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Abstract: Recently, a new clustering method called maximum margin clustering
(MMC) was proposed. It extended the support vector machine (SVM) thoughts to
unsupervised scenarios and had shown promising performances. Traditionally, it
was formulated as a non-convex integer optimization problem which was difficult
to solve. In order to alleviate the computational burden, the efficient cutting-plane
MMC (CPMMC) [22] was proposed which solved the MMC problem in its primal.
However, the CPMMC is restricted to linear kernel. In this paper, we extend the
CPMMC algorithm to the nonlinear kernel scenarios, which is the proposed sparse
kernel MMC (SKMMC). Specifically, we propose to solve an adaptive threshold
version of CPMMC in its dual and alleviate its computational complexity by em-
ploying the cutting plane subspace pursuit (CPSP) algorithm [7]. Eventually, the
SKMMC algorithm could work with nonlinear kernels at a linear computational
complexity and a linear storage complexity. Our experimental results on several
real-world data sets show that the SKMMC has higher accuracies than existing
MMC methods, and takes less time and storage demands than existing kernel
MMC methods.
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1. Introduction

Clustering finds a structure in a collection of unlabeled data and has been iden-
tified as a significant technique for many applications. Since the early work in
k-means clustering [11, 5], data clustering has been studied for years and many al-
gorithms have been developed, such as mixture model [12], fuzzy clustering [23, 3]
and spectral clustering [16, 13, 8].

Recently, the maximum margin clustering (MMC) technique has attracted much
attention [24]. It borrows the idea from the large margin thoughts in support vector
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machine (SVM), and aims at finding not only the maximum margin hyperplane in
the feature space but also the optimal labeling vector which makes the margin
maximized among all possible labeling vectors. However, the MMC is a nonconvex
integer optimization problem, which is difficult to solve. The early works resolved
this problem as a convex semi-definite programming (SDP) problem [24, 21], which
made them computationally intolerable (above O(n3)) when the datasets contained
over thousands of samples.

In order to solve the MMC problem efficiently, several important works based
on quadratic programming (QP) have been done [26, 10, 4, 22]. Among them, the
most efficient one was the cutting-plane MMC algorithm [22] which employed the
constrained concave-convex procedure (CCCP) [25, 17] to decompose the MMC
problem into a serial sub-SVM problem and employed the efficient cutting plane
algorithm [9] to solve each sub-SVM problem approximately. Although each sub-
SVM problem could be solved in a linear time O(sn), the CPMMC is restricted
to linear kernel, where s denotes the sparsity of the data set. If we want to use
CPMMC with nonlinear kernel for better clustering performance, we have to com-
pute the coordinates of each sample in the kernel principle components analysis
(KPCA) basis [14] according to the kernel matrix K. It spent O(n2) to do the
KPCA [15] and about O(n2D) to get the coordinates, where D denotes the first D
largest eigenvalues of K. This pre-processing demand is too computational expen-
sive and suffers terrible information loss when D is set to a small integer. Another
way to use the nonlinear kernel is to do the Cholesky decomposition of K [1]. It has
a computational complexity of O( 1

3n3) [18] and a positive-definite demand of K.
In this paper, we propose a new kernel MMC algorithm called sparse kernel

MMC (SKMMC) which extends the CPMMC algorithm to nonlinear kernel sce-
narios. More specifically, we eliminate the computational expensive kernel decom-
position of the CPMMC by solving the inner cutting plane algorithm in its dual,
which is the proposed kernel CPMMC algorithm. However, the computational
complexity of kernel CPMMC is O(n2). To remove the O(n2) scaling behavior, we
employ the recently proposed cutting-plane subspace pursuit (CPSP) algorithm
[7] which constructs a small set of basis vectors from the cutting-plane model and
makes a sparse approximation of the kernel matrix of the kernel CPMMC. Finally,
the computational complexity and the storage complexity of the SKMMC are both
linear with the sample size, which is more efficient than existing kernel MMC al-
gorithm. The rest of the paper is organized as follows. In Section 2, we revisit the
original definition of the MMC problem and the efficient CPMMC algorithm. In
Section 3, we derive the proposed SKMMC algorithm in detail. In Section 4, we an-
alyze the complexity of SKMMC theoretically. Several experiments are conducted
on a wide range of real-world data sets and the results are shown in Section 5. In
Section 6, some concluding remarks are drawn.

2. Related Works

2.1 Maximum margin clustering

The maximum margin clustering is to extend the theory of supervised support
vector machine (SVM) to unsupervised learning scenario. Given the unlabeled
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samples x̄ = {x1, . . . ,xn} with xi ⊆ RN , MMC aims at finding the best label
combination ȳ = {y1, . . . , yn} with yi ∈ {−1, +1} , Y, such that an SVM trained
on {(x1, y1), . . . , (xn, yn)} will yield the largest margin. It could be formed as the
following computational optimization problem

min
ȳ∈{±1}n

min
w,b,ξi≥0

1
2
‖w‖2 +

C

n

n∑

i=1

ξi

s.t. ∀i ∈ {1, . . . , n} : yi

(
wT φ(xi) + b

) ≥ 1− ξi, (1)

where φ(·) is the mapping function used to map xi into a possibly high-dimensional
kernel space.

One problem of MMC is that it is possible to classify all samples to only one
class with a very large margin. In order to avoid this, Xu et al. [24] used the
following balance constraint to control the class balance

−l ≤
n∑

i=1

yi ≤ l (2)

Wang [22] further revised the class balance constraint as

−l ≤
n∑

i=1

(
wT φ(xi) + b

) ≤ l, (3)

where l ≥ 0 is a constant.

