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Abstract: In many natural language processing applications two or more models
usually have to be involved for accuracy. But it is difficult for minor models, such
as “backoff” taggers in part-of-speech tagging, to cooperate smoothly with the ma-
jor probabilistic model. We introduce a two-stage approach for model selection
between hidden Markov models and other minor models. In the first stage, the
major model is extended to give a set of candidates for model selection. Param-
eters weighted hidden Markov model is presented using weighted ratio to create
the candidate set. In the second stage, heuristic rules and features are used as
evaluation functions to give extra scores to candidates in the set. Such scores are
calculated using a diagnostic likelihood ratio test based on sensitivity and speci-
ficity criteria. The selection procedure can be fulfilled using swarm optimization
technique. Experiment results on public tagging data sets show the applicability
of the proposed approach.
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1. Introduction

Hidden Markov Models (HMM) have found many successful applications in Natu-
ral Language Processing (NLP) areas [1, 2, 3], and model selection with HMMs is
widely used to achieve better performance [4, 5, 6]. GRAMOFON [7] uses model-
network for the selection of an appropriate subset of models for the case that
different models share similar error characteristics. Chien and Furui [8] develop
a predictive information criterion to estimate HMM and simultaneously select the
proper size of HMM to represent the observed data. HMM model selection is
useful not only for the adaptation of HMM parameters [9], but also for the rep-
resentation of n-gram language model [10]. Full model selection (FMS) problem
is defined in [11] as selecting; the combination of a pool of processing methods,
feature selection and learning algorithms that obtain the lowest classification error
for a given data set. Its task also includes the selection of hyperparameters for the
considered methods. In FMS both the model parameters and hyperparameters are
optimized simultaneously according to the same training set. In many applications
including part-of-speech (POS) tagging, however, each model as a candidate for
model selection may have different function and emphasis. A few major models
use many random variables to model context relationship and conditional indepen-
dence structure, whereas other minor models include heuristic rules and features.
Although minor models may not be able to handle the whole recognition problem,
they sometimes accommodate the experiences of field experts in a direct and easy
way. It is usually difficult for the major probabilistic model and minor models to
work together smoothly. We present a method to exploit the potential performance
of the major models in POS, i.e. HMM, by overcoming the limitation of training
corpus with the help of minor models.

In many applications, including POS, HMM is a major model. The delicate
structures make HMM capable of classifying complex and structured objects in
sequence recognition problems. The parameters of HMM include transition proba-
bilities and emission probabilities, both of which are learned from labeled training
data. As in many machine learning problems, however, the robustness of model
is hindered by the lack of sufficient labeled training data. Freitag [12] uses a sta-
tistical technique called “shrinkage” for smoothing in parameter estimation. Self-
adaptive design approach [13] focuses on learning the correct states number with
a self-adaptive procedure. The design of [14] aims to fit the length distribution of
sequences. Although above methods have made progressive effort to balance the
delicacy of structures and the robustness of parameters estimation in many fields,
such balanced models still bear parameters uncertainty because in practice the
trained model parameters are limited by the sparseness and noisiness of training
data.

Theoretically, HMM is faster than exponential models such as conditional ran-
dom fields (CRF), but classically HMM does not provide an easy way to use fea-
tures. Besides, as a statistical model, HMM has only one set of determined param-
eters and is hard to deal with the influence of sparseness and noisiness of training
data. We try to increase the robustness by extending learned parameters into
intervals and to improve the performance by introducing model selection with like-
lihood ratio. We propose a two-stage approach for model selection between hidden
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Markov model and other minor models that use heuristic rules and features. In the
first stage, the major model is extended to give a set of candidates for model selec-
tion. Parameters Weighted Hidden Markov Model (PWHMM) is presented using
weighted ratio to create a set of HMM models which can be viewed intuitively as
learned from different part of training data that emphasize either the transition
probabilities or the emission probabilities. In the second stage, heuristic rules and
features are used as minor models to give extra scores to candidates in the set.
Such scores are calculated using a diagnostic likelihood ratio test. The selection
procedure can be fulfilled using optimization techniques such as swarm intelligence.

