proposed objective
criterion. However, for this task a number of other optimization techniques could
be used instead. In the experiment, the set of weights to be optimized consists of
join and target cost weights and the three join cost function sub-weights (eqs. 6
and 7). The same set of weights was used for all units. First, a set of 100 words was
chosen randomly from the dictionary of the speech recognition system. The chosen
words were not present in the data used to build the unit inventory for speech
synthesis. For each weight set, the words were synthesized in isolation and fed
to the speech recognizer. In this case, the calculation of word correctnes becomes
simply the percentage of correctly recognized words. The word correctness score
was calculated and the weight set with the highest score was chosen as best. Using
larger utterances instead of isolated words was first considered for the experiment
but later rejected for two reasons. The first was to minimize the influence of the
speech recognition system’s language model and favor the acoustic model. The
language model was reduced to a unigram model and unigram probabilities for all
words were reset to a uniform value. This could also be done for larger utterances,
so this reason was not very important. The other reason was to make evaluation
easier, as listeners in a preliminary test reported it was difficult to concentrate and
compare longer segments, especially if the quality within the utterance varied. In
total, 48 weight sets were tried and produced word correctness scores ranging from
6 to 18%. To verify that the results were dependent on the chosen weights and are
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not a consequence of the chosen words a new set of 100 randomly picked words
was generated and the process was repeated for the same weight sets. The same
weight sets generated the lowest and highest word correctness scores on both sets
of words.

5. Perceptual Evaluation of Agreement Between
Human Perception and ASR Results

A blind A-B preference listening test was conducted to verify the agreement of
results obtained using the recognition results with human perception. The weight
sets which produced the lowest and highest recognition results were used in the test
(low and high set). From the 100 words used to select the best weight set, 17 were
kept for the listening test. Each of these words was synthesized using the high and
low weight sets, giving two variants for each of the selected 17 words. From the
starting hundred words, five were correctly recognized for both weight sets and 12
were correctly recognized only using the weight set which gives the highest word
correctness. All words that were correctly recognized using the low weight set were
also correctly recognized when using the high weight set. The words that were not
recognized correctly in neither one of two sets were not included in the test. It was
expected that the listeners would prefer the version of the word that was correctly
recognized by the ASR system. The evaluation was conducted using an interactive
GUI application. For each word, labels A and B were randomly assigned by the
application to waveforms from low and high weight sets. The listeners could play
back the waveforms A and B as many times as needed in arbitrary order, and
could choose options "prefer A", "prefer B" or "no preference". The tests were
conducted in a relatively quiet office and all listeners used the same headphones.
The evaluation normally took about 3 minutes per listener to complete. There
were in total 31 naive listeners with no previous experience with speech synthesis,
all native Croatian speakers, mostly graduate students of computer science.

The results of the preference test for each of the 17 words are shown in Fig. 1.
The results show that the listeners had no preference between words generated
using low and high weight sets for the first five words, while for the other twelve
words the listeners preferred the words synthesized using the high weight set. First
five words were correctly recognized using ASR, for both weight sets and thus it can
be said that from the ASR perspective they cannot be distinguished. The human
listeners seem to agree as they equally likely chose preference for words obtained
with either of the weight sets. For words 6-17 the variants synthesized with the
high weight set were correctly recognized using ASR, while the variants obtained
using the low set were not. It can be said that the ASR “prefers” the variants of
words obtained using the high set. In this case, the human listeners also agree, as
they in higher proportion preferred the variant obtained using the high set. This
result shows agreement of human perception and ASR results and justifies the
use of ASR results as an approximation of human perception for weight tuning.
Fig. 2 shows the cumulative preference percentages for words that were correctly
recognized using both low and high weight sets, and for words correctly recognized
only using the high weight set. As noted, for the first group where there was no
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difference in ASR performance, the votes were divided between both variants, with
39% votes for waveforms generated using the high set, 22% with no preference and
39% for the low set. For the second group the majority of listeners preferred the
waveforms generated using the high weight set (61% votes for high vs. 20% with
no preference and 18% for the low weight set). The listening tests proved that the
criterion function for weight set selection satisfies the goal, which is to improve the
synthesized speech quality and intelligibility.
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Fig. 1 Listener preference percentages of base and optimized versions of
synthesized words.

Fig. 2 Cumulative listener preference percentages for groups of words. The left
bar represents words that were correctly recognized with both low and high weight
sets. The right bar represents words correctly recognized only with high weight set.

437



Neural Network World 5/12, 429-441

6. Evaluation and Comparison

Preliminary evaluation using MOS (mean opinion score) was conducted for all
developed voices. For each voice, two samples of synthesized speech were prepared.
Text A was a synthesized text from the weather domain, using the same vocabulary
as in the training corpus. The wording of the text was different from any utterance
in the training corpus. Text B was from the news domain with a larger proportion
of words not present in the lexicon. Both texts have three sentences, with total
length of 34 and 37 words, respectively.