2.2 Cutting-plane maximum margin clustering

Wang proposed CPMMC algorithm [22] to solve (1) efficiently. It firstly reformu-
lated the n-slacks problem in (1) as the following 1-slack problem

min
w,b,ξ≥0

1
2
‖w‖2 + Cξ

s.t. ∀c ∈ {0, 1}n :
1
n

n∑

i=1

ci − ξ − 1
n

n∑

i=1

ci ·
∣∣wT φ(xi) + b

∣∣ ≤ 0 (4)

Though (4) is non-convex, the first constraints of (4) could be decomposed to a
sum of a convex function and a concave function. Thus, the constrained concave-
convex procedure (CCCP) [17] is employed to get a saddle point of (4) by solving
the following convex quadratic programming (QP) iteratively

min
w,b,ξ≥0

1
2
‖w‖2 + Cξ

s.t. ∀c ∈ {0, 1}n :
1
n

n∑

i=1

ci − ξ − 1
n

n∑

i=1

ciŷi

(
wT φ(xi) + b

) ≤ 0, (5)

where ŷ = [ŷ1 . . . ŷn]T are the predicted results from previous CCCP iteration (the
tth iteration) with each element of ŷ defined as

ŷi = sign
(
wT φ(xi) + b

)
(6)
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However, there are 2n constraints in (5) which make the problem (5) difficult to
solve directly. In order to solve (5) efficiently, the well known cutting-plane algo-
rithm [9, 20, 6] is employed to construct an approximate solution of (5). More pre-
cisely, assuming the current working constraint set of the cutting-plane algorithm
is Ω with a total constraint number |Ω|, we could get an approximate solution of (5)
by iteratively adding the most violated constraint to Ω and solving the following
optimization problems until no violations of constraints are detected.

min
w,b,ξ≥0

1
2
‖w‖2 + Cξ

s.t. ∀ k ∈ {1, . . . , |Ω|} :
1
n

n∑

i=1

ck,i − ξ − 1
n

n∑

i=1

ck,iŷi

(
wT φ(xi) + b

) ≤ 0 (7)

The most violated constraint is obtained by [22]

c|Ω|+1,i =

{
1, if ŷi

(
wT φ(xi) + b

) ≤ 1

0, otherwise
(8)

However, its efficiency is only reflected in linear kernel. As stated in the In-
troduction section, φ(xi) could only be obtained by matrix decomposition, which
is very time consuming. A common thought to apply the nonlinear kernels is to
move to its dual.

3. MMC with Nonlinear Kernels

3.1 Adaptive threshold CPMMC

In fact, the CPMMC algorithm in [22] solves the following n-slack optimization
problem (9) iteratively, which is reformulated to an equivalent 1-slack problem (4)
and is solved by the cutting-plane algorithm.

min
w,b,ξi≥0

1
2
‖w‖2 +

C

n

n∑

i=1

ξi

s.t. ∀i ∈ {1, . . . , n} : ŷi

(
wT φ(xi) + b

) ≥ 1− ξi (9)

However, in most cases,
{
wT φ(xi) + b

}n

i=1
is very small. If we still use the

constant threshold 1 as in (9) in this situation, the inner cutting plane itera-
tions would only add the all 1 constant constraint vector c time and time again
(ck = {ck,i}n

i=1 = 1n×1, k = 1, . . . , |Ω|). More directly, no new constraint vector is
generated, and the cutting-plane algorithm fails.

For the robustness of the MMC, we consider the adaptive threshold scheme by
adding the parameter ρ into the objective and reformulate it as

min
w,b,ρ,ξi≥0

1
2
‖w‖2 − ρ +

C

n

n∑

i=1

ξi

s.t. ∀i ∈ {1, . . . , n} : ŷi

(
wT φ(xi) + b

) ≥ ρ− ξi (10)
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After a similar derivation with the CPMMC, we could obtain the objective of the
inner cutting plane as:

min
w,b,ρ≥0,ξ≥0

1
2
‖w‖2 − ρ + Cξ

s.t. ∀ k ∈ {1, . . . , |Ω|} :

ρ

n

n∑

i=1

ck,i − ξ − 1
n

n∑

i=1

ck,iŷi

(
wT φ(xi) + b

) ≤ 0 (11)

with the most violated constraint adapted as

c|Ω|+1,i =

{
1, if ŷi

(
wT φ(xi) + b

) ≤ ρ

0, otherwise
(12)

and the convergence condition of the inner cutting-plane iteration revised as

ρ

n

n∑

i=1

c|Ω|+1,i −
1
n

n∑

i=1

c|Ω|+1,iyi

(
wT φ(xi) + b

) ≤ ξ + ρη, (13)

where η is a user defined constant balancing the cutting-plane solution precision
and the training time of the inner cutting-plane algorithm.

Because ρ is regarded as a constant 1 in the outer CCCP iteration, when we
quit the inner cutting-plane iteration, we would have to remove the influence of the
parameter ρ. Suppose that the optimized parameter set of the inner cutting-plane
algorithm is (w∗, b∗, ρ∗, ξ∗) with the objective value of (11) as JCP , we remove the
scaling influence of ρ∗ by defining the output of the inner cutting-plane algorithm
as:

wo=
w∗

ρ∗
, bo =

b∗

ρ∗
, ξo =

ξ∗

ρ∗

Jo=
1
2
‖wo‖2 + Cξo (14)

From (14), it is clear that the objective value Jo is a normalized one, which is
different from JCP . We could also know that the definition of (10) is just used to
derive (11). Jo is used in the same way as [22]. We present the usage of Jo shortly
as follows.

The convergence condition of the CCCP is defined as follows. Given the nor-
malized output value of the objective (11) at present CCCP iteration Jo and that
at previous iteration J pre

o , the convergence condition of the CCCP is defined as:
∣∣∣∣
Jo

J pre
o

− 1
∣∣∣∣ < ε, (15)

where ε is the user defined CCCP solution precision balancing the solution precision
and the clustering time.

We summarize the adaptive threshold based CPMMC in Algorithm 1. Note
that Algorithm 1 is not sensitive to parameter C, which enhances the robustness
of CPMMC.
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Algorithm 1: Adaptive Threshold Cutting Plane MMC.

(CCCP iteration)

1: repeat: solve (5) under constraint (3) by using inner cutting plane iterations, and
get the pseudo labels ŷ.

(Adaptive threshold based cutting-plane iteration)

2: initialization Ω ← ∅, t ← 0, input ŷ.

3: repeat:

4: t ← t + 1.

5: Solve problem (11) and get the solution (wt, bt, ρ, ξ).

6: Calculate the most violated constraint ct from (12).

7: Renew Ω: Ω ← Ω ∪ ct.

8: until (13) is satisfied.

9: return Jo from (14), ŷ from (6).