The remainder of this paper is organized as follows. In Section 2 we review the
background and related work. In Section 3 we present the details of the two-stage
HMM model selection strategy. Next, we present our experimental evaluation of
our method for POS tagging problem in Section 4, followed by the conclusions in
Section 5.

2. Background and Related Work

POS tagging is considered a fundamental part of natural language processing, which
aims to computationally determine a POS tag for a token in text context. POS
tagger is a useful preprocessing tool in many NLP applications such as information
extraction and information retrieval [1, 2, 15, 16, 17, 18].

POS tagging problem has been modeled with many machine learning tech-
niques, which include hidden Markov models [1], maximum entropy models [19],
support vector machines, conditional random fields [20], etc. Each model can have
good performance after careful adjustment such as feature selection, but HMMs
have the advantages of small amount of data calculation and simplicity of model-
ing. In [15], HMMs combined with good smoothing techniques and with handling
of unknown words work better than other models. For such a sequence recogni-
tion problem, the classical EM algorithms and Viterbi algorithms for HMM can be
found in [21, 22, 23, 24].

In part-of-speech tagging and many other applications in NLP, there are many
minor models called “backoff” tagger, which means the major tagger leaves “not-
sure” tokens blank and pass the tagging work to the “backoff” tagger [25]. But the
most widely used HMM state sequence recognition criterion is to find the single
best state sequence, so the “backoff” taggers are not suitable to use. Besides, the
usage of “backoff” taggers may lose the context dependent information and harms
the effort of probabilistic models on capturing context relationship to achieve an
accurate tagger. The proposed approach chooses to output the whole sequences
produced by probabilistic models and simultaneously to overcome the intrinsic
disadvantages of probabilistic models on overtraining and data sparseness with the
adjustment by minor models.

HMM is a probabilistic model for modeling time series data. It extends the
concept of Markov random process to include the case where the observation is
a probabilistic function of the states. Thus, HMM is a double stochastic process
that allows a flexible layer of random variables for a large amount of observable
events. One of them is hidden state which is not directly visible, and each state can
emit observable output symbols determined by its own probability distribution.
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This extension makes HMM applicable to many fields of interest such as NLP,
where the amount of observable events, i.e. words, is often as big as hundreds of
thousands [21]. However, this delicacy of structures leaves the robustness of the
model easily influenced by the bias of the training set.

The potential performance of HMM is limited because it is traditionally based
on pre-determined model parameters. By randomizing the learned model para-
meters, there is room for HMM algorithms to perform better. The methods in
[26, 27] need the representation of fuzzy relationship or fuzzy rules and are less
cost-effective than the proposed work. Our approach is more specific to HMM
structure, i.e. directly using the ratio between transition probabilities and emis-
sion probabilities. Zeng [28] presents a fuzzy-set method to allow randomness in
HMM and achieves robust performance on speech variation, but a Gaussian pri-
mary membership function has to be used for each state. In our study, the ratio
between transition parameters and emission parameters is weighted to adjust the
bias of HMM. The sensitivity and specificity is used by Li [29] only as optimization
criteria for support vector machine model selection. We use a diagnostic likelihood
ratio test to enable the help of experience-rules and features that are difficult to
use in HMM.

3. Model Selection Strategy

We propose a two-stage approach to exploit the potential performance of HMM by
overcoming the limitation of training corpus with the help of minor models. As in
Fig. 1, in the first stage PWHMM produces a set of HMM models, in the second
stage minor models can give more extra scores to promising candidates in the set.
Such scores are calculated using a diagnostic likelihood ratio test.

First we present the specification of PWHMM. Afterward we discuss the usage
of diagnostic likelihood ratio for model selection in Section 3.2 and provide an
algorithms to search the best model in the set in Section 3.3.

