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Abstract: After sigmoid activation function is replaced with piecewise linear ac-
tivation function, the adding decaying self-feedback continuous Hopfield neural
network (ADSCHNN) searching space changes to hyper-cube space, i.e. the sim-
plified ADSCHNN is obtained. Then, convergence analysis is given for the sim-
plified ADSCHNN in hyper-cube space. It is proved through convergence analysis
that the ADSCHNN outperforms the continuous Hopfield neural network (CHNN),
when they are applied to solve optimization problem. It is also proved that when
extra self-feedback is negative, the ADSCHNN is more effective than the extra
self-feedback is positive, when the ADSCHNN is applied to solve TSP.
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1. Introduction

Since Hopfield proposed Hopfield Neural Network (HNN) [1, 2], many studies about
the convergence or stability of HNN or Hopfield-type neural networks have been
made [3-7]. These obtained results provide some theoretical foundation of perfor-
mance analysis of Hopfield-type neural networks. In this paper, one convergence
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analysis is investigated about one kind of Hopfield-type neural network which was
proposed in [8].

Earlier we proposed the adding decaying self-feedback continuous Hopfield neu-
ral network (ADSCHNN) [8] by adding the decaying extra-feedback to continuous
Hopfield neural network (CHNN). This neural network was applied to solve trav-
eling salesman problem (TSP). Results of some simulation published in [8] showed
that the ADSCHNN is more effective than the CHNN and the ADSCHNN with
negative extra self-feedback is better than that with positive extra self-feedback,
when they were used to solve TSP. However, authors did not explain the reasons,
just gave the conditions under which the ADSCHNN energy increases, decreases or
stays constant. This paper will simplify the ADSCHNN by using piecewise linear
function as activation function, and then perform convergence analysis to explain
the reasons in the hyper-cube space.

2. Adding Decaying Self-Feedback Continuous
Hopfield Neural Network

The network differential equation for the ADSCHNN is
Ci

dyi

dt = − yi

Ri
+

n∑
j=1

wijxj + Ii + zii (t)xi,

xi = ψ (yi) =
1

1+e−yi/ε
,

zii(t) = zii(0)e
−βt

(1)

where Ci > 0, Ri > 0, ψ is monotonously increasing and continuous, zii is the
adding decaying extra self-feedback, n is the number of neuron, xi is the internal
state of neuron i, yi is the output of neuron i, Ii is the threshold value of neuron
i, and wij is the symmetric synaptic weight. Its energy function is

E = −1

2

n∑
i=1

n∑
j=1

wijxixj −
n∑

i=1

xiIi +
n∑

i=1

1

Ri

∫ xi

0

ψ−1 (x)dx, (2)

which is the same as the CHNN’s. In [8], the following theorem was given to
show the conditions under which the ADSCHNN’s energy increases, decreases or
maintains:

Theorem 1 Under the conditions that ψ is monotonously increasing and continu-
ous activation function, Ci > 0, and wij = wji, and asynchronous cyclic updating
of the neural network model is employed. The ADSCHNN has the following prop-
erties:
(A) When ziixi < 0, if ziixi >

∂E
∂xi

or ∂E
∂xi

> 0, then dE
dt < 0, i.e. the energy

decreases; if ziixi <
∂E
∂xi

< 0, then dE
dt > 0, i.e. the energy increases.

(B) When ziixi > 0, if ziixi <
∂E
∂xi

or ∂E
∂xi

< 0, then dE
dt < 0, i.e. the energy

decreases; if ziixi >
∂E
∂xi

> 0, thendE
dt > 0, i.e. the energy increases.

(C) If and only if ziixi =
∂E
∂xi

or ∂E
∂xi

= 0, then dE
dt = 0, i.e. the energy maintains.
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According to Theorem 1, the ADSCHNN energy can increase, decrease or
maintain when network satisfies some conditions. Therefore, the ADSCHNN may
avoid converging to local minima. In order to make the neural network eventually
stable, the effect of the extra self-feedbacks is reduced, i.e. let |zii(t)| approach
zero as time increases. During the periodic time that the extra self-feedbacks are
in effect, the network may satisfy conditions of Theorem 1, so the energy of
neural network can increase or decrease to sufficiently search minimum. When
zii approaches zero, the neural network will only converge to a stable equilibrium
point.