10: until (15) is satisfied.

3.2 Kernel CPMMC

As mentioned in Section 2, CPMMC could be regarded as a serial sub-linear SVM
problems which are solved in their primal forms (5), if we want to extend it to the
non-linear case with kernels, we need to move to its dual representation. In this
section, we focus on the inner cutting-plane SVM problem only.

By using the Karush-Kuhn-Tucker (KKT) conditions [15], we could write the
Lagrangian of (11) under class balance constraint (3) as

L(w, b, ρ, ξ)

=
1
2
wT w − ρ + Cξ +

|Ω|∑

k=1

λk

{
ρ

n

n∑

i=1

ck,i − 1
n

n∑

i=1

ck,i · ŷi

[
wT φ(xi) + b

]− ξ

}

+
1
n

µ1

{
n∑

i=1

[
wT φ(xi) + b

]− l

}
+

1
n

µ2

{
−

n∑

i=1

[
wT φ(xi) + b

]− l

}

−ςξ − νρ, (16)

where λ, µ1, µ2, ς, ν are non-negative Lagrangian variables. Calculating the partial
derivatives with respect to the primal variables,

∂L
∂w

= 0,
∂L
∂b

= 0,
∂L
∂ξ

= 0,
∂L
∂ρ

= 0 (17)

we could get

w =
1
n

|Ω|∑

k=1

λk

n∑

i=1

ck,iŷiφ(xi)− 1
n

(µ1 − µ2)
n∑

i=1

φ(xi) (18)

µ1 − µ2 =
1
n

|Ω|∑

k=1

λk

n∑

i=1

ck,iŷi (19)
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1
n

|Ω|∑

k=1

n∑

i=1

ck,i − 1− ν = 0 (20)

C −
|Ω|∑

k=1

λk − ς = 0 (21)

After denoting K , K(x̄, x̄) and c̄ = [c1, . . . , c|Ω|] =

[c1,1 . . .c|Ω|,1
...

. . .
...c1,n. . .c|Ω|,n

]
, we could

get the Lagrangian dual of (7) as the following matrix form by substituting (18)–
(21) to (16)

max
λλλ,µ1,µ2

− 1
2n2

λT c̄T diag(ŷ)Kdiag(ŷ)c̄λ +
1
n2

(µ1 − µ2)λT c̄T diag(ŷ)K1n×1

− 1
2n2

(µ1 − µ2)211×nK1n×1 − 1
n

(µ1 + µ2)l

s.t. µ1 − µ2 =
1
n

λT c̄T ŷ,
1
n

λT c̄T 1n×1 ≥ 1

C −
|Ω|∑

k=1

λk ≥ 0, µ1 ≥ 0, µ2 ≥ 0, λ ≥ 0 (22)

with w calculated from (18), where 1x×y denotes an x× y size matrix with all
entries equaling to 1.

However, the bias term b cannot be derived directly from (22), which is dif-
ferent from the n-slack supervised SVM problem. We developed another simple
calculation method of b from the class balance constraint (3). If n À l, we could
use squeeze rule to get b approximately as

b ≈ − 1
n

n∑

i=1

wT φ(xi) (23)

Though we could get b into consideration by adding a constant feature to each
sample which is commonly used in supervised SVM [6, 2], empirically, it is inferior
to the proposed calculation method in the MMC problems.

Until now we have obtained the parameters (w, b) of the maximum margin
hyperplane at the current cutting-plane working constraint set Ω.

From the fact that the QPs have zero duality gap for strong convex problem,
and from the implicit KKT conditions, we could derive ρ as (24) and ξ as (23).

ρ =
n

(∑|Ω|
k=1 λk

) {‖w‖2 + 1
n (µ1 + µ2)l

}− C
∑|Ω|

k=1 λk

∑n
i=1 ck,iŷi

(
wT φ(xi) + b

)

n
∑|Ω|

k=1 λk − C
∑|Ω|

k=1 λk

∑n
i=1 ck,i

(24)

ξ=
ρ

∑|Ω|
k=1 λk

∑n
i=1 ck,i −

∑|Ω|
k=1 λk

∑n
i=1 ck,iŷi

(
wT φ(xi) + b

)

n
∑|Ω|

k=1 λk

(23)
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Note that the parameter C could not be set to 1 in practice, because it
might make the denominator of (24) to be zero.

Until now all parameters have been calculated. And then, the most violated
constraint of the inner cutting-plane algorithm is obtained by (12). The conver-
gence condition of the cutting-plane algorithm is the same as (13).

The outer CCCP algorithm is the same as Algorithm 1. We summarize the
kernel CPMMC algorithm in Algorithm 2.

Algorithm 2: Kernel Cutting Plane MMC.

initialization.

1: Input: x̄, CCCP solution precision ε, cutting-plane solution precision η, kernel
parameters.

(CCCP iteration)

2: repeat: solve (5) and get the pseudo labels ŷ.

(Adaptive threshold based cutting-plane iteration)

3: initialization t ← 1, ŷ, c1 ← 1n×1, Ω ← ∅
4: repeat:

5: Renew Ω: Ω ← Ω ∪ c(t).

6: t ← t + 1.

7: Solve problem (22) and get the solution (λ, µ1, µ2).

(Note: wt is obtained implicitly from (18))

8: Calculate bt from (23)

9: ŷi ← sign(wT φ(xi) + b), i = 1, . . . , n

10: Calculate ρ from (24), ξ from (23)

11: Calculate c(t) from (12).

12: until (13) is satisfied.

13: return Jo from (14), ŷ from (6)

14: until (15) is satisfied.

Any inner cutting plane iteration takes at most O (|Ω|3) for solving the QP,
O(n) for the most violated constraints c and for predicting labels ŷ respectively.
But it takes O((|Ω| + 1)n2 + 2|Ω|n) for the objective function (22)1,2 and O(n2

+|Ω|n) for
{
wT φ(xi) + b

}n

i=1
. Therefore, the overall complexity of the kernel CP-

MMC is scaled with O (
Ttn2

)
, where t and T are the average iteration numbers

of the inner cutting plane algorithm and the outer CCCP algorithm, respectively.
Because the kernel matrix has to be stored, the storage complexity of the kernel
CPMMC is scaled with O(n2). Hence, the kernel CPMMC algorithm is hard to
deal with large scale data sets.

