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Abstract: Evidence from behavioral studies demonstrates that spoken language
guides attention in a related visual scene and that attended scene information
can influence the comprehension process. Here we model sentence comprehen-
sion within visual contexts. A recurrent neural network is trained to associate
the linguistic input with the visual scene and to produce the interpretation of the
described event which is part of the visual scene. A feedback mechanism is inves-
tigated, which enables explicit utterance-mediated attention shifts to the relevant
part of the scene. We compare four models – a simple recurrent network (SRN)
and three models with specific types of additional feedback – in order to explore
the role of the attention mechanism in the comprehension process. The results
show that all networks learn not only successfully to produce the interpretation at
the sentence end, but also demonstrate predictive behavior reflected by the ability
to anticipate upcoming constituents. The SRN performs expectedly very well, but
demonstrates that adding an explicit attentional mechanism does not lead to loss
of performance, and even results in a slight improvement in one of the models.
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1. Introduction

Recurrent neural networks have proven to be a successful modeling tool for natural
language processing. Elman [1] introduced a simple recurrent network (SRN) in
the next word prediction task that has become a frequent training paradigm in
processing the sequential data with recurrent networks. Since its invention SRNs
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have often been used for processing language (e.g. [2, 3]). Elman demonstrated
that SRNs are able to learn an underlying grammar, when trained on (simplified)
English sentences, creating meaningful context-dependent representations of words
at the hidden layer. These results were repeated by Tong et al. [4] who com-
pared SRNs with a recent popular model, echo-state networks (ESN), introduced
by Jaeger [5]. It has been shown that ESN performance is similar to common
statistical methods (variable-length Markov models) while a well-trained SRN can
demonstrate superior prediction abilities [6].1 What all these modeling approaches
share is their focus on natural language processing as an independent domain.

However, human language typically does not occur in isolation, and the visual
context provides a very frequent setting in which language is used. During the
last decade, research into human language comprehension using the visual world
paradigm (see the recent review in [7]) has revealed that spoken language can
guide attention in a related visual scene and that scene information can immedi-
ately influence comprehension processes [8]. Findings have revealed the rapid and
incremental influence of visual referential context [9, 8] and depicted events [10] on
ambiguity resolution in online situated utterance processing. Further research has
demonstrated that listeners even anticipate likely upcoming role fillers in the scene
based on their linguistic and general knowledge (e.g. [11]). Knoeferle and Crocker
[12] identified several cognitive characteristics based on the above mentioned find-
ings, claiming that situated language comprehension is incremental, anticipatory,
integrative, adaptive, and coordinated, which led to the proposal of the coordinated
interplay account (Cia).

The recent CiaNet model [13], which serves as a motivation for the present
work, instantiates the Cia’s proposal and accounts for a range of observed em-
pirical findings. CiaNet is a recurrent sigma-pi neural network that models the
rapid use of scene information, exploiting an utterance-mediated attentional mech-
anism. The model was shown to achieve high levels of performance (both with and
without scene contexts), while also exhibiting hallmark behaviors of situated com-
prehension, such as incremental processing, anticipation of appropriate role fillers,
as well as the immediate use and priority of depicted event information through
the coordinated use of utterance-mediated attention to the scene.

There exist several other models that link language with the visual world
[14, 15, 16], including those mentioned in the recent review [7]. These models
emphasize situated lexical learning and processing, however, and there remain very
few attempts to model the compositional and incremental nature of visually situ-
ated sentence comprehension.

Inspired by the above mentioned CiaNet, we investigate more general net-
work architectures that also learn to adapt the attention mechanism which helps
the network focus on (and predict upcoming) relevant constituents and in prin-
ciple allows generalization to more complex scenes (the attention mechanism in
CiaNet is restricted to favor one of the two concurrent events). Specifically, our
models differ from the former in that the inhibition operates at both the object
and event levels (and not only at event level as in CiaNet). We have explored

1Although this evidence comes from the linguistic domain, the results may hold in other
domains as well, where the sequential data is discrete (symbolic) in nature. All that matters for
prediction is the structural dependencies among symbols, regardless of the domain.
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multiple implementations of the attentional mechanism describing their strengths
and weaknesses in situated comprehension tasks. An earlier, less detailed version
of this work appeared in [17].