3. Simplification of the Continuous Hopfield
Neural Network

In general, the CHNN chooses the sigmoid as activation function, i.e. xi = ψ (yi) =
1

1+e−yi/ε
and ε is very small, which is the slope of ψ (yi). When ε is small enough,

the activation function can be replaced by piecewise linear function [4, 5]. The
piecewise linear function is

xi = φ (yi) =

 0 −0.5/K > yi
Kyi + 0.5 −0.5/K ≤ yi ≤ 0.5/K

1 yi > 0.5/K
(3)

The figures of sigmoid function and piecewise linear function are given in Fig. 1,
when ε = 1/250 and K = 62.5. In Fig. 1, the real line is the figure of the sigmoid
function and the broken line is the figure of the piecewise linear function. Next we
will simplify the CHNN.

Fig. 1 Figures of Sigmoid function and Piecewise linear function.
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After replacing the sigmoid function with the piecewise linear, the networks
differential equation of the CHNN changes to Ci

dyi

dt = − yi

Ri
+

n∑
j=1

wijxj + Ii,

xi = φ (yi) ,
(4)

where wij = wji, Ri > 0, Ci = C ′ > 0 (i = 1, 2, · · · , n), C ′ is constant. The CHNN
energy function becomes

ECHNN = −1

2

n∑
i=1

n∑
j=1

wijxixj −
n∑

i=1

xiIi +
n∑

i=1

1

Ri

∫ xi

0

φ−1 (x) dx. (5)

From (3), we can get

dxi
dt

=


0 −0.5/K > yi,

K dyi

dt −0.5/K ≤ yi ≤ 0.5/K,
0 yi > 0.5/K.

(6)

When −0.5/K ≤ yi ≤ 0.5/K, bring (6) into (4). We obtain

dxi
dt

= − 1

C ′Ri
xi +

K

C ′

n∑
j=1

wijxj +
K

C ′

(
Ii +

0.5

RiK

)
. (7)

Setting

Tij =

{
K
C′wij i ̸= j,

K
C′wii − 1

C′Ri
i = j,

(8)

and

bi =
K

C ′

(
Ii +

0.5

RiK

)
. (9)

Because wij is symmetric synaptic weight, Tij is symmetric too. Then, the CHNN
becomes

dxi

dt =
n∑

j=1

Tijxj + bi 0 ≤ xi ≤ 1. (10)

Let X = (x1, x2, · · · , xn)T , 0 ≤ xi ≤ 1, T = [Tij ]n×n, b = (b1, b2, · · · , bn)T . Then,
the matrix form of (10) is

dX

dt
= TX+ b. (11)

From (3) and (5), the simplified CHNN energy function is obtained as

ECHNN = −1

2

n∑
i=1

n∑
j=1

wijxixj −
n∑

i=1

xiIi +
n∑

i=1

1

Ri

∫ xi

0

1

K
(x− 0.5) dx

= −1

2

n∑
i=1

n∑
j=1

wijxixj −
n∑

i=1

xiIi +

n∑
i=1

1

Ri

(
1

2K
x2i −

0.5

K
xi

)

= −1

2

n∑
i=1

n∑
j=1

wijxixj −
n∑

i=1

xiIi +
1

2

n∑
i=1

1

RiK
x2i −

n∑
i=1

0.5

RiK
xi

= −1

2

n∑
i=1

n∑
j=1

wijxixj +
1

2

n∑
i=1

1

RiK
xixi −

n∑
i=1

(
Ii +

0.5

RiK

)
xi.(12)
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Let

E′
CHNN =

K

C ′ECHNN = −1

2

n∑
i=1

n∑
j=1

K

C ′wijxixj +

+
1

2

n∑
i=1

1

C ′Ri
xixi −

n∑
i=1

K

C ′

(
Ii +

0.5

RiK

)
xi. (13)

After bringing (8) and (9) into (13), we can obtain

E′
CHNN =

K

C ′ECHNN

= −1

2

n∑
i=1

n∑
j=1

Tijxixj −
n∑

i=1

bixi. (14)

Because of Tij = Tji,

∂E′
CHNN

∂xi
=
K

C ′
∂ECHNN

∂xi
= −

n∑
j=1

Tijxj − bi = −
dxi
dt
. (15)

Because of C ′ > 0 and K > 0,

dECHNN

dt
=

n∑
i=1

∂ECHNN

∂xi

dxi
dt

=
n∑

i=1

C ′

K

∂E′
CHNN

∂xi

dxi
dt

=

=
C ′

K

n∑
i=1

∂E′
CHNN

∂xi

dxi
dt

= −C
′

K

n∑
i=1

(
dxi
dt

)2

≤ 0. (16)

This means the dynamic neural system of simplified CHNN moves from any initial
point in the state space in the direction that decreases its energy E and converges
to one stable equilibrium point that is a minimum of the energy function. Conver-
gence analysis for simplified CHNN is the same as convergence analysis for CHNN.
Therefore, the method to simplify CHNN is correct and effective. The simplifying
CHNN does not change the characteristics of CHNN. In next part, convergence
analysis for the ADSCHNN will be given after the ADSCHNN is simplified.