1Though the third item has O(n2), we do not take it into account since it could be calculated
once.

2A single kernel calculation is evaluated as O(1).
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3.3 Sparse Kernel MMC

The overall computational complexity O(n2) of the kernel CPMMC is mainly
caused by the following operator

w =
1
n

|Ω|∑

k=1

λkΨk − 1
n

(µ1 − µ2)Ψ0 (24)

which has a computational load of O(n), where Ψ is defined as

Ψk=
1
n

n∑

i=1

ck,iŷiφ(xi), k = 1, . . . , |Ω| (25)

Ψ0=
1
n

n∑

i=1

φ(xi) (26)

Could we remove the expensive O(n) scaling behavior? Recently, Joachims has
proposed a sparse solution of the normal vector w of the maximum margin hy-
perplane, called cutting-plane subspace pursuit (CPSP) [7], to eliminate the O(n)
for the supervised structural SVM problem. In this paper, we employ it to ac-
celerate the kernel CPMMC algorithm, which is the proposed sparse kernel MMC
(SKMMC) algorithm.

The core idea of the SKMMC algorithm is to find a small set of basis vectors
b̄x = {bx,i}px

i=1 for each Ψx, such that Ψx could be approximated as

Ψ̂x=
px∑

i=1

βx,iφ(bx,i), x = 0, 1, . . . , |Ω|, (27)

where βx = [βx,1, . . . , βx,px ]T are the coefficients of the basis vectors in the high-
dimension kernel space, and should be estimated as well. Therefore, the approxi-
mation of w is formulated as

ŵ =
|Ω|∑

k=1

λkΨ̂k − (µ1 − µ2)Ψ̂0 (28)

Substituting ŵ back to Algorithm 2 could get the approximation of the objective
function (22) as the following matrix form

max
λλλ,µ1≥0,µ2≥0

−1
2
λT β̄

T K(¯̄b, ¯̄b)β̄λ + (µ1 − µ2)λT β̄
T K(¯̄b, b̄0)β0

−1
2
(µ1 − µ2)2βT

0 K(b̄0, b̄0)β0 −
1
n

(µ1 + µ2)l

s.t. µ1 − µ2 =
1
n

λT c̄T ŷ,
1
n

λT c̄T 1n×1 ≥ 1

C −
|Ω|∑

k=1

λk ≥ 0, µ1 ≥ 0, µ2 ≥ 0, λ ≥ 0, (29)
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where ¯̄b = {b̄1, . . . , b̄|Ω|} = {b1,1, . . . ,b1,p1 , . . . ,b1,p|Ω| , . . . ,b|Ω|,p|Ω|}3, and β̄ =[
β1

. . .
β|Ω|

]
.

For calculation convenience, (29) could be rewritten in a standard QP form as

max
γ
−1

2
γT Hγ − γT ζ

s.t. Aeqγ = 0; Aγ ≤ d; γ ≥ 0, (30)

where the following notations are used to formulate the objective: γ = [λ, µ1, µ2]T ,

A =

[
− 1

n c̄T 1n×1 0 0

11×|Ω| 0 0

]
, d = [−1 C]T , Aeq =

[
1
n ŷT c̄ − 1 1

]
, ζ =

[
− 1

n c̄T 1n×1
l
n

l
n

]T

,

and

¯̄β=




β̄

β0

β0


 H = ¯̄β

T




K(¯̄b, ¯̄b) −K(¯̄b, b̄0) K(¯̄b, b̄0)

−K(b̄0,
¯̄b) K(b̄0, b̄0) −K(b̄0, b̄0)

K(b̄0,
¯̄b) −K(b̄0, b̄0) K(b̄0, b̄0)


 ¯̄β

All other parts of the SKMMC algorithm are the same as the kernel CPMMC
algorithm except that w should be replaced by ŵ. As a conclusion, the SKMMC
algorithm is summarized in Algorithm 3.

Note that recomputing the basis vector set related to the entire constraint set Ω
in each iteration is costly and unnecessary. In each CCCP subproblem, only Ψ|Ω|
is new and all other Ψs are already well approximated by the set of basis vectors
from previous cutting-plane iteration.

The basis vector estimation algorithm is the same as that used in CPSP algo-
rithm [7]. Only the RBF kernel is applicable at present. Only one basis vector is
used to estimate a single Ψ. For completeness of this paper, we append the basis
estimation algorithm in C.

4. Theoretical Analysis

4.1 Computational complexity

Suppose the basis vector number for each Ψ̂x is 1, where x is any of {0, 1, . . . , |Ω|}.
For each CCCP iteration, the SKMMC takes at most O(|Ω|3) for the QP, O(n)

for the most violated constraints c, O ((|Ω|+ 1)n) for
{
ŵT φ(xi) + b̂

}n

i=1
. For

formulating the objective (30), it takes O (|Ω|(|Ω|+ 1)2
)

for H, O(|Ω|n) for Aeq,
therefore, the total computational complexity for each CCCP iteration of Algorithm
3 is O(2t(|Ω|+1)n), where t is the average cutting-plane iteration number for each
CCCP sub-problem.

Additionally, it takes about O(udsn) for each basis vector estimation, where u
is the average iteration number for the convergence of BEF algorithm (Algorithm
4), d is the dimension of the sample, s is the sparsity of the data set.

3 ¯̄b is arranged in order.
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Algorithm 3: Sparse Kernel MMC.

initialization.

1: Input: x̄, CCCP solution precision ε, cutting-plane solution precision η, kernel
parameters.

2: Ψ̂0 ← estimate basis(Ψ0)

(CCCP iteration)

3: repeat: solve (5) and get the pseudo labels ŷ.

(Adaptive threshold based cutting-plane iteration)

4: initialization t ← 1, input ŷ and Ψ̂0, random constraint vector c1, Ω ← ∅
5: repeat:

6: Ψ̂t ← estimate basis(Ψt)

7: Renew Ω: Ω ← Ω ∪ c(t).

8: t ← t + 1.

9: Solve problem (30) and get the solution γ.

