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Abstract: Paper summarizes the results in the area of information physics that
is a new progressively developing field of study trying to introduce basics of infor-
mation variables into physics. New parameters, like wave information flow, wave
information/knowledge content or wave information impedance, are first defined
and then represented by wave probabilistic functions. Next, relations between
newly defined parameters are used to compute information power or to build wave
information circuits covering feedbacks, etc.
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1. Introduction

The analysis presented in [8] brings the three main quantities:

• The information quantity of data – basic unit of information [bits]

• The information flow of data Φ – the speed of transmission of basic informa-
tion units [bits per second]

• The information/knowledge content I – the measure of information received
or knowledge’s impact on the studied system [excess events’ number per bit]

By using the above defined basic quantities, we can easily derive the other ones [1].
For example information power PI [2,4,5] can be defined as (we expect the time
dependence of all used quantities):

PI (t) = Φ (t) · I (t) (1)

Because the information flow of data Φ is expressed in [bits per second] and the
information content I in [events per bit] we derive the unit of information power
in [“excess” events per second].
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Information power PI can have direct impact on the perception of time. We
can imagine that our normal time perception is determined by predefined events
per second in our body. In case this number is higher, e.g. due to the received
information, our time perception is more intensive and the inner time clock is
faster. On the other hand, lower number of events per second in our body yields to
perception that inner time is slowing down or that outer time is running quickly.

It is evident that the relation between the information flow of data Φ and
information content I can have a lot of time dependent forms. In accordance
with our understanding of electrical or mechanical analogies, we can define the
information impedance Z expressing the acceptance of received information flow of
data Φ by the studied system in following way:

I (t) = Z (t) · Φ(t) . (2)

Due to time dependence in (2) we can expect three basic types of impedances. The
information resistance R that is time independent and yields into linear dependency
between I (t) and Φ (t):

I (t) = R · Φ(t) . (3)

The information inductance L yielding into the form:

I (t) = L · dΦ(t)
dt

. (4)

And the information capacitance C can be given in the form:

Φ (t) = C · dI (t)
dt

. (5)

The information resistance gives us information that the transmitted information
flow Φ (t) has a direct impact on the studied system with defined attenuation –
received number of bits per second is linearly dependent on the number of events
per received bit on the studied system.

The information inductance says that the time change (increase/decrease) of
information flow Φ (t) in small time interval (acceleration of transmitted bits) is
linearly proportional to number of events per received bit on studied system. On the
other hand, the constant information flow Φ (t) yields into a continually increasing
number of events per bit on studied system.

The methodology defined above, which is able to describe the behavior of some
observed information/knowledge content I, is not necessarily the same forever
[6]. As a means of rejection of obsolete data and capturing changes in informa-
tion/knowledge content I or in information flow Φ, the exponential or general for-
getting [3] could be applied. Actually, data are not rejected but less relevant data
(in a simplified view older data are considered less relevant) will be less weighted.

2. Active and Reactive Information Power

With respect to basic definition of information power PI given in (1) we introduce
the phase parameter ϕ between information flow and content that defines the de-
pendence between these two quantities. In other words, the parameter ϕ yields
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into introduction of active information power:

PIA (t) = Φ (t) · I (t) · cos (ϕ) (6)

or reactive information power, respectively:

PIR (t) = Φ (t) · I (t) · sin (ϕ) . (7)

In more general case, phase parameter can be dependent on time ϕ (t).
Entering phase parameter in (1) brings new interpretation features of informa-

tion power PI. First of all, both active and reactive power can reach positive and
negative values. Positive active power can be interpreted as events which intro-
duce more order in the system. On the other hand, in case of negative power these
events bring more disorderliness into the system (information is withdrawn out of
the system). Active information power for both above mentioned cases yields into
real active events recognized on studied system that can be observed by external
observer.

Reactive information power introduces new dimension into system theory that
includes soft features, such as emotions, feelings, etc., which cannot be explicitly
recognized by external observer. Inner events inside our system can bring some
information which can stimulate creativity or productivity of active information
power if suitably processed. In the same way, the reactive information power can
reach positive and negative values where the positive reactive power represents
something similar to approach to the state of euphoria. The negative reactive
power describes depressed mood.

In analogy to our perception we can listen to music and all received information
is processed in a positive reactive way (we do not make active events). But the
music can stimulate our inner events, which can give us positive benefits. On the
other hand, some information can evoke ill humor.

Maximum benefit can be obtained if we are able to process both active and
reactive information (reasonable and emotional part of received information) and
to achieve the maximum information power – total power given in (1).

It is easy to extend this approach and to define the information power factor
as the ratio of the real information power to total information power.