3.1 Parameters Weighted Hidden Markov Model

To create a set of HMM candidates around the HMM learned through dataset,
the Parameters Weighted Hidden Markov Model (PWHMM) is presented using
weighted ratio. Such HMM set can be viewed intuitively as learned from differ-
ent part of training data that emphasize either the transition probabilities or the
emission probabilities.

For clarity purposes, the specification of PWHMM is presented based on the
classical HMM [21] as follows:

• States
S = {S1, · · · , SN} denotes the hidden state set, N represents the number
of these states. In POS tagging problem, S stands for the part-of-speech
tags. The part-of-speech tags carry structural significance although they are
hidden in human language.

• Outputs
V = {v1, · · · , vM} denotes the set of output symbols produced by states, M
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PWHMM
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O

Fig. 1 The block diagram of the two-stage method.

represents the number of these symbols. In POS tagging problem, V stands
for vocabulary of the language and M is the alphabet size.

• Transition probability matrix
A = aij denotes the state transition matrix, where aij = P [qt+1 = Sj |qt =
Si], 1 ≤ i, j ≤ N . In POS tagging problem, A depicts the statistical frequency
of the transitions between part-of-speech tags.

• Observation symbols emission distribution
B = bj(k) denotes the observation symbols emission distribution, where
bj(k) = P [Vk at t|qt = Sj ], 1 ≤ j ≤ N , 1 ≤ k ≤ M . In POS tagging
problem, B depicts the statistical frequency of words being categorized into
some part-of-speech tags.

• Initial states distribution
Π denotes the initial states distribution. It is a vector of initial states, where
Πi = P [q1 = Si], 1 ≤ i ≤ N . Where q1 is the state at initial time that

satisfies two constraints 0 ≤ Πi ≤ 1, 1 ≤ i ≤ N , and
∑N

i=1(Πi) = 1.
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• Observation Sequence
Observation Sequence is a sequence of tokens to recognize. O denotes the ob-
servation sequence and O = O1O2 . . . OT , and T is the length of the sequence.
In POS tagging problem, O is the sentence in the target language.

• Ratio Weighting
The Ratio Weighting R is defined to adjust the ratio between the transition
probabilities and the emission probabilities.

• Interval Width
Interval Width is the effective and efficient range for Ratio Weighting R. This
interval is chosen to be symmetrically around 1 and is determined experimen-
tally as in this paper.

• State Sequence Set
State Sequence Set is a set of states sequence produced with Ratio Weighting
R. Q(R) denotes the state sequence set. In POS tagging problem, Q =
q1q2...qT stands the labeled tags.

• Sequence Value
Given an observation sequence, sequence value is the log-likelihood value of a
state sequence produced by HMM Viterbi algorithm. The sum of logarithms
likelihood probabilistic value along the sequenceQ(R) is denoted by L(Q(R)).

We present W-Viterbi algorithm in Algorithm 1 for model expansion. According
to [21], the most widely used state sequence recognition criterion is to find the
single best state sequence by the following equation.

δt(i) = max
q1,··· ,qt−1

P [q1 · · · qt = i, o1 · · · ot|λ]. (1)

Given a Ratio Weighting R, W-Viterbi algorithm can recognize a sequence of
tokens by solving Eq. (2), where δt(j) is the best score along a single path at time
t which accounts for the first t observations and ends in state Sj . Our proposed
method is basically a dynamic programming method to find the optimal state
sequence associated with the given observation sequence.

δt(j) = max
1≤i≤N

[δt−1(i)a
R
ij ]bj(Ot). (2)

From the view of dynamic programming, the value function (2) consists of
two parts, the vertex value and the node value. So the Ratio Weighting R in
PWHMM can be viewed as a ratio between the vertex value and the node value
in dynamic programming. From the experimental evaluation, we will show that
better candidate models can be produced by the adjustment of this ratio. So this
method can be extended to other dynamic programming problems.