(Note: ŵt is obtained implicitly from (28))

10: Calculate b̂t from (23)

11: ŷi ← sign(ŵT
t φ(xi) + b̂t), i = 1, . . . , n

12: Calculate ρ from (24), ξ from (23)

13: Calculate c(t) from (12).

14: until (13) is satisfied.

15: return Jo from (14), ŷ from (6)

16: until (15) is satisfied.

Suppose the SKMMC algorithm needs T iterations to converge to a local min-
imum, the overall computational complexity for large-scale data set is
scaled with O ((uds(T + 1) + 2tT (|Ω|+ 1))n), which is more efficient than exist-
ing kernel MMC algorithms.

4.2 Storage complexity

The whole data set requires O(sdn) space, all basis vectors need O((|Ω| + 1)d)
space, the Ω needs O(|Ω|n) space. Because |Ω| is usually very small, the memory
used to store H in Algorithm 3 could be omitted, this is a very significant merit
of the SKMMC since all existing kernel MMC algorithms have to store the gram
matrix K of the whole data set which requires O(n2) space. As a conclusion,
the overall storage complexity is about O ((sd + |Ω|)n), which has a linear
relationship with the data set size.

5. Experimental Analysis

In this section, we will firstly compare our SKMMC algorithm with several existing
clustering methods on various real-world small scale data sets at first. And then, we
will illustrate the scaling behavior of the SKMMC on several large scale data sets.
At last, we will discuss in detail how the parameter ε affect the performance of the
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SKMMC algorithm. All experiments are conducted with Matlab 7.8 on a 2.4 GHZ
Iter(R) Core(TM)2 Duo PC running Windows XP with 4 GB main memory.

5.1 Comparison schemes and experimental settings

To examine the effectiveness of the proposed SKMMC algorithm, we compare it
with the following existing data clustering methods.4

• K-Means (KM) [5]. All performances reported are averaged over 20 indepen-
dent runs.5

• Normalized Cut (NC) [16].

• Iterative Support Vector Regression (IterSVR) [27].6 RBF kernel is adopted.
Parameter settings are exactly the same as [27] did. All performances re-
ported are averaged over 20 independent runs.

• Cutting Plane Maximum Margin Clustering (CPMMC) [22].7 According to
[22], only the linear kernel is used in all experiments. Parameter settings are
exactly the same as [22] did.

• Label-Generating Maximum Margin Clustering (LG-MMC) [10].8 According
to [10], if the data sets are small scale (n < 10000), the Gaussian kernel is
used; otherwise, the linear kernel is used. All parameters are set exactly the
same as Li did [10] in his experiments.

For the proposed SKMMC algorithm, the following parameter settings are
adopted. The CCCP solution precision ε is set to 0.1. The inner cutting plane
solution precision η is set to 0.01. The width σ of the Gaussian RBF kernel
exp(−‖x‖2/2σ2) is searched through {0.25

√
γ, 0.5

√
γ,
√

γ, 2
√

γ, 4
√

γ} which is sim-
ilar to the setup of the RBF kernel based LG-MMC. In order to compare with
CPMMC in a similar setting, the parameter C is set to 10, and the class balance
constraint, i.e., l is searched through [0, 20] with granularity 1 as well. Only one
basis vector is used to approximate each Ψ.

In order to show the effectiveness of ρ, we developed another dual form SKMMC
version (SKMMCv2) where ρ is set to a constant 1, and presented it in B. All
parameters are set to the same values as SKMMC.

For performance evaluation, the balanced clustering error B Err [26] is adopted.
It has been proved to be a more reliable metric than clustering error rate Err,

4Because the MMC algorithm proposed by Xu [24] and the Generalized MMC (GMMC) algo-
rithm proposed by Valizadegan [21] is based on SDP, and can only be run with at most several
hundreds of samples on our PC, hence, we would not compare with them anymore.

5The implementation code is in the VOICEBOX developed by Cambridge University for
speech processing, it can be downloaded from “http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox
/doc/voicebox/kmeans.html”.

6The implementation code is downloaded from “http://www3.ntu.edu.sg/home/IvorTsang
/itMMC code.zip”.

7The implementation code is downloaded from “http://sites.google.com/ site/binzhao02”.
8The implementation code is downloaded from “http://cs.nju.edu.cn/zhouzh/zhouzh.files

/publication/annex/LGMMC v2.rar”.
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especially when the data set is severely class imbalanced. B Err is defined as

B Err =
1
2
(Err+ + Err−), (31)

where Err+ and Err− are the error rates of the positive and negative samples in
the full set. Furthermore, the imbalanced degree of the data set is defined as

Imbalance◦ =
|Num+ −Num−|
Num+ + Num− × 100%, (32)

where Num+ and Num− are the numbers of the positive and negative samples in
the full set, respectively.

5.2 Small scale experiments

In this section, we present small scale experiments suitable for comparing our
algorithm with other clustering methods. Tab. I lists the small scale UCI data
sets we use.9 For Satellite and Waveform, they have multiple classes, we use the
first two classes of the Satellite (C1 versus C2) and the last two classes of the
Waveform (W1 versus W2).

Data # Sample # Feature Imbalance◦ Sparsity◦

Echocardiog 132 8 34.35 96.95

Spectf 267 44 58.80 100.00

Heart-stalog 270 13 11.11 75.10

Haberman 306 3 47.06 85.19

LiveDisorders 345 6 15.94 99.57

Ionosphere 351 34 28.21 88.09

House-votes 435 16 22.76 100.00

Clean1 476 166 13.03 99.84

Breast 683 9 31.04 99.75

Australian 690 14 11.01 93.90

German 1000 24 40.00 74.95

Satellite1vs2 2236 36 38.23 100.00

Krvskp 3196 36 4.44 100.00

Waveform1vs2 3308 40 0.06 99.70

Spambase 4601 57 21.19 71.51

Tab. I Small scale experimental data sets and their properties.

The clustering results of our algorithm and other referenced methods are shown
in Tab. II. From the table, the SKMMC algorithm has better performances than
SKMMCv2 and other referenced methods in 8 data sets. And the SKMMC algo-
rithm can outperform the SKMMCv2 and CPMMC algorithms in most of the data
sets, which proved the effectiveness of the parameter ρ empirically.