3. Active and Reactive Information Power in
Quantum Informatics

Wave probabilistic functions represent a deeper structure of information [12] and so
all above introduced parameters should be redefined with respect to this approach.

3.1 Information quantities defined through wave
probabilistic functions

The wave information quantity of data can be expressed through the wave proba-
bilistic function ψ (x, t) [11–14] depending on parameter x and time t. The system
modeling and time evolution of wave probabilistic models were defined in detail in
[3].
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From the information physics point of view the quantity of information in bits
can be measured e.g. by von Neumann entropy [7] as follows:

S (ρ) = −tr (ρ · log2 (ρ)) , (8)

where tr(.) means trace operator and ρ density operator:

ρ (x, t) = |ψ (x, t)|2 . (9)

It measures the amount of uncertainty contained within the density operator taking
into account also wave probabilistic features like e.g. entanglement, bosonic or
fermionic quantum objects, quantization, etc. The operations (8) and (9) transform
wave probabilistic representation into a density operator and through it into a
measure of information quantity.

With the help of such an approach we can define the time derivative of data
wave information function which yields into the wave information flow of data “Φψ”
represented by the wave probabilistic function:

ψφ (Φ, t) = |ψφ (Φ, t)| · ej·νφ(Φ,t) (10)

measured e.g. by von Neumann entropy in [bits per second]:

S (ρφ) = −tr (ρφ · log2 (ρφ)) (11)

ρφ (t) = |ψφ (Φ, t)|2 . (12)

The term wave information/knowledge content Iψ enlarges information/knowledge
content I into the wave probabilistic function:

ψI (I, t) = |ψI (I, t)| · ej·νI(I,t) (13)

interpreted as the number of excess events per bit of received information.
The number of excess events in a studied system can also be measured by

von Neumann entropy [bits of excess events of studied system per bit of received
information]:

S (ρI) = −tr (ρI · log2 (ρI)) (14)

ρI (I, t) = |ψI (I, t)|2 . (15)

From the above analysis it is apparent that von Neumann entropy is just an infor-
mation measure and plays the same role in the theory of wave probabilistic function
as a classical Shannon entropy measure [7]. The wave probabilistic function car-
ries all necessary information and/or application of any measurement results into
loss of complete information. Due to this fact we propose to make all mathemati-
cal operations on the level of wave probabilistic functions (having incorporated all
information inclusive phase factors), and at the end of this operation we can trans-
form the final result into e.g. von Neumann entropy measure to obtain a physically
understandable result [9, 14, 15].
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3.2 Information power defined via wave probabilistic
functions

Let us define two quantities in following way (for the sake of simplicity we suppose
that all quantities are time independent):

ψΦ = αΦ,1 · |Φ1〉+ αΦ,2 · |Φ2〉+ .... + αΦ,N · |ΦN 〉 (16)

ψI = αI,1 · |I1〉+ αI,2 · |I2〉+ · · ·+ αI,N · |IN 〉 , (17)

where Φ1, . . . , ΦN and I1, . . . , IN are possible values of information flow and infor-
mation content, respectively. Complex parameters αΦ,1, . . . , αΦ,N and αI,1, . . . , αI,N

represent wave probabilities taking into account both probability of falling relevance
flow/content value together with their mutual dependences [9].

The information power can be expressed through wave probabilistic functions
as follows:

ψPI = ψΦ ⊗ ψI = αΦ,1 · αI,1 · |Φ1, I1〉+ · · ·+ αΦ,1 · αI,N · |Φ1, IN 〉+ · · ·+
+αΦ,N · αI,1 · |ΦN , I1〉+ · · ·+ αΦ,N · αI,N · |ΦN , IN 〉 , (18)

where symbol ⊗ means Kronecker multiplication [7], each i, j-th component |Φi, Ij〉
represents particular value of information power that characterize the falling/me-
asuring of information flow Φi and information content Ij .

Both values Φi and Ij could be either positive (the information is given into
the system), or negative (information is withdrawn out of the system) or phase ϕ
shifted with respect to (6) and (7). Generally, we can assign to values Φi and Ij

separate phase factor ϕi,j . It means that each possible combination has different
contribution to active and reactive information power.

It is evident that possible different combinations of information flows and con-
tents |Φi, Ij〉, |Φk, Il〉 can achieve the same (similar) information power:

Φi · Ij ≈ Φk · Il ≈ Kr. (19)

We can rewrite these two components of ψPI into one value as follows:

(αΦ,i · αI,j + αΦ,k · αI,l) · |Φi, Ij〉 = βr · |Kr〉 . (20)

It could be seen that interferences of wave probabilities could emerge, and wave
resonances among wave parameters are possible as well. Finally, an information
power in wave probabilistic renormalized form can be expressed:

ψPI = β1 · |K1〉+ β2 · |K2〉+ · · ·+ βr · |Kr〉+ . . . , (21)

where the information power can be computed utilizing von Neumann entropy
[“excess” events per second]:

S (ρPI) = −tr (ρPI · log2 (ρPI)) (22)

in this case we have:
ρPI = |ψPI |2 . (23)
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The active and reactive information power can be computed by using the cosine
and sine parts of information powers |K1〉 , |K2〉 , ... in accordance with (6) and (7).