2. The Model

The network architecture, shown in Fig. 1, is based on a simple recurrent network
(SRN, [1]). The network reconciles an incrementally presented utterance with a rep-
resentation of the current visual context to incrementally and predictively recover
the target event representation. The scene representations stand for encodings of
the objects and events in the visual world, the linguistic representations are pre-
sented as short sentences. In each trial, the scene representation is presented at
the input and the associated sentence is presented at the linguistic input, word
by word. The network task is to produce a (partial) scene representation at the
output. This process is mediated by the hidden layer that combines scene-related
representations with symbolic language. The target is fixed, available at the output
during processing of the entire sentence. The explicit feedback (from the output) is
added to the network using a sigma-pi mechanism (explained below) to model the
cognitively-motivated process of focusing attention on relevant constituents shown
in the visual scene and mentioned in the associated sentence.

OBJ

Hidden Layer

WinL WinS Whid

SIGMA-PI

Wout

Interpretation

copy

EV

OBJ OBJ EVEVWord

Visual input

Fig. 1 Architecture of A-SRN with a language-mediated, top-down attention
mechanism (for description see the text).

2.1 Scene representations

The scene representations are postulated to exist at two levels – the object level
(OBJ) and the event level (EV). The objects are typically the constituents of the
events, so there exists natural relationship between the two levels. Objects refer to
physical agents/patients that can be focused on, whereas the event level refers to
specific actions in the concrete context (with given semantic roles, i.e. the known
agent and patient). The combination of both levels of representation is hence
assumed to constitute a semantic representation of an event. The scene is assumed
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to consist of multiple events that may, or may not, share a constituent, plus a
random number of distractors (see Fig. 3). For instance, an agent of one event is a
patient of the other event, or events share common patients.

2.1.1 Objects

Objects include human agents (e.g. toddler, woman), animate agents (e.g. dog,
donkey) and one artificial agent (robot) that can be involved in various meaning-
ful activities, with or without a patient. Agents can operate on machines (fork-
lift, bulldozer)2, on objects (e.g. barrel, house) or food items (e.g. apple,
juice). The actions include moving (e.g. walks, sits), physical manipulation
(e.g. lifts, holds), socially oriented activities (e.g. greets, looks-at) and sus-
tenance (eats, drinks). Agents and patients are manually assigned binary features
that encode various physical and functional properties and form 40-dimensional vec-
tors cA and cP, respectively. These features include: size (one of 7 categories with
a localist encoding), animacy (yes, no), category (human, animal, artifact, food),
means of mobility (2-legged, 4-legged, wheeled, winged), agency, instrument, and
several others, permitting differentiation of the entities from one another by at least
one feature.

Each object can take a role of a distractor, denoted as cD, using the same
representation vector. Analogically, actions are described by 8 binary semantic
features, namely animacy (of agent), contact (with object), motion, transitivity,
effortfulness, temporality, egocentricity and flow. In fact, we found it useful to
duplicate these features, resulting in 16-dimensional vectors cV, in order to increase
the differentiation of compressed event representations, performed by EV module.

Before training the recurrent model(s), we used the standard self-organizing
map (SOM; [18]) to learn the localized representations of objects. Hence, the SOM
is constructed in advance using only agents cA, patients cP and distractors cD as
inputs, one at a time. Actions are excluded from SOM training, they are included
only in event-level representation. The SOM is trained to provide a topographically
organized map of objects according to their semantic features. Each object is
represented in the SOM by three most active units, focused around the winner
(best matching unit, bmu), all other units are set to zero. The activity of unit i
is calculated as yi = exp(−∥x − wi∥), where wi is the unit’s i weight vector and
x ∈ {cA, cP, cD}. The activity of the three most active units is rescaled such that
ybmu = 1. The resulting map for different objects can be seen in Fig. 2. Since these
object representations are mostly localist, they do not interfere with one another in
the map. The SOM size was chosen to have 64 units to allow unambiguous learning
of each object (by assigning it a separate winner).