4. Simplification of the ADSCHNN and
Convergence Analysis

The ADSCHNN is proposed by adding an extra decaying self-feedback to every
neuron of CHNN. According to (1) (8) and (10), after simplifying, the differential
equation of the ADSCHNN is dxi

dt =
n∑

j=1

Tijxj + bi +
K
C′ zii (t)xi 0 ≤ xi ≤ 1,

zii (t) = zii (0) e
−βt,

(17)
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where β > 0. According to (2), the energy function for the simplified ADSCHNN
is the same as (12), i.e. EADSCHNN = ECHNN . From (15), there is

∂EADSCHNN

∂xi
=
∂ECHNN

∂xi
=
C ′

K

∂E′
CHNN

∂xi
=
C ′

K

− n∑
j=1

Tijxj − bi

 . (18)

(17) becomes

{
dxi

dt = − K
C′

∂EADSCHNN

∂xi
+ K

C′ zii (t)xi 0 ≤ xi ≤ 1,

zii (t) = zii (0) e
−βt.

(19)

After discretizing (19), the optimization learning model for the ADSCHNN is got
as (20)

xi (k + 1) = xi (k) +

(
−K
C ′

∂EADSCHNN

∂xi (k)
+
K

C ′ zii (k)xi (k)

)
∆t

= xi (k) +

(
−K
C ′

∂ECHNN

∂xi (k)
+
K

C ′ zii (k)xi (k)

)
∆t

= xi (k) +

(
−K
C ′

(
∂ECHNN

∂xi (k)
− zii (k)xi (k)

))
∆t. (20)

From (20), Theorem 2 is attained.

Theorem 2 When any point of the ADSCHNN is in the interior of the hyper-cube
space ({X|0 < xi < 1, i = 1, 2, 3 · · · , n}) or on the border of the hyper-cube (at
least one neuron equal to 0 or 1, {X|some xi = 0 or 1 and the other 0 < xi < 1}),
the neural network is unstable.

Proof According to (20), when the point of the ADSCHNN is in the interior
of the hyper-cube, because of K > 0 and C ′ > 0, if ∂ECHNN

∂xi(k)
̸= zii (k)xi (k),

xi (k + 1) ̸= xi (k) and if ∂ECHNN

∂xi(k)
= zii (k)xi (k), xi (k + 1) = xi (k). Because zii

is a decaying self-feedback, zii (k + 1)xi (k + 1) ̸= zii (k)xi (k). So xi (k + 2) ̸=
xi (k + 1). Therefore, any point is in the interior of the hyper-cube is unstable. At
the same reason, the point on the border of the hyper-cube is also unstable.

In order to solve the TSP problem, map the solution of TSP with n cities to
ADSCHNN with n × n neurons. Assume xij to be the neuron output. xij = 1
denotes that city i is visited in order j, while xij = 0 denotes that city i is not
visited in order j. dij is the distance between city i and city j. A,B,C,D are the
coupling parameters corresponding to the constraints and the cost function of the
tour length.
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When the ADSCHNN is used to solve TSP in [8], the network energy function
for TSP is

E = A
2

n∑
i=1

n∑
j=1

n∑
l = 1
l ̸= j

xijxil +
B
2

n∑
j=1

n∑
i=1

n∑
l = 1
l ̸= i

xijxlj +
C
2

(
n∑

i=1

n∑
j=1

xij − n

)2

+D
2

n∑
i=1

n∑
j = 1
j ̸= i

n∑
l=1

(xl,j+1 + xl,j−1)xijdik +
n∑

i=1

n∑
j=1

1
Rij

∫ xij

0
ψ−1 (x)dx,

(21)
A,B,C,D > 0.When the first three terms of (21) are equal to zero, the ADSCHNN
finds a valid tour. Otherwise it gets an invalid tour.