More generally, we can heuristically assign the criterion function |Ki,j〉 into each
i, j-th component |Φi, Ij〉. Afterwards, we can define the similar equation as (21)
that respects our preference (criterion). This approach yields to the resonance prin-
ciple between received/transmitted information flow and information/knowledge
content with respect to our preferences. It enables to model deep perception and
new soft systems categories for both input/output parameters of each circuit’s
element.

It is supposed that each element of information circuit has possible input/output
information flow Φi and content Ij , as was given in [8]. With respect to this state-
ment we can, therefore, define the input and output information power PIin, P Iout

assigned into this element. Due to resonance on input gate (21) which goes to
increase of input power PIin we can achieve an increase of output information
flow.

3.3 Time-dependent wave probabilistic impedance

We can define the wave information impedance ψZ (Z, t) expressing the acceptance
of received information flow of data Φ by the studied system:

ψI (I, t) = ψZ (Z, t) · ψφ (Φ, t) . (24)

In the same way, equations (2–5) can be rewritten for application of wave proba-
bilistic functions:

The wave information resistance Rψ yields into:

ψI (I, t) = Rψ · ψφ (Φ, t) . (25)

The wave information inductance Lψ yielding into the form:

ψI (I, t) = Lψ · dψφ (Φ, t)
dt

. (26)

And the wave information capacitance Cψ can be given in the form:

ψφ (Φ, t) = Cψ · dψI (I, t)
dt

. (27)

Due to the time dependence of all quantities ψI (I, t) , ψZ (Z, t) , ψφ (Φ, t) we can use
all the instruments known from the theory of electrical circuits – Laplace, Fourier
or z-transform – and rewrite these quantities, for example, in jω-domain in the
case of using Fourier transform F [.] as follows:

ψ̃I (I, jω) = F [ψI (I, t)]
ψ̃Z (Z, jω) = F [ψZ (Z, t)]
ψ̃φ (Φ, jω) = F [ψφ (Φ, t)] . (28)
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Then, the developed equations (27–29) could be expressed in jω-domain:

ψ̃I (I, jω) = ψ̃Z (Z, jω) · ψ̃φ (Φ, jω)

ψ̃I (I, jω) = R · ψ̃φ (Φ, jω)

ψ̃I (I, jω) = jω · L · ψ̃φ (Φ, jω)

ψ̃φ (Φ, jω) = jω · C · ψ̃I (I, jω) . (29)

All the instruments/forms developed for electric circuits and applied in information
physics in [4] could be applied also for wave information circuits.

4. Conclusion

Phase parameters and generally wave probabilistic functions bring into information
physics a lot of new inspiration and open the quantitative way to the study of
complex and, until now, just soft Systems categories, such as wisdom and ethics
(as the highest classes of information).

The analogy can be seen in the application of transistors in electrical circuits
that enables to design amplifiers, filters, etc. Such systems can leave the ampli-
tude spectrum of wave probabilistic functions unchanged but they can significantly
change the phase spectrum and so create links within these components – a prob-
abilistic point of view will be unchanged but phase links can define creative links
like in the human brain.

The wave information physics coming from the theory of wave probabilistic
functions should be extended to others, until now unsolved problems. Like the
principle of self-organization [10], e.g. We could also speak about the Kirchhoff
Law, etc. An information system could be resistant to incorporating new pieces
of information (information flow φ) because this new information turns into an
extension of information content I and directly into more “excess” events per second
on a studied system. The more “excess” events per second, the more energy spent
due to the new piece of information. Self-organization should be caused by a
regulating principle guaranteeing minimal energy spent in a studied system, or
analogically by application of the Law of minimal information.

Our studied system can be described by wave probabilistic functions [9]. In
the same way, system environment should be described with the help of wave
probabilistic functions as well. It is reasonable that between a system and its envi-
ronment a link represented by Kronecker multiplication also enables entanglement,
etc. What happens if we make phase changes in our studied system? Will the
phases of the wave probabilistic model of environment also be changed? We em-
phasize that modules of wave probabilistic models are unchanged. Should system
environments react to phase changes in such a way that a global model (system
plus environment) before and after phase changes remains the same (information
conservation)? Could we measure phase changes of an environment to predict be-
havior of a studied system? There are still more questions than answers but we
believe that wave information physics opens the door to new ideas and approaches.
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