The purpose of using three most active units (instead of just a winner) is to
allow the activation overlap between similar objects with neighboring winners (this
actually helped the model to generalize better). The scene representation at the
object level contains the superimposed representations (in SOM) of all objects
in the current scene (i.e. all being simultaneously present) plus a few distractors
resulting in SOM activation vector

2In fact, machines can serve as agents of some actions, too.
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Fig. 2 SOM representations of all objects used in the simulations. Topographic
order according to semantic similarities is evident. Localist nature of representa-

tions allows their combinatorial use without causing interference.

callin = c
(1)
in ⊕ . . .⊕ c

(m)
in ⊕ c

(1)
D . . .⊕ c

(n)
D ,

where the index in ∈ {A,P}, and m and n denote the number of different objects
and distractors in the scene, respectively.

2.1.2 Events

To obtain representations ein of events, an auto-associative network (AAN), mod-
eled by a two-layer perceptron (i.e. with one hidden layer) is pretrained off-line
using the vectors [cA cV cP] to form the compressed distributed representations
at the hidden layer with 48 units. Patient cP is optional, so its components are
set to zero in case of patient’s absence. The size of the input vector for training
the AAN was 40+16+40=96 dimensions. The functionality of the trained AAN
was checked via accuracy of compressed representations using the encoding and
decoding of novel agent-action-patient triplets. The accuracy reached almost 100%
for testing data.

Once the AAN is trained, the event-level representation corresponding to a
scene is taken as a superposition of all events in the situation, resulting in the
vector

eallin = e
(1)
in ⊕ . . .⊕ e

(k)
in .
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Fig. 3 Example of a scene consisting of two events (boy chases dog) and (girl looks-
at boy) and two distractors (house, sparrow). Both events share the constituent (boy).

The vector components are constrained in the interval ⟨0, 1⟩.3 Using the super-
position is analogous to that used in CiaNet – it encodes simultaneous information
provided to the subject as the visual input. However, in CiaNet the representa-
tional media for two events are separated whereas in our models the medium is
shared. Unlike localist representations for objects, the superposition of distributed
event representations leads to an overlap between the two codes, which expectedly
makes the decompression task more difficult.4

2.2 Linguistic inputs

The lexicon consists of 40 words, with one-to-one mapping to the objects and
actions. Words are treated as symbols and are assigned one-hot codes with 40-
dimensions creating an input lin. The sentences have a SV(O) form, such as toddler
looks-at crate or woman walks.

2.3 Models

All models use two output slots: cout is the object-level output that tries to ac-
tivate the target objects, taking part in the described event. eout predicts the
representation of the target event. Together, the network output (predicted scene
interpretation) is given as aout = [eout cout]. The models have no linguistic output.

In total, we simulated four models. Beside the standard SRN, we have explored
the behaviour of A-SRN shown in Fig. 1, to appreciate the role of the feedback
mechanism in the sentence comprehension task. The third model, A-SRN+, was

3Some components of the event vector could become larger than one after superposition (i.e. if
both events had the same unit highly active), therefore all components were divided by the value
of the most active component.

4We experimented with decreasing this overlap by manipulating the profile of the sigmoidal ac-
tivation function (its gain and shift) of the hidden units of AAN in order to get sparser compressed
codes, but this had no significant effect.
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Fig. 4 Architecture of the A-SRNbck model with an internal explicit language-mediated

attention mechanism (for description see the text).

motivated by our initial observations about the effects of feedback mechanism and
was designed to help the network avoid undesirable object inhibition. It guarantees
that input representation remains preserved to a certain degree (we used γ = 0.3 in
Eq. 1) which is desirable in cases when output inhibition incorrectly inhibits valid
inputs, hence hindering the correct output of the network. In terms of architecture,
A-SRN+ falls between A-SRN and SRN.

The last model, shown in Fig. 4, uses an alternative, internal attentional mech-
anism that is driven by direct connections from the hidden layer. It modulates
the input similarly to A-SRN but allows a different flow of error during training
by using an extra set of weights to separate the output representation (the scene
interpretation) from the attentional information.

The computation of the scene input vector is model-dependent, so

s
′

in(t) =


sin(t) for SRN
sin(t). ∗ aout(t− 1) for A-SRN
γ sin(t) + (1− γ) sin(t) . ∗ aout(t− 1) for A-SRN+

sin(t). ∗ σ(Wbck.ahid(t− 1)) for A-SRNbck

(1)

In the above equation, the scene representation sin = [callin eallin ] and the symbol
‘.∗’ denotes the component-wise multiplication of two vectors (hence implementing
sigma-pi connection). To avoid propagation of the misleading activation from the
previous sentence, sigma-pi activation is omitted at the beginning of each sentence,
leaving only sin(t) as the scene input.