3.2 Minor models used as likelihood ratio

In the second stage, minor models are used as evaluation functions to act as extra
scores for HMM candidate. Minor models such as “backoff” taggers can be easily
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Algorithm 1 Weighted-Viterbi Algorithm

Input: A sequence of tokens O, Ratio Weighting R
Require: Transition probability matrix A, Observation symbols emission distri-
bution B, Initial states distribution Π
Output: A sequence of tags Q(R)
01. Initialization:
02. δ1(i) = Πibi(o1), 1 ≤ i ≤ N
03. ψ1(i) = 0 // an array to store best states
04. for 2 ≤ t ≤ T , 1 ≤ j ≤ N :
05. update δt(j) according to Eq. (2)
06. ψt(j) = argmax1≤i≤N [δt−1(i)aij ]
07. Termination:
08. Set qt∗ = argmax1≤i≤N [δT (i)]
09. L = log(max1≤i≤N [δT (i)]) - differences caused by R in Eq. (2)
10. Store state sequence from t = T − 1 to 1: qt∗ = ψt+1(qt+1∗)
11. return Q = q1q2...qT

coded into evaluation functions. Affix tagger is one of the “backoff” taggers that
use heuristic rules based on affix (and suffix) of a token to produce a tag. It can be
coded into an evaluation function that counts the number of right token-tag pairs
under the rules. Another evaluation function, Unknown-pairs, counts the number
of token-tag pairs that did not appear in the training set.

Such scores are calculated using a diagnostic likelihood ratio test based on
sensitivity and specificity criteria. The calculated likelihood ratio provides a direct
estimate of how much a test result will change the possibility of being a good
solution. The possibility of Q(R) as a good solution is measured using the HMM-
log-likelihood.

The likelihood ratios LRs are calculated using Tab. I and Eq. (3). The test
is specific to the candidate solutions Q(R) and the HMM-produced solution Q(1).
The test result positive means the evaluation function scores more on Q(R) than
Q(1), and negative means the inverse. The fact better indicates Q(R) is a good
solution (better than the HMM-produced solution), whereas the worse indicates
the opposite fact. The number of occurrences of above conditions are counted
as a, b, c, d as in Tab. I. The likelihood ratio is calculated using the sensitivity
and specificity of the test as in Eq. (3). Sensitivity is the proportion of actual
positives which are correctly identified as such. Specificity measures the proportion
of negatives which are correctly identified. An applicable evaluation function should
have reasonable sensitivity and specificity values. So the sensitivity and specificity
criteria can be used to test if a minor model is helpful.

sensitivity = a/(a+ b)

specificity = d/(c+ d)

LR(+) = sensitivity/(1− specificity)

LR(−) = (1− sensitivity)/specificity

(3)

Likelihood ratios of a minor model are used to adjust the logarithmic likelihood
produced by HMM as in Eq. (4) when the test is positive, and as in Eq. (5) when

251



Neural Network World 3/12, 245-262

positive negative
better a b
worse c d

Tab. I Sensitivity and Specificity Calculation.

the test is negative. Since we use log-likelihood in HMM, the logarithm values are
used for LRs. To overcome the imbalance of the numbers positive features and
negative features, we use the mean value of logarithmic likelihood ratios for each
minor model.

L = L+ (log(LR(+))− log(LR(−)))/2 (4)

L = L− log(LR(+))− log(LR(−)))/2 (5)

3.3 Model selection algorithm

We first define some terminologies for model selection between PWHMM and minor
models.

• Minor Models Vector
Minor Models MModels are a set of heuristic rules or features that can be
coded into evaluation functions. Score(Q) denotes the score by such asso-
ciated evaluation functions on State Sequence Qs given by the Observation
Sequence O and the training dataset.

• Likelihood Ratio Vector
The Likelihood Ratio Vector is the result of likelihood ratio test for minor
models, and is denoted by LRs. LRs is calculated as in section 3.2 by a
function using Minor Models Vector, the training corpus and the sequences
given by the Ratio Interval.