According toTheorem 2, the extra self-feedback makes the points are unstable,
which are in the interior or on the border of the hyper-cube. The ADSCHNN only
searches the result on the vertex of the hyper-cube. Because the valid tours only
exist on the vertex of the hyper-cube space, the searching space for valid tours is
smaller than the CHNN. Therefore, the ADSCHNN outperforms the CHNN, when
they are used to solve optimization problems.

From (21), there is

∂E

∂xij
= A

n∑
l = 1
l ̸= j

xil +B
n∑

l = 1
l ̸= i

xlj + C

 n∑
i=1

n∑
j=1

xij − n

+

+D
n∑

l=1

dil (xl,j+1 + xl,j−1) +
ψ−1 (xij)

Rij
. (22)

Because the output of the neurons is n× n matrix, (2) becomes

E = −1

2

n∑
i=1

n∑
j=1

n∑
l=1

n∑
k=1

wij,lkxijxlk −
n∑

i=1

n∑
j=1

xijIij +

+
n∑

i=1

n∑
j=1

1

Ri

∫ xij

0

ψ−1 (x) dx. (23)

So

∂E

∂xij
= −1

2

n∑
l=1

n∑
k=1

wij,lkxlk − Iij +
ψ−1 (xij)

Rij
. (24)

When piecewise linear function is used as activation function, (21) becomes
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E = A
2

n∑
i=1

n∑
j=1

n∑
l = 1
l ̸= j

xijxil +
B
2

n∑
j=1

n∑
i=1

n∑
l = 1
l ̸= i

xijxlj +
C
2

(
n∑

i=1

n∑
j=1

xij − n

)2

+D
2

n∑
i=1

n∑
j = 1
j ̸= i

n∑
l=1

(xl,j+1 + xl,j−1)xijdik+

+
n∑

i=1

n∑
j=1

1
Rij

∫ xij

0
1
K (x− 0.5)dx

= A
2

n∑
i=1

n∑
j=1

n∑
l = 1
l ̸= j

xijxil +
B
2

n∑
j=1

n∑
i=1

n∑
l = 1
l ̸= i

xijxlj +
C
2

(
n∑

i=1

n∑
j=1

xij − n

)2

+D
2

n∑
i=1

n∑
j = 1
j ̸= i

n∑
l=1

(xl,j+1 + xl,j−1)xijdik+

+ 1
2

n∑
i=1

n∑
j=1

1
RijK

x2ij −
n∑

i=1

n∑
j=1

0.5
RijK

xij .

(25)

Let R = Rij ,

E = A
2

n∑
i=1

n∑
j=1

n∑
l = 1
l ̸= j

xijxil +
B
2

n∑
j=1

n∑
i=1

n∑
l = 1
l ̸= i

xijxlj +
C
2

(
n∑

i=1

n∑
j=1

xij − n

)2

+D
2

n∑
i=1

n∑
j = 1
j ̸= i

n∑
l=1

(xl,j+1 + xl,j−1)xijdik + 1
2

1
RK

n∑
i=1

n∑
j=1

x2ij − 0.5
RK

n∑
i=1

n∑
j=1

xij .

(26)
Therefore,

∂E
∂xij

= A
n∑

l = 1
l ̸= j

xil +B
n∑

l = 1
l ̸= i

xlj + C

(
n∑

i=1

n∑
j=1

xij − n

)
+

+D
n∑

l=1

dil (xl,j+1 + xl,j−1) +
1

RK

n∑
i=1

n∑
j=1

xij − 0.5
Rk

= A
n∑

l = 1
l ̸= j

xil +B
n∑

l = 1
l ̸= i

xlj + C

(
n∑

i=1

n∑
j=1

xij − n

)
+

+D
n∑

l=1

dil (xl,j+1 + xl,j−1) +
1

RK

(
n∑

i=1

n∑
j=1

xij − n

)
+ 1

RKn−
0.5
RK

(27)
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= A
n∑

l = 1
l ̸= j

xil +B
n∑

l = 1
l ̸= i

xlj +
(
C + 1

RK

)( n∑
i=1

n∑
j=1

xij − n

)
+

+D
n∑

l=1

dil (xl,j+1 + xl,j−1) +
1

RK (n− 0.5) .