The activation of the hidden layer in all models at time t is computed as

ahid(t) = σ(WinL.lin(t) +WinS.s
′

in(t) +Whid.ahid(t− 1)) (2)

and the network output

aout(t) = [cout(t), eout(t)] = σ(Wout.ahid(t)), (3)

where σ is the standard logistic function σ(x) = 1/(1 + exp(−x)).
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2.4 Network training

We systematically searched for optimal model parameters which were then used in
testing the models and performing the comparisons described below. The hidden
layer in all networks was chosen to have 150 units. Networks were trained with the
back-propagation-through-time (BPTT) algorithm by propagating the error after
each word [19], using the learning rate 0.01.

We generated 10,000 scenes, each of which was associated with two events.
Model’s attention was driven by linguistic input to the single, major event of each
situation. All generated events were consistent with the world, obeying semantic
constraints. With each scene representation a number of distractors (ranging from
0 to 3) was added to the input, taken from the pool of remaining agents/patients.
Randomly chosen 70% of situations were used for training and the remaining 30%
for testing. Data sets were distinguished by major events used in the scenes.

3. Performance Evaluation

In order to evaluate the output accuracy, we need to interpret the model output.
Since this consists of two different components (OBJ and EV), we need to evaluate
both. For testing the accuracy of eout we decode the corresponding output part
(using the hidden-output weights of AAN) and count the percentage of correct
decodings in the test set. Regarding cout, we compare this output with all possible
combinations of OBJ representations (in SOM), i.e. ctgt. Analogically, we count the
percentage of matches (for both agents and patients). The standard cosine measure
is also applied to both EV and OBJ outputs. All measures can be evaluated
after each word is presented to capture the progress during sentence processing.
We looked at the output accuracy at the end of sentences and also on network’s
anticipatory behavior. Anticipation means the prediction of upcoming constituents
during sentence processing (i.e. predicting an action when reading a subject word,
and predicting a patient when reading a subject or action words).

The illustration of a trained A-SRN during processing at the sentence boy chases
dog is shown in Fig. 5, and corresponds to the scene in Fig. 3. OBJ-related graphs
contain 8×8 units, EV-related graphs contain 48-dimensional vectors, reshaped
to an 8×6 matrix for convenience. On the right, OBJ input is the composition
of various objects (including distractors), EV input is the superposition of two
events. Both inputs are presented to the network at the sentence beginning. On
the left, both targets comprise only information about the target event (and the
pertaining objects). At the bottom, both inputs become overridden by the feed-
back attentional mechanism that filters out irrelevant objects and non-target event
information. Visual inspection of the network outputs (in the middle) reveals that
they match well with both corresponding targets.

3.1 Quantitative measures used

All measures used for model evaluations are listed in Tab. I, where they are verbally
explained. The symbol ‘x’ refers to the processing step in a sentence (if x = 1, the
first word is at the input). All measures share the property that the closer the
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Boy chases

dog.

Fig. 5 Example of A-SRN activation during sentence processing for sentence “Boy
chases dog”. We can notice improvement of output activation compared to targets

for both EV and OBJ output parts.

value to 1 (from below), the more accurate the value. Measures starting with EV-
are related to the event level while measures starting with OBJ- are related to
the object level. The symbol x ∈ {1, 2}. The measures subsequently appear in
Tabs. II–VII.

4. Results

Results in all tables refer to the testing data. We focused on three factors when
evaluating model performance: (1) We compared the accuracy of four models at the
end of the sentence; (2) We manipulated the availability of the scene information
during training and investigated its effect on model behavior; (3) We examined the
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Acronym Description
cos cosine between the target situation vector and the network output

(both OBJ and EV parts concatenated)
EV quantifies the accuracy of network output by decoding it at sen-

tence end; successful if both objects and action match the targets

EVa1 prediction of action when reading a subject; important measure
since action cannot be retrieved from OBJ (unlike objects)

EVpx prediction of the patient before the sentence end

EVa1W predictions of the possible actions from output after the first word;
action is correctly decoded when it is consistent with the word

EVpxW predictions of possible patients; successful if consistent with the
word (i.e. it exists in the corpus in the given context)

OBJx prediction of agent/patient pairs; successful if both objects match
the target

Tab. I Quantitative measures used for evaluating the model performance.

predictive properties of the model, i.e. the anticipation of upcoming consituents
before the sentence end. All results shown in tables are averages of 5 simulations,
all with standard deviations below 0.02. Standard deviation was larger only for
results with fully omitted visual scene inputs, with highest values reaching 0.1.