• Ratio Weighting Fitness
The Ratio Weighting Fitness is the fitness value for a given Ratio Weighting
R, and is denoted as Fitness(R). It is used in the proposed two-stage model
selection to search for best state sequence by applying the LRs to L.

The algorithm for finding the best state sequence in our model selection method
can now be stated in Algorithm 2. Q(R) and L(R) are calculated in line 5. Then,
the likelihood ratio test is performed (lines 7-10). Lines 11-13 calculate the fitness
and choose the solution of best model with biggest fitness.

The object function in Eq. (2) is hard to use gradient optimization because
the form of recursion [30]. To solve this optimization problem, we turn to Par-
ticle Swarm Optimization (PSO) which is inspired by social behavior patterns of
organisms that live and interact within large groups. In particular, it incorporates
swarming behaviors observed in flocks of birds, schools of fish, or swarms of bees,
and even human social behavior, from which the swarm intelligence paradigm has
emerged [31, 32]. It could be implemented and applied easily to solve various
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Algorithm 2 Sequence recognition under PWHMM

Input: A sequence of tokens O.
Require: Transition probability matrix A, Observation symbols emission distri-
bution B, Initial states distribution Π, Minor Models VectorMModels, Likelihood
Ratio LRs
Output: Best state sequence solution Qbest.
01. Q0=Weighted-Viterbi(O, 1) //get tags produced by HMM
02. Score0=MModels.score(Q0), best F itness = −∞
03. Search R in Ratio Interval //represent R by PSO’s particles
04. foreach Fitness Evaluation do
05. (Q,L)=Weighted-Viterbi(O, R)
06. for i in length(MModels)
07. if MModels[i].score(Q) > Score0[i]
08. logLR[i] = logLR[i] + (log(LRs[i][1])− log(LRs[i][0]))/2
09. else
10. logLR[i] = logLR[i]− (log(LRs[i][1])− log(LRs[i][0]))/2
11. Fitness = L+

∑n
i=1(logLR[i])

12. if Fitness > best F itness:
13. best F itness = Fitness, Qbest = Q
14. Update positions of particles
15. end foreach
16. Return Qbest

function optimization problems, or the problems [33] that can be transformed to
function optimization problems. As an algorithm, its main strength is its fast con-
vergence [34, 35], which compares favorably with many other global optimization
algorithms. The classical particle swarm model consists of a swarm of particles
which are initialized with a population of random candidate solutions. They move
iteratively through the d-dimension problem space to search the new solutions,
where the fitness f can be calculated as the certain qualities measure. Each parti-
cle has a position represented by a position-vector x⃗i (i is the index of the particle),
and a velocity represented by a velocity-vector v⃗i. Each particle remembers its own
best position so far in a vector x⃗#i , and its j-th dimensional value is x#ij . The best
position-vector among the swarm so far is then stored in a vector x⃗∗, and its j-th
dimensional value is x∗j . During the iteration time t, the update of the velocity
from the previous velocity to the new velocity is determined by Eq. (6). The new
position is then determined by the sum of the previous position and the new ve-
locity by Eq. (7). The pseudo-code for particle swarm optimization algorithm is
illustrated in Algorithm 3.

vij(t+ 1) = wvij(t) + c1r1(x
#
ij(t)− xij(t))

+ c2r2(x
∗
j (t)− xij(t))

(6)

xij(t+ 1) = xij(t) + vij(t+ 1) (7)
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Algorithm 3 Particle Swarm Algorithm

01. Initialize the size of the particle swarm n, and other
02. parameters; Initialize the positions and the velocities
03. for all the particles randomly.
04. While (the end criterion is not met) do
05. t = t+ 1;
06. Calculate the fitness value of each particle;
07. x⃗∗ = argminn

i=1(f(x⃗
∗(t− 1)), f(x⃗1(t)),

08. f(x⃗2(t)), · · · , f(x⃗i(t)), · · · , f(x⃗n(t)));
09. For i= 1 to n
10. x⃗#i (t) = argminn

i=1(f(x⃗
#
i (t− 1)), f(x⃗i(t));