(27)

Let C
′′
= C + 1

RK because C, R, K ∈ R and C, R, K > 0, C
′′
> 0. (27) becomes

∂E

∂xij
= A

n∑
l = 1
l ̸= j

xil +B
n∑

l = 1
l ̸= i

xlj + C
′′

 n∑
i=1

n∑
j=1

xij − n

+

+D
n∑

l=1

dil (xl,j+1 + xl,j−1) +
1

RK
(n− 0.5) . (28)

When the ADSCHNN is applied to solve TSP, the optimization learning model is

xij (k + 1) = xij (k) +

(
−K
C ′

(
∂E

∂xij (k)
− zij,ij (k)xij (k)

))
∆t. (29)

xij is the component in the matrix X. X is the output of the ADSCHNN, which
represents the order of visiting all cities. When the ADSCHNN gets any valid tour,
i.e. a stable equilibrium point, all the components of X for the ADSCHNN are “0”
or “1”. Matrix X has only one “1” component in the one column and has only one
“1” component in the one row. The sum of the all components of matrix X is the
city number n. For the neuron which is “1”, the first two terms in (28) are equal
to 0; for the neuron which is “0”, the first two terms in (28) are equal to A + B.
Therefore, when the ADSCHNN gets any valid tour, there are

(1) If the output of a ADSCHNN neuron is “0” at the kth step, i.e. xij (k) = 0
k = 1, 2, · · · , n, there is

∂E

∂xij (k)
= A+B +D

n∑
l=1

dil (xl,j+1 (k) + xl,j−1 (k)) +
1

RK
(n− 0.5) > 0. (30)

From (29), at the k + 1th step xij (k + 1) = 0 − K
C′

∂E
∂xij(k)

∆t < 0. Because of

0 ≤ xij (k) ≤ 1, xij (k + 1) = 0. Therefore, if xij (k) = 0, no matter whether
zij,ij (k) is positive or negative, at the k+ 1th step, the output of this neuron does
not change.

(2) If the output of a ADSCHNN neuron is “1” at the kth step, i.e. xij (k) =
1 k = 1, 2, · · · , n,

∂E

∂xij (k)
= D

n∑
l=1

dil (xl,j+1 (k) + xl,j−1 (k)) +
1

RK
(n− 0.5) > 0. (31)
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(I) when zij,ij (k) > 0.

If at the kth step zij,ij (k) ≥ ∂E
∂xij(k)

, − K
C′

(
∂E

∂xij(k)
− zij,ij (k)xij (k)

)
≥ 0. From

(29), xij (k + 1) = 1 +
(
− K

C′

(
∂E

∂xij(k)
− zij,ij (k)

))
∆t ≥ 1. Because 0 ≤ xij (k) ≤

1, xij (k + 1) = 1. Therefore, if xij (k) = 1, at the k + 1th step, the output of this
neuron does not change.

If at the kth step zij,ij (k) < ∂E
∂xij(k)

, − K
C′

(
∂E

∂xij(k)
− zij,ij (k)xij (k)

)
< 0.

From (29), xij (k + 1) = 1+
(
− K

C′

(
∂E

∂xij(k)
− zij,ij (k)

))
∆t < 1. This neuron will

decrease from “1”. In case of xij (k + 1) = x′ij , 0 < x′ij < 1.

(A) For xij (k + 1) = 0 case,

∂E
∂xij(k+1) = Ax′ij +B + C

′′ ((
n− 1 + x′ij

)
− n

)
+D

n∑
l=1

dil (xl,j+1 (k + 1) + xl,j−1 (k + 1)) + 1
RK (n− 0.5)

(32)

or

∂E
∂xij(k+1) = A+Bx′ij + C

′′ ((
n− 1 + x′ij

)
− n

)
+D

n∑
l=1

dil (xl,j+1 (k + 1) + xl,j−1 (k + 1)) + 1
RK (n− 0.5) .

(33)

Because of C ≤ A,C ≤ B and R,K >> 0, ∂E
∂xij(k+1) > 0. So − K

C′

(
∂E

∂xij(k+1) − zij,ij

(k + 1)xij(k + 1)
)
< 0 and xij(k + 2) = 0 − K

Cij

∂E
∂xij(k+1)∆t < 0. Because of

0 ≤ xij (k) ≤ 1, xij (k + 2) = 0. At the k + 1th step, if xij (k + 1) = 0, the output
of this neuron does not change.

(B) For xij (k + 1) = x′ij or 1 cases,

∂E
∂xij(k+1) = C

′′ ((
n− 1 + x′ij

)
− n

)
+D

n∑
l=1

dil (xl,j+1 (k + 1) + xl,j−1 (k + 1)) + 1
RK (n− 0.5) .