4.1 End-of-sentence performance

The model’s ability to yield the correct interpretation of the event, mediated by
linguistic utterance, can be evaluated only at the end of the sentence. Tab. II
shows that all models have learned to generate correct output with high accuracy
for both parts of its representation. SRN was observed to perform sufficiently, which
suggests that the feedback mechanism used in A-SRN models is not essential for
this relatively simple task. However, the feedback mechanism used in A-SRNbck

improved the accuracy to nearly 100%.

Model cos EV OBJ
SRN 0.995 0.985 0.986
A-SRN 0.981 0.899 0.949
A-SRN+ 0.986 0.949 0.976
A-SRNbck 0.995 0.996 0.992

Tab. II Model performance with respect to the target event, evaluated at the end
of sentence.

In the case of trained A-SRN, examination of its behavior revealed that it might
be the suboptimality of its strict attention mechanism that sometimes inhibits (via
sigma-pi connection) the target objects/actions at the input, hence reducing the
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output accuracy towards the end of the sentence. To test this hypothesis, we
introduced the model A-SRN+, and its performance was observed to be expectedly
better than A-SRN.

4.2 Restriction of the scene input

We restricted the availability of the visual input during training, either completely,
or by randomly choosing 50% of the sentences (in each training epoch). The pur-
pose of this manipulation was twofold: to simulate the lack of visual input (for
example, to simulate mere listening about the given event) but also to force the
network to rely more on the linguistic pathway in predicting the output. The mod-
els were then tested on two types of novel inputs – those with and without available
visual inputs. Corresponding results are shown in Tab. III.

The simulations reveal that partial omission of scene inputs during training
positively affects model accuracy, especially that of A-SRN. Interestingly, A-SRN
also yields better performance on testing data patterns with corresponding scene
inputs, compared to the training mode with 100% availability of the scene infor-
mation (Tab. II).

The complete removal of the scene input during training led to excessive bonding
between visual contexts and spoken language resulting in good performance for
data without visual scene input (see EVe and OBJe in Tab. III). However, when
testing the network with available visual inputs, the results deteriorated (for both
EV and OBJ measures) showing that the network does not exhibit the ability to
correctly comprehend the described event within the visual world. Because of the
top-down attentional mechanism in A-SRN-based models, these models were able
to handle this type of testing much better. One possibility is that these models
took advantage of the initial output representation evoked by the (sole) linguistic
input and feeding back as the scene input that eventually contributed to the higher
accuracy at the sentence end.

Model % cos EV OBJ EVe OBJe
SRN 50 0.995 0.995 0.989 0.995 0.992
A-SRN 50 0.991 0.989 0.988 0.991 0.990
A-SRN+ 50 0.993 0.992 0.990 0.995 0.994
A-SRNbck 50 0.997 0.998 0.994 1.000 1.000
SRN 0 0.929 0.504 0.627 0.999 0.997
A-SRN 0 0.963 0.769 0.823 0.998 0.994
A-SRN+ 0 0.947 0.671 0.688 1.000 0.994
A-SRNbck 0 0.970 0.863 0.822 0.999 0.999

Tab. III Model performance with respect to the target event for 50% and 100%
empty situation input, evaluated at the end of the sentence. Performance was com-

puted for test data with full (EV, OBJ) and empty (EVe, OBJe) scene input.
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4.3 Anticipation of upcoming constituents

Tabs. IV–VI refer to the prediction accuracy (constituent anticipation) during sen-
tence processing. All four models predict the target action (EVa1) with ∼50%
accuracy (Tab. IV). However, these predictions are almost always consistent with
the world knowledge (∼97%, Tab. V).