11. For j = 1 to d
12. Update the j-th dimension value of x⃗i and v⃗i
13. according to Eqs.(6),(7)
14. Next j
15. Next i
16. End While.
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Fig. 2 The width of Ratio Interval is determined experimentally. A typical case of
five data groups is shown.
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news reviews science fiction adventure overall
a 136 142 104 86 468
b 1 4 1 1 7
c 18 11 6 7 42
d 123 104 56 74 357
sensitivity 99.3% 97.3% 99.0% 98.9% 98.5%
specificity 87.3% 90.4% 90.3% 91.4% 89.5%
log(LR(+)) 2.05 2.32 2.33 2.44 2.24
log(LR(-)) -4.78 -3.50 -4.55 -4.38 -4.11

Tab. II Likelihood Ratio of Unknown-pairs Heuristic model based on four categories
of dataset.

categories description lexical diversity
news Chicago Tribune: Society Reportage 4.97
reviews Time Magazine: Reviews 4.30
science fiction Heinlein: Stranger in a Strange Land 4.67
adventure Field: Rattlesnake Ridge 5.61
mystery Hitchens: Footsteps in the Night 5.69
romance Callaghan: A Passion in Rome 4.85
humor Thurber: The Future, If Any, of Comedy 4.67

Tab. III The features of the datasets.

4. Experiment and Discussion

4.1 Datasets

In this experiment, 7 article categories (including news, reviews, etc.) in Brown
Corpus are used as datasets. The features of the datasets are shown in Tab. III.
This corpus has POS tagged as 70 states. In each article category, the first 200
sentences are used as test set in 10 groups and the following 700 sentences are
employed as training set.

4.2 Experimental settings

In targeted POS tagging problem, we choose the NLTK [25] implementation of
HMM as baseline. The Brown corpus can be imported into nltk. To keep compa-
rison clear, both the developed method and the baseline use the same supervised
training algorithm implemented in NLTK, which is implemented in hmm module.

We use two-stage method. In the first stage, the PWHMMs use weighted ratio
to create a set of HMM models. The interval width is determined experimentally as
0.8. As in Fig. 2, five data groups are used to show the typical case of the change
of accuracy according to the interval width. The performance starts to become
stable with width 0.8 and rarely changes after width 1.2. The experiment shows
that the performance of HMM can be improved with Interval Width.
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Parameter name Parameter value
inertia 0.5
cognitive rate 1.0
social rate 1.0
population size 10
max evaluations 50

Tab. IV Parameter settings for the algorithms.

groups news reviews science fiction adventure mystery romance humor

1 0.8664 0.7787 0.7954 0.8219 0.8234 0.7982 0.7801
2 0.8267 0.7848 0.8179 0.8591 0.8202 0.8606 0.7462
3 0.8720 0.7114 0.7933 0.8618 0.8529 0.7694 0.7348
4 0.8320 0.7419 0.8321 0.8367 0.8512 0.8068 0.7958
5 0.7649 0.8214 0.8533 0.8824 0.8769 0.8204 0.8373
6 0.8377 0.8118 0.7533 0.8849 0.7065 0.7936 0.7958
7 0.8210 0.8431 0.6586 0.8933 0.8683 0.7787 0.8028
8 0.8058 0.7908 0.8191 0.8806 0.9067 0.8604 0.7812
9 0.7546 0.8391 0.7739 0.8643 0.8462 0.8774 0.7772
10 0.8505 0.8263 0.8624 0.8947 0.8880 0.8087 0.7647
Mean 0.8232 0.7949 0.7959 0.8680 0.8440 0.8174 0.7816
Baseline 0.8047 0.7736 0.7712 0.8425 0.8251 0.7963 0.7625

Tab. V Accuracy details.

