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Abstract: This paper examines the performance of four classifiers for Brain Com-
puter Interface (BCI) systems based on multichannel EEG recordings. The clas-
sifiers are designed to distinguish EEG patterns corresponding to performance of
several mental tasks. The first one is the basic Bayesian classifier (BC) which
exploits only interchannel covariance matrices corresponding to different mental
tasks. The second classifier is also based on Bayesian approach but it takes into
account EEG frequency structure by exploiting interchannel covariance matrices
estimated separately for several frequency bands (Multiband Bayesian Classifier,
MBBC). The third one is based on the method of Multiclass Common Spatial Pat-
terns (MSCP) exploiting only interchannel covariance matrices as BC. The fourth
one is based on the Common Tensor Discriminant Analysis (CTDA), which is a
generalization of MCSP, taking EEG frequency structure into account. The MBBC
and CTDA classifiers are shown to perform significantly better than the two other
methods. Computational complexity of the four methods is estimated. It is shown
that for all classifiers the increase in the classifying quality is always accompanied
by a significant increase of computational complexity.
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1. Introduction

A brain-computer interface (BCI) provides a direct functional interaction between
a human brain and an external device. BCI consists of a brain signal acquisition
system, data processing software for feature extraction and pattern classification,
and a system to transfer commands to an external device and, thus, providing
feedback to an operator. Many kinds of signals (from electromagnetic to metabolic
[21, 34, 33, 14]) could be used in BCI. However, the most prevalent BCI systems
are based on the discrimination of EEG patterns related to execution of different
mental tasks [22, 18, 20]. This approach is justified by the presence of correlation
between brain signal features and tasks performed, revealed by basic research [37,
22, 25, 27, 28]. Implementation of such systems is encouraged by emergence of
low-cost commercial EEG devices (e.g. Emotiv EPOC EEG headset [13]). The
proliferation of these devices on the consumer market has been accelerated by the
ability to utilize BCI for rehabilitation of patients with different motor disabilities
(see [27, 23]) and by a growing interest in using BCI for gaming and other consumer
applications [24, 15, 10].

One crucial part of a BCI system is the EEG pattern classifier. The classifier
is trained to distinguish between EEG patterns related to performance of differ-
ent mental tasks. Execution of each task causes a certain command being sent
to an external device, allowing the operator to control it by voluntarily switching
between different tasks. If commands sent to the external device trigger different
movements, then psychologically compatible mental states are imaginary move-
ments of different extremities. For example, when a subject controls a vehicle or a
wheelchair, he can easily associate right hand movement with a right turn of the
device. Moreover, mental states related to imaginary movements of extremities are
clearly identified by corresponding EEG patterns (synchronization and desynchro-
nization reactions of the mu rhythm, [1, 29]), as demonstrated in successful BCI
projects, such as Graz [27, 28, 26] and Berlin [6] BCI. However, potential applica-
tions of BCI extend beyond motion control, including controlling home appliances,
selecting contacts in a phone address book, or web search engine manipulation.
Such tasks are more naturally accomplished by controlling the BCI with voluntary
generation of corresponding visual