(34)

Because of x′ij < 1, C
′′ ((

n− 1 + x′ij
)
− n

)
< 0. If at this time, ∂E

∂xij(k+1) > 0 and

∂E
∂xij(k+1) > zij,ij (k + 1)xij (k + 1), − K

C′

(
∂E

∂xij(k+1) − zij,ij (k + 1)xij (k + 1)
)
<

0. At the k+2th step, x′ij or “1” will decrease continuously. If ∂E
∂xij(k+1) ≤ 0 or 0 <

∂E
∂xij(k+1) < zij,ij (k + 1)xij (k + 1), − K

C′

(
∂E

∂xij(k+1) − zij,ij (k + 1)xij (k + 1)
)
>

0. At the k + 2th step, x′ij will increase and reach “1”. For xij (k + 1) = 1,
xij (k + 2) = 1.

(II) when zij,ij (k) < 0

At the kth step, because of ∂E
∂xij(k)

> 0, − K
C′

(
∂E

∂xij(k)
− zij,ij (k)xij (k)

)
< 0.

From (35), there is xij (k + 1) = 1− K
C′

(
∂E

∂xij(k)
− zij,ij (k)

)
∆t < 1 at the k+1th
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step. The neuron will decrease to xij (k + 1) = x′ij , 0 < x′ij < 1. Accord-

ing to (1), when xij (k) = 0, its state does not change at the k + 1th step,
i.e. xij (k + 1) = 0. Then, ∂E

∂xij(k+1) changes to (32) or (33). There is also

∂E
∂xij(k+1) > 0. So − K

C′

(
∂E

∂xij(k+1) − zij,ij (k + 1)xij (k + 1)
)
< 0 and xij (k + 2) =

0− K
C′

∂E
∂xij(k+1)∆t < 0. Because of 0 ≤ xij (k) ≤ 1, k = 1, 2, · · · , n, xij (k + 2) = 0.

For xij (k + 1) = x′ij or 1, ∂E
∂xij(k+1) change to (34). So zij,ij (k + 1)xij (k + 1) <

∂E
∂xij(k+1) ≤ 0 and − K

C′

(
∂E

∂xij(k+1) − zij,ij (k + 1)xij (k + 1)
)
< 0. Therefore, x′ij

or “1” will decrease continuously at the k+2th step. If ∂E
∂xij(k+1) < 0 or ∂E

∂xij(k+1) <

zij,ij (k + 1)xij (k + 1), − K
C′

(
∂E

∂xij(k+1) − zij,ij (k + 1)xij (k + 1)
)
> 0. x′ij will in-

crease at the k+2th step and reach “1” at the last. The outputs of neurons, which
were “1” on k + 1th step, do not change at the k + 2th step.

From the above analysis, a theorem is obtained as follows:

Theorem 3 At the any kth step, if the ADSCHNN gets a valid tour,

(1) when zij,ij (k) > 0

(A) If zij,ij (k) ≥ ∂E
∂xij(k)

at the kth step, the valid tour is stable.

(B) If zij,ij (k) <
∂E

∂xij(k)
at the kth step and ∂E

∂xij(k+1) > 0, ∂E

∂xij(k+1)
> zij,ij

(k + 1)xij (k + 1) at the k + 1th step, the valid tour is unstable.

(C) If zij,ij (k) < ∂E
∂xij

at the kth step and ∂E
∂xij(k+1) ≤ 0, 0 < ∂E

∂xij(k+1) <

zij,ij (k + 1)xij (k + 1), the ADSCHNN will leave from the valid tour. How-
ever, the ADSCHNN will go back to the valid tour with neural network
iteration.

(2) When zij,ij (k) < 0

(A) If zij,ij (k + 1)xij (k + 1) < ∂E
∂xij(k+1) ≤ 0 at the k + 1th step, the valid tour

is unstable.

(B) If ∂E
∂xij(k+1) > 0 or ∂E

∂xij(k+1) < zij,ij (k + 1)xij (k + 1) at the k+1th step, the

ADSCHNN will leave from the valid tour. However, the ADSCHNN will go
back to the valid tour with neural network iteration.