In the second stage, the likelihood ratio LRs is calculated to be [2.24, −4.11]
using four categories of corpus in Tab. II. We use unknown pairs heuristic as the
only simple minor model. To make the fitness function evaluate the solution of
sequence recognition by minor models as well as by HMM, the likelihood ratio test
is designed to get the weights of the likelihood modification. In the calculation of
likelihood ratio, the feature is positive when the number of unknown pairs of the
candidate path is larger than the number of the original path, and is negative when
less. The LRs is calculated using a, b, c and d according to Tab. I and Eq. (3).
Afterward PSO parameters are set as in Tab. IV. The PSO convergence is always
fast due to the dimension in this problem. When we choose population size as 10,
the maximum evaluation 50 is enough to converge.

4.3 Results

The performance metric used in this study is the accuracy of the prediction of
token-tag pairs. Seven categories in the corpus are used to show that the proposed
method is robust in improving the performance of HMM. The results regarding the
performance of the developed method are reported in Tab. V. Fig. 3 compares the
mean accuracies of the developed method with that of HMM. As illustrated, the
proposed method always performs better than HMM.
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news reviews fiction adventure mystery romance humor
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Fig. 3 Mean accuracy.

To show the stability of the developed method, Figs. 4, 5, 6 and 7 report the
four runs of whole test sets on four corpus categories. As in Tab. VI, the standard
deviation is very small. Although random search is used in the second stage, the
performance of each run changes very little and always stands above the baseline.

4.4 Discussion

Our proposed method clearly outperforms the baseline on various text categories.
This improvement comes from the usage of knowledge in our approach. The reason
of stability is that our approach avoids heavy usage of intervals. It exploits the
structure of HMM to keep the adjustment simple, i.e. directly using the ratio
between transition probabilities and emission probabilities.

By presenting the PWHMM and searching for best ratio weighting, the perfor-
mance of HMM is improved with the help of a minor model. The validity of the
two-stage model selection with HMM and likelihood ratio is confirmed.

5. Conclusion

The proposed approach is the re-optimization of classical HMM. Compared with
HMM, our approach has two advantages. First, our approach is more robust to the
influence of sparseness and noisiness of training data. Since the learned parameters
are extended into intervals, better solutions can be provided by a set of HMM
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Fig. 4 Comparison of four runs of the two-stage method and HMM baseline on
four categories of corpus.
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Fig. 5 Comparison of four runs of the two-stage method and HMM baseline on
four categories of corpus.
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Fig. 6 Comparison of four runs of the two-stage method and HMM baseline on
four categories of corpus.
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Fig. 7 Comparison of four runs of the two-stage method and HMM baseline on
four categories of corpus.

259



Neural Network World 3/12, 245-262

groups news reviews fiction adventure

1 0.0000 0.0011 0.0048 0.0034
2 0.0013 0.0014 0.0062 0.0015
3 0.0012 0.0013 0.0020 0.0013
4 0.0000 0.0024 0.0025 0.0022
5 0.0000 0.0000 0.0000 0.0000
6 0.0029 0.0000 0.0022 0.0022
7 0.0011 0.0000 0.0023 0.0000
8 0.0000 0.0012 0.0036 0.0020
9 0.0053 0.0013 0.0023 0.0020
10 0.0011 0.0000 0.0000 0.0000
Mean 0.0013 0.0009 0.0026 0.0015

Tab. VI Stability details. Standard deviation of 4 runs over four categories of
corpus in 10 data groups.

models, i.e. PWHMM. Second, it is easier to use features and rules in our approach
than in HMM. Features and rules can be adapted into our approach as minor
models.

According to the experiment, our two-stage model selection method robustly
outperforms the baseline on various text categories. The performance of the pro-
posed method is stable among each runs of random search. Besides, the output
state sequence Q is based on the single best state sequence criterion and keeps
context information not impaired when using minor models.
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