9All UCI data sets are downloaded from “http://archive.ics.uci.edu/ml”.
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Data KM NC IterSVR CPMMC LG-MMC SKMMC SKMMCv2

Echocardiog 16.07 18.42 8.05 16.01 19.04 13.69 15.37

Spectf 38.71 41.84 39.31 28.30 32.41 18.63 21.46

Heart-stalog 42.10 36.00 38.89 40.00 28.85 28.25 37.92

Haberman 48.25 47.83 35.13 48.07 41.83 35.16 35.31

LiveDisorders 48.90 45.79 41.86 42.11 36.11 35.86 42.79

Ionosphere 29.33 34.92 27.92 28.21 36.81 21.29 23.02

House-votes 13.81 49.44 14.48 12.71 14.36 11.52 11.55

Clean1 48.95 31.00 44.33 19.18 33.77 7.01 28.36

Breast 5.86 8.37 4.43 3.41 23.12 2.70 2.89

Australian 49.84 43.22 37.22 37.07 24.68 33.49 33.59

German 44.10 42.07 33.03 43.67 45.38 38.92 43.71

Satellite1vs2 6.89 8.07 3.80 2.65 13.10 1.37 2.41

Krvskp 45.39 49.96 42.29 43.49 36.17 37.08 38.04

Waveform1vs2 5.26 35.52 5.50 48.15 39.17 5.02 4.78

Spambase 44.18 26.63 32.92 37.97 13.93 23.14 23.49

Tab. II Balanced error rate (B Err) (%) of different clustering methods.

Data KM NC IterSVR CPMMC LG-MMC SKMMC SKMMCv2

Echocardiog 0.01 0.05 0.23 (5.00) 0.06 (1) 0.38 (5) 0.84 (7) 0.44 (6)

Spectf 0.02 0.31 1.29 (3.00) 0.04 (1) 1.39 (5) 0.76 (4) 0.30 (5)

Heart-stalog 0.01 0.17 2.46 (4.00) 0.07 (1) 1.08 (5) 0.15 (2) 0.51 (7)

Haberman 0.00 0.15 0.10 (10.15) 3.16 (1) 1.41 (5) 3.28 (11) 0.08 (4)

LiveDisorders 0.01 0.27 0.25 (5.30) 0.96 (2) 1.66 (5) 0.62 (3) 0.11 (4)

Ionosphere 0.02 0.29 2.97 (3.85) 0.08 (1) 2.05 (5) 1.67 (4) 0.55 (4)

House-votes 0.02 0.49 5.44 (3.20) 0.19 (2) 3.06 (5) 9.13 (14) 1.71 (19)

Clean1 0.20 2.59 16.34 (12.00) 3.97 (6) 5.61 (5) 10.95 (26) 0.77 (4)

Breast 0.01 1.02 9.53 (3.00) 0.09 (1) 8.09 (5) 0.34 (3) 0.21 (4)

Australian 0.04 1.19 1.52 (4.00) 0.08 (1) 9.34 (5) 0.47 (3) 0.20 (5)

German 0.06 2.86 13.07 (3.15) 0.16 (1) 27.42 (5) 2.01 (4) 3.11 (17)

Satellite1vs2 0.13 9.03 16.57 (5.00) 0.63 (2) 79.97 (5) 2.33 (3) 0.30 (3)

Krvskp 0.23 39.12 1180.40 (11.25) 0.49 (1) 634.98 (5) 17.44 (5) 1.63 (3)

Waveform1vs2 0.95 312.03 945.08 (4.00) 3.10 (2) 645.81 (5) 6.47 (4) 5.09 (6)

Spambase 0.88 203.60 460.04 (12.00) 0.58 (1) 1216.92 (5) 7.95 (6) 9.03 (6)

Tab. III CPU time (in seconds) and iteration numbers (in the brackets) of different
clustering methods.

The CPU time of our algorithm and the competitive MMCs is reported in
Tab. III. From the table we could conclude that the SKMMC, the SKMMCv2
and the CPMMC algorithms are the most efficient methods among the SVM-type
algorithms, while the runtime of the other two is increasing dramatically with the
data set size.
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5.3 Large scale experiments

For the sake of simplicity, we set C = 10, l = 0, η = 1, ε = 0.3, and search σ in
the same way as in the small scale experiments. For the competitive methods, all
parameters are set to the same values as in the small scale experiments.

5.3.1 Experiments on MNIST

In the first large scale experiment, we conduct experiments on the MNIST hand-
written digit data set, as a 2-class clustering problem. For the digits of the MNIST
data, we follow [10, 27] and focus on the pairs that are difficult to differentiate.
The details of the selected digital pairs are listed in Tab. IV.

Data # Sample # Feature Imbalance◦ Sparsity◦

1vs7 15170 784 3.85 13.75

2vs7 14283 784 2.12 19.10

3vs8 13966 784 2.26 21.48

8vs9 13783 784 0.96 20.20

Tab. IV Selected MNIST digital pairs and their properties.

The clustering results and the CPU time of the proposed SKMMC algorithm
and three other competitive algorithms are shown in Tab. V and Tab. VI, respec-
tively.

Data KM CPMMC LG-MMC SKMMC

1vs7 4.23 2.85 3.90 2.81

2vs7 4.44 3.65 11.24 4.15

3vs8 20.06 19.50 13.16 13.07

8vs9 18.68 6.41 16.00 5.87

Tab. V Balanced error rate (B Err) of different clustering methods (%) on
MNIST.

Data KM CPMMC LG-MMC SKMMC

1vs7 47.24 7.27 (2) 19292.94 (20) 25.88 (2)

2vs7 49.85 9.30 (2) 22111.89 (20) 44.23 (2)

3vs8 95.38 10.98 (2) 11060.67 (13) 57.46 (2)

8vs9 114.80 9.76 (2) 51585.47 (20) 63.92 (2)

Tab. VI CPU time (in seconds) and iteration numbers (in brackets) of different
clustering methods on MNIST.

From the tables, we could see clearly that the SKMMC could achieve lower
B Err than the LG-MMC algorithm and is hundreds of times faster than LG-
MMC, which proves the superiority of the SKMMC algorithm to the LG-MMC
algorithm. Although the SKMMC is several times slower than the linear kernel
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based CPMMC algorithm, it has better clustering results than the CPMMC algo-
rithm. Moreover, the SKMMC is even faster than the KM algorithm.