According to Theorem 3, when the ADSCHNN gets a valid tour, no matter what
the extra self-feedbacks are, the network may move away from the result. However,
the ADSCHNN will get back to the result, when some conditions are satisfied. The
ADSCHNN with positive extra self-feedback may not go away from a valid tour,
which is got by the network under some conditions. If the valid tour is not a
global optimization, the network converges to a local optimization. Therefore, the
ADSCHNN with a positive extra self-feedback more easily converges to a local
optimum than the ADSCHNN with negative extra self-feedback.

When the result of the ADSCHNN is an invalid tour, the sum of the all com-
ponent of a row and a column of X is larger than one and the sum of the all
component of X is larger than n. There are
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(1) If the output of a ADSCHNN neuron is “0” at the kth step, i.e. xij (k) =
0 k = 1, 2, · · · , n, there is

∂E
∂xij(k)

= αA+ βB + γC
′′
+D

n∑
l=1

dil (xl,j+1 (k) + xl,j−1 (k)) +
1

RK (n− 0.5)

> A+B +D
n∑

l=1

dil (xl,j+1 (k) + xl,j−1 (k)) +
1

RK (n− 0.5) > 0,

(35)
α, β, γ ∈ {1, 2, · · · , n} . From (29), xij (k + 1) = 0 − K

C′
∂E

∂xij(k+1)∆t < 0. Because

of 0 ≤ xij (k) ≤ 1, k = 1, 2, · · · , n, xij (k + 1) = 0. Therefore, the output of the
ADSCHNN is “0”, no matter what the zij,ij (k) is, the state of the output of the
ADSCHNN does not change.

(2) If the output of an ADSCHNN neuron is “1” at the kth step, i.e. xij (k) = 0
k = 1, 2, · · · , n, there is

∂E

∂xij (k)
= αA+βB+γC

′′
+D

n∑
l=1

dil (xl,j+1 (k) + xl,j−1 (k))+
1

RK
(n− 0.5) > 0,

(36)

α, β, γ ∈ {1, 2, · · · , n} .

(I) when zij,ij (k) > 0

If zij,ij (k) >
∂E

∂xij(k)
, xij (k + 1) = 1 − K

C′

(
∂E

∂xij(k)
− zij,ij (k)

)
∆t > 1. The

ADSCHNN will converge at the invalid tour. If zij,ij (k) <
∂E

∂xij(k)
, xij (k + 1) =

1− K
C′

(
∂E

∂xij(k)
− zij,ij (k)

)
∆t < 1. xij will decrease at the k+1th step. Then the

invalid tour is unstable.

(II) when zij,ij (k) < 0

There is always ∂E
∂xij(k)

−zij,ij (k) > 0. So xij (k + 1) = 1− K
C′

(
∂E

∂xij(k)
− zij,ij (k)

)
∆t < 1. xij will decrease. The invalid tour will be unstable.

From above analysis, the following theorem is attained.

Theorem 4 If the ADSCHNN gets any invalid tour at the kth step,

1. When zij,ij (k) > 0, if zij,ij (k) > ∂E
∂xij(k)

, the invalid tour is stable; if

zij,ij (k) <
∂E

∂xij(k)
, the invalid tour is unstable.

2. zij,ij (k) < 0, the invalid tour is unstable.

According to Theorem 4, when the ADSCHNN is used to solve TSP, if the extra
self-feedback is negative, all the invalid tours are unstable. However, if the extra
self-feedback is positive, the ADSCHNN may converge to an invalid tour. It is the
reason why the ADSCHNN with zij,ij (k) < 0 is more effective than the ADSCHNN
with zij,ij (k) > 0.
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5. Conclusion

This paper gives convergence analysis for the ADSCHNN in the hyper-cube space,
after the simplified ADSCHNN is obtained by using the piecewise linear activation
function as activation function. The analysis shows that any point in the interior or
on the border of the hyper-cube space is unstable. The extra self-feedback makes
the ADSCHNN only searching the optimization results at the vertex of hyper-cube
space. The ADSCHNN outperforms the CHNN, when they are applied to solve an
optimization problem, because the searching space is reduced. The analysis shows
that when the ADSCHNN is applied to solve TSP, the ADSCHNN with negative
extra self-feedback is more effective than that with positive extra self-feedback. The
ADSCHNN with positive extra self-feedback more easily converges to local optima
or provides an invalid tour comparing to the ADSCHNN with negative extra self-
feedback. Because the extra self-feedback is reduced, the ADSCHNN will converge
to an equilibrium point at the last. If some conditions are satisfied, the equilibrium
point is a valid tour.
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