On a scale from 1-5, with 1 being the worst and 5 the best, the listeners evalu-
ated the overall quality, intelligibility, naturalness and occurences of irregularities
in the synthesized speech. The listeners also responded whether they thought the
synthesized speech was acceptable for use in an automated information service over
the telephone, with answers yes, yes with improvements to the system and no, cor-
responding to scores 5, 3 and 1. The samples were presented to the users using
a web page and the results were collected using an electronic form. The partici-
pants listened to the samples in arbitrary order and could repeat the samples any
number of times. Twelve listeners of both genders (mostly university students and
staff) participated in the evaluation. Of those, 6 had previous contact with speech
synthesis systems as participants in an unrelated evalutaion. The MOS evaluation
results are presented as a box plot in Fig. 3. The medians are represented by solid
bars across boxes that show the quartiles and the whiskers extend to 1.5 times the

Fig. 3 MOS results for text A (top) and B (bottom).

438



Pobar M., Martinčić-Ipšić S., Ipšić I.: Optimization of cost function weights. . .

inter-quartile range. Outliers are represented by circles and means by crosses.
In the following discussion, the voices described in sections 3.2, 3.3 and 3.4 are

labeled S1, S2, and S3. For both texts, the unit selection system got the best scores
for all questions. The join cost itself may choose the units that join well, but it
only considers neighboring units so the overall prosody of the whole utterance may
still be poor, which was reported by some listeners as a “singing” quality. A very
simplistic target function used in the system S3 should thus be improved.

As expected, the scores of the system S3 were better for text A than for text
B where more unknown words were present. The system S2 (the diphone system)
performs about the same for both texts as it cannot take advantage of the fact
that text A contained words present in the training corpus and the number of
concatenations is always the same. The voice S1 also performed better on text A,
but the difference was smaller. This suggests that the voice may generalize better
outside the domain of the training corpus than the S3 voice, however the overall
score was still lower.

Low scores for system S1, which is even outperformed by the diphone system
in most cases, were somewhat surprising, considering other comparisons [3]. Par-
ticularly low score was given for its naturalness, which was expected due to the
vocoding buzziness. Some participants noted that although the inteligibillity of the
voice was excellent, the metallic character of the voice made it unsuitable for use
in automated information services. 75% of users described system S1 as acceptable
for this use for text A.

7. Conclusion and Future Work

The perceptual evaluation results support the use of speech recognition results as
an objective criterion for optimizing the weights in the unit selection concatenative
speech synthesis system. As the chosen optimization method searched over a rather
small portion of the weight space, the obtained set was probably not optimal so
other optimization techniques will also be tested in conjunction with the proposed
criterion. Also, the same criterion could be used to train the weights individually for
each phoneme class or phoneme group, as in multiple regression methods. Although
in this work the proposed criterion was used to optimize a set of weights comprising
mostly join cost function sub-costs, it could also be applied to the target cost.
This is an advantage over some other objective measures that are tailored either to
optimize the join cost or target cost functions, e.g. mel-cepstral distance between
natural target utterance and synthesized utterance, as in [9]. A comparison of
results obtained for target function using both approaches would be insightful.

Three voices using diphone concatenation, unit selection and statistical para-
metrical approach were built for the Croatian language using the same speech
corpus. The systems were evaluated and rated on a MOS scale for quality, intelli-
gibility, naturalness, frequency of speech irregularities and acceptance.

The unit selection system performed best with the mean quality scores of 3.42
and acceptance scores of 4 for text in domain of the training corpus. For text with
unknown vocabulary, the unit selection system still performed best but with lower
scores, as was expected.
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To improve the quality of speech from the unit selection systems several mod-
ifications should be made. Unsupervised clustering of the diphone database using
neural networks could produce a useful feature for total cost calculation. The fea-
tures of diphones that are used at runtime to calculate the join or target costs
could be used as inputs to the network, and the resulting clusters can be stored
in the database with the diphones. At syntheisis time, the cluster to which the
diphone belongs can be either used as an additional feature of the join or target
function, or used to reduce the search space and thus time needed to find the opti-
mal sequence by considering only diphones of the set clusters. The target function
should be changed to accomodate the sentence level prosodic information. To this
effect, the linguistic context information may be combined with statistical mod-
els of prosody trained from data. Also, for the optimization of the cost functions
weights, a method which searches over a larger space of weights will be evaluated.
Weight optimization using ASR with samples of phrases or sentences instead of
isolated words will be explored, which will require careful preparation of listening
tests. Using phrases or sentences longer term prosodic effects can be factored in the
perceptual evaluation. However, a concern over using longer phrases is that any
isolated error in a word can possibly influence the listeners’ judgement too much,
and that error may or may not be directly caused by the chosen set of weights.
Using larger number of phrases could prevent the influence of such random errors
influencing the score, however there should not be too many, as the listeners may
become too tired and lose concentration.
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