Prediction of the patient can be assessed at two steps. At reading a subject
(EVp1), the predictability of the patient is around 50% w.r.t. the target but it
grows to over 80% in terms of consistency with world knowledge. Prediction of a
patient one step later (EVp2) grows to about 65% w.r.t. target, and to about 95%
w.r.t. world knowledge.

Prediction at the level of agents and patients (OBJx) is slightly less accurate.
Upon processing the first word, the accuracy of predicting both objects remains
at around 50% (having the agent accurate but the patient inaccurate), and only
grows to ∼60% when processing the verb.

Model EVa1 EVp1 EVp2 OBJ1 OBJ2
SRN 0.522 0.575 0.706 0.501 0.625
A-SRN 0.503 0.510 0.645 0.452 0.588
A-SRN+ 0.491 0.517 0.667 0.484 0.608
A-SRNbck 0.498 0.545 0.697 0.479 0.597

Tab. IV Network anticipation of upcoming constituents with respect to target.

Model EVa1W EVp1W EVp2W
SRN 0.975 0.872 0.964
A-SRN 0.971 0.836 0.939
A-SRN+ 0.969 0.843 0.952
A-SRNbck 0.971 0.857 0.963

Tab. V Network anticipation accuracy with respect to world knowledge.

The models with omitted scene-related inputs (Tab. VI) exhibit decreased pre-
diction ability because of missing visual scene information. When no situation
inputs are presented during training, no model can rely on this type of informa-
tion, thus ignoring it also for the test set with visual information available. In
addition, the prediction in the dataset without the visual input was not achieved
by any model.

4.4 Hidden-layer activations

If the network is able to correctly predict the output, this ability should imply that
some organization of the network’s internal representations at the hidden-layer has
taken place. We performed an analysis of the hidden representations, using the
traditional technique (hierarchical clustering), first presented in [1]. That is, the
training data were again presented to the trained network in a single sweep, the
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Model % EVa1 EVp1 EVp2 OBJ1 OBJ2
SRN 50 0.509 0.521 0.681 0.449 0.549
A-SRN 50 0.475 0.456 0.639 0.423 0.506
A-SRN+ 50 0.492 0.477 0.664 0.454 0.569
A-SRNbck 50 0.489 0.556 0.675 0.492 0.561
SRN 0 0.201 0.039 0.074 0.015 0.031
A-SRN 0 0.203 0.033 0.085 0.006 0.022
A-SRN+ 0 0.183 0.039 0.090 0.005 0.016
A-SRNbck 0 0.201 0.042 0.080 0.015 0.020

Tab. VI Network anticipation of upcoming constituents with respect to target for
models with omitted scene inputs.

hidden-layer activation vectors were recorded, shuffled with respect to the current
input word, and averaged over contexts. Like Elman, we could observe some degree
of internal organization between words, albeit to a lesser degree. However, there
were two important differences. First, our network was not trained on a next-word
prediction task but rather mapping to a static target. Second, our linguistic input
is modulated (and noised) by situational inputs. The example of a hierarchical
cluster diagram of A-SRNbck model is shown in Fig. 6. The structure of word
hidden representations in the other three models was somewhat less evident.

4.5 Visual scenes with multiple events

To simulate a more realistic world environment, we created a data set with multiple
events per visual scene (k ≥ 2). Each scene contained two or three events (with a
50:50 ratio) and a random number of distractors. Similarly as in the previous text,
the network task was to select the target event mediated by the utterance.

Model cos EV OBJ EVa1 EVp1 EVp2
SRN 0.995 0.989 0.989 0.463 0.447 0.586
A-SRN 0.986 0.957 0.970 0.426 0.347 0.508
A-SRN+ 0.989 0.981 0.984 0.450 0.363 0.523
A-SRNbck 0.995 0.997 0.993 0.447 0.430 0.558

Tab. VII Model performance for multiple events per visual scene.

Tab. VII shows that all models were able to process situations with multiple
events, having suprisingly better performance at the end of the sentences. The
complexity of the visual scene has probably forced the models to rely on linguistic
inputs, resulting in behavior similar to what we observed in the case of restricted
scene input (Section 4.2). On the other hand, prediction accuracy suffers from
multiple object and event possibilities, resulting in deteriorated performance.