5.3.2 Experiments on UCI adult data set

In the second large scale experiment, we use the UCI adult data set in a similar
way as [26]. More precisely, a serial subsets of adult data set is formed10, ranging
in size [1605, 2265, 3185, 4781, 6414, 11220, 16100, 22696, 32561]. The imbalanced
degree of the adult data set is 51.84% and the sparsity is 11.28%.

Experiments are shown in Fig. 1. From the figure, we could see that the
SKMMC could achieve the best B Err over all referenced methods.
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Fig. 1 Comparison of different clustering methods on UCI adult data set. The
balanced error rates (%) of different methods are in the left figure. The CPU time
(in seconds) of different methods is in the right figure. Note that for LG-MMC, if
the sample size is smaller than 10000, the RBF kernel is used; otherwise, the linear

kernel is used.

5.3.3 Experiments on extended USPS digits data set

The extended USPS digits data set11 is developed from the digital classes “zero
and one” of the USPS set for the purpose of studying the scaling behavior of the
CVM [19]. It has a training set size of 266079 and a test set size of 75383 with 676
attributes. It also has a serial predefined subsets, ranging in size of [1000, 3000,
10000, 30000, 100000]. Its imbalanced degree is 8.63% and its sparsity is 14.95%.
In our experiments, we use the subsets and the training set to study the scaling
behavior of the proposed SKMMC algorithm and its competitive methods.

Experimental results are shown in Fig. 2. From the figure we could see that
the proposed SKMMC algorithm yields much better B Err curve than the other
clustering methods while consuming comparable CPU time with the KM algorithm.

As a conclusion, although we sacrifice the solution precision by setting η to
a relatively large value, we could still reach a better performance than existing
clustering methods while keeping a low computational complexity.

10http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
11http://www.cs.ust.hk/∼ivor/cvm.html
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Fig. 2 Comparison of different clustering methods on extended USPS data set. The
balanced error rates (%) of different methods are in the left figure. The CPU time
(in seconds) of different methods is in the right figure. Note that for LG-MMC, if
the sample size is smaller than 10000, the RBF kernel is used; otherwise, the linear

kernel is used.

5.4 How does the cutting plane solution precision η affect
the performance?

The parameter η is very important to balance the clustering accuracy and the
runtime of the cutting-plane algorithm. To investigate the optimal working region
of η, η is searched through (0, 1] on the small-scale data sets, the CCCP solution
precision ε is set to 0.1, and all other parameters are the same as in the small scale
data set experiments.

The experimental results are shown from Fig. 3 to Fig. 6. From the figures,
firstly, we could see that the cutting plane solution precision has small effects on
most of the data sets. Only one or two cuts per CCCP iteration are sufficient to
offer a meaningful final solution precision. Therefore, in practice, if the data sets are
not highly sensitive to η, we could set η to a relatively large value and sacrifice some
clustering precision for the efficiency of SKMMC as we have done in the large scale
experiments. Secondly, η has small effects on the outer CCCP iteration number.
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Fig. 4 Effects of the cutting-plane (CP) solution precision η on the LiveDisorders,
Ionosphere, House-votes and Clean1 data sets.
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Fig. 6 Effects of the cutting-plane (CP) solution precision η on the Krvskp,
Waveform1vs2, and Spambase data sets.
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6. Conclusions

In this paper, we have proposed the sparse kernel MMC algorithm. The SKMMC
algorithm used the CCCP algorithm to deal with the non-convex of the MMC prob-
lem, and uses cutting-plane algorithm to deal with the exponential constraints of
each sub-CCCP problem. We proposed to solve each CCCP subproblem in its dual
with an adapted threshold, named as ρ based kernel CPMMC. Then we accelerated
the kernel CPMMC by employing the CPSP algorithm. Eventually, the SKMMC
could work with nonlinear kernel at a linear computational complexity and stor-
age complexity, which was the most efficient existing kernel MMC algorithm. Our
experiments on a large amount of real-world data sets proved the effectiveness and
efficiency of the proposed algorithm.
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A Derivation of ρ and ξ

For the convergence condition of the inner cutting-plane iteration, we should derive
the 1-slack variable ξ at first. From the KKT implicit conditions of (16), we have

∀k ≤ |Ω| : λk

{
ρ

n∑

i

ck,i − nξ −
n∑

i=1

ck,iŷi

(
wT φ(xi) + b

)
}

= 0 (33)

Summing above equations over k could get ξ as:

ξ=
ρ

∑|Ω|
k=1 λk

∑n
i=1 ck,i −

∑|Ω|
k=1 λk

∑n
i=1 ck,iŷi

(
wT φ(xi) + b

)

n
∑|Ω|

k=1 λk

(34)

However, ρ is unknown.
In fact, the objective (22) could be depicted as

max−1
2
‖w‖2 − 1

n
(µ1 + µ2)l

s.t. µ1 − µ2 =
1
n

λT c̄T ŷ,
1
n

λT c̄T 1n×1 ≥ 1

C −
|Ω|∑

k=1

λk ≥ 0, µ1 ≥ 0, µ2 ≥ 0 (35)

since w is defined as (18).
From the fact that the QPs have zero duality gap, we have

1
2
‖w‖2 − ρ + Cξ = −1

2
‖w‖2 − 1

n
(µ1 + µ2)l (36)

Solving above equation by substituting (34) could derive ρ as (24). Substituting ρ
back to (34) could get the parameter ξ.
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B Sparse Kernel CPMMC without ρ

In this section, we focus on the kernel CPMMC without ρ only. Its sparse version
(SKMMCv2) could be similar to SKMMC.