In sum, the presented simulations reveal that all models achieve very high lev-
els of accuracy with respect to meaning interpretation at the end of the sentence,
with small differences between them. In addition, all models demonstrate a cer-
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Fig. 6 Hierarchical cluster diagram of the hidden-unit activation vectors of a trained

A-SRNbck model with available scene input.

tain degree of anticipatory behavior, measured by predicting the representations
of upcoming constituents before the sentence end. Only the A-SRN-based models,
however, have the explicit attentional mechanisms necessary to account for cogni-
tive behavior revealed in visual world experiments, and the model performance is
indeed largely consistent with the findings of Knoeferle and colleagues [10].

5. Conclusion

This paper addresses the modeling of situated language processing as revealed by
psycholinguistic experiments in the visual world paradigm. We introduced sev-
eral recurrent neural network models with an explicit attentional mechanism and
compared them with a standard SRN to better understand the role of the feed-
back in a visually-situated sentence comprehension task. All models can almost
perfectly learn to generate the end-of-sentence representation that is interpreted
as the sentence meaning in the visual context. Having read the sentence, each
network correctly selects the target scene event and its corresponding constituents
(agent/patient). All networks also demonstrate predictive behavior reflected by
the ability to anticipate upcoming constituents. The SRN performs expectedly
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very well, but we have shown that adding an explicit attentional mechanism (in
A-SRNbck) results in slight improvement of the performance. The availability of
the attentional mechanism helps the A-SRN models to perform better on testing
data with and without the scene information when trained on inputs with limited
scene information. From a cognitive perspective, A-SRN’s attentional mechanism
helps the network focus on the relevant scene event and incorporates into the model
the visual attention system on an abstract level. In addition, it reveals similar an-
ticipatory shifts in visual attention that have been found using the visual world
paradigm [10, 12].

We have shown that the models are also able to process linguistic utterances
in the absence of a visual context, but adding the scene input helps the network
to correctly identify the described event within the visual world and it enables
to anticipate upcoming event constituents. A-SRN models differ crucially from
CiaNet [13] that served as our motivation, in their potential to deal with relatively
complex visual scenes containing more than two events, and arbitrary numbers of
objects. This property allows use of more realistic world scenes and the ability to
deal with complex (possibly recursive) sentences with multiple relations between
their constituents.

Regarding the world complexity, we expect that the benefits of the A-SRN
model (i.e. anticipation of objects in the scene) over standard SRNs may in fact
increase, as the knowledge of the network scales up. That is, when there is a larger
difference between what the network learns during training, and what is actually
depicted when processing a given sentence.
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Appendix A: Training method

The training method for BPTT at time t with window of size T = 3 uses the target
tgt(t) and errors f1, f2, f3 for two different error propagation paths.5 Steps 2 and
3 are repeated T -times (with index s ∈ {0, 1, . . . , T − 1}) before proceeding to step
4. The symbol ⊤ denotes transpose operation.

(0) init.

∆WX := 0, forX ∈ {inL, inS, hid, bck, out}
(1) out. weights

f1 := tgt(t)− aout(t)

f1 := f1. ∗ (aout(t))′

∆Wout := ∆Wout + f1.ahid(t)
⊤

f1 := W⊤
out.f1

f2 := 0

====== (2) hid. weights ======

f2 := f1 + f2

f2 := f2. ∗ (ahid(t− s))′

∆WinL := ∆WinL + f2.lin(t− s)⊤

∆WinS := ∆WinS + f2.s
′

in(t− s)⊤

∆Whid := ∆Whid + f2.ahid(t− s− 1)⊤

f3 := f2

f2 := W⊤
hid.f2

f1 := 0

(3) feedback

f1 := W⊤
inS.f3

f1 := f1. ∗ (aX(t− s− 1))′. ∗ sin(t− s)

∆WX := ∆WX + f1.ahid(t− s− 1)⊤

f1 := W⊤
X .f1

====== (4) ∆weights ======

WX := WX + α∆WX, forX ∈ {inL, inS, hid, out}
(5) end

In the above equations, s
′

in(t − s) follows the definition from eq. 1 and the
subscript X in step 3 is a notation for the output or backward layer, based on a
type of the model (A-SRN or A-SRNbck respectively). In case of SRN, step 3 is
not executed. Model A-SRN+ is trained in the same way as A-SRN.

5In case of A-SRN models; in case of SRN, only one error propagation path is used.
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