By using the Karush-Kuhn-Tucker (KKT) conditions [15], we could get the
Lagrangian dual of (7) as

max
λλλ≥0,µ1≥0,µ2≥0

− 1
2n2

λT c̄T diag(ŷ)Kdiag(ŷ)c̄λ +
1
n2

(µ1 − µ2)λT c̄T diag(ŷ)K1n×1

− 1
2n2

(µ1 − µ2)211×nK1n×1 +
1
n

λT c̄T 1n×1 − 1
n

(µ1 + µ2)l

s.t. µ1 − µ2 =
1
n

λT c̄T ŷ, C −
|Ω|∑

k=1

λk ≥ 0 (37)

with w calculated as

w=
|Ω|∑

k=1

λkΨk − (µ1 − µ2)Ψ0

=
1
n

|Ω|∑

k=1

λk

n∑

i=1

ck,iŷiφ(xi)− 1
n

(µ1 − µ2)
n∑

i=1

φ(xi), (38)

where K(x̄, x̄) = [K (xi,xj)] ∈ Rn×n is the kernel matrix, and c̄ = [c1, . . . , c|Ω|] =[c1,1 . . .c|Ω|,1
...

. . .
...c1,n. . .c|Ω|,n

]
.

For the convergence condition of the inner cutting-plane iteration, we should
derive the 1-slack variable ξ at first. From the KKT implicit conditions, we have

∀k ≤ |Ω| :

λk

{
n∑

i

ck,i − nξ −
n∑

i=1

ck,iŷi

(
wT φ(xi) + b

)
}

= 0 (39)

Summing above equations over k could get ξ as:

ξ=
∑|Ω|

k=1 λk

∑n
i=1 ck,i −

∑|Ω|
k=1 λk

∑n
i=1 ck,iŷi

(
wT φ(xi) + b

)

n
∑|Ω|

k=1 λk

(40)

Therefore, the convergence condition of the cutting-plane algorithm is defined as:

1
n

n∑

i=1

c|Ω|+1,i −
1
n

n∑

i=1

c|Ω|+1,iŷi

(
wT φ(xi) + b

) ≤ ξ + η, (41)

where η is a user defined constant balancing the cutting-plane solution precision
and the training time of the inner cutting-plane algorithm. The cutting-plane
algorithm continues to add the most violated constraint to Ω until the convergence
condition is satisfied.
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The outer CCCP algorithm is the same as the CPMMC algorithm [22]. More
specifically, given the objective value of (37) at present CCCP iteration J and that
at previous iteration J pre, the convergence condition of the CCCP is defined as:

∣∣∣∣
J
J pre

− 1
∣∣∣∣ < ε, (42)

where ε is the user defined CCCP solution precision.
By employing the CPSP algorithm, we could find a small set of basis vectors

b̄x = {bx,i}px

i=1 for each Ψx, such that Ψx could be approximated, which is the
proposed SKMMCv2.

C Estimation of the Basis Vector

We denote b̄x = {bx,i}px

i=1, where x is any of {α, 0, 1, . . . , |Ω|}. Our main job in
this section is to get the basis vector set b̄x for each Ψx such that the minimum
square error (MSE) between Ψx and Ψ̂x could be minimized:

εMSE=‖Ψx − Ψ̂x‖2

=
1
n2

zT
x K(x̄, x̄)zx − 2

n
βT

x K(b̄x, x̄)1n×1 + βT
x K(b̄x, b̄x)βx (43)

For simplicity, the subscript x is omitted below.
In practice, we add the basis vector one by one for a single Ψ, so that the εMSE

could be lowered gradually. To decide which basis vector to add, we follow [7, 15]
and aim at getting the basis vector bm+1 that minimizes the residual error for Ψ.

min
βm+1,bm+1

∥∥∥(Ψ− Ψ̂)− βm+1φ(bm+1)
∥∥∥

2

, (44)

where Ψ̂ =
∑m

i=1 βiφ(bi) at present. As stated in [7], the approximate solutions
of above optimization problem could be found by using gradient-based method
or randomized search. In this paper, we only consider the fixed point iteration
approach (in Chapter 18 of [15]) for the RBF kernel. Therefore, the optimal bm+1

satisfies the following partial derivative

∂< (Ψ− Ψ̂), φ(bm+1) >

∂bm+1
= 0 (45)

Solving (45) iteratively by greedy algorithm, we could get bm+1 (m > 1) as

b(t+1)
m+1 =

∑n
i=1 ziK(xi,b

(t)
m+1)xi − n

∑m
i=1 βiK(bi,b

(t)
m+1)bi∑n

i=1 ziK(xi,b
(t)
m+1)− n

∑m
i=1 βiK(bi,b

(t)
m+1)

(46)

if m = 1, then

b(t+1)
1 =

∑n
i=1 ziK(xi,b

(t)
1 )xi∑n

i=1 ziK(xi,b
(t)
1 )

(47)
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After getting bm+1, the coefficient vector β = [β1, . . . , βm+1]T needs to be re-
optimized

min
βββ

∥∥∥(Ψ− Ψ̂)
∥∥∥

2

(48)

solving (48) could get β as

β =
1
n
K(b̄, b̄)−1K(b̄, x̄)z (49)

Though the above algorithm could get a good approximation of Ψ, it is too
computationally expensive to calculate εMSE since we have to calculate K(x̄, x̄).
In practice, we set the number of basis vectors to a constant N without considering
εMSE anymore. In the end, we summarize the basis vector estimation algorithm
in Algorithm 4.

We note that setting N = 1, δ = 0.01 always works well and the iteration
number for estimating each basis vector is independent of n. For the robustness
of the algorithm, firstly, z 6= 0 due to that the denominator of (47) cannot be
zero. If z = 0, we should restart z to another random vector. Note that z = 0
seldom happens in the proposed BVMMC algorithm. Secondly, we initialize b(1)

m

by averaging some samples randomly chosen from x̄.

Algorithm 4: Estimate Basis Function For RBF Kernel.

1: initialization.

2: Input: z (z 6= 0), x̄, estimating precision δ for each basis vector, RBF kernel
parameter σ, total basis vector number N .

3: add bm

4: initialize b
(1)
m with random value , t ← 1.

5: repeat

6: t ← t + 1.

7: if m = 1

8: Get b
(t+1)
1 from (47).

9: else

10: Get b
(t+1)
m from (46).

11: until ‖b(t+1)
m − b

(t)
m ‖2 ≤ δ

14: β = 1
n
K(b̄, b̄)−1K(b̄, x̄)z.

15: until m = N

16: return
(
β, b̄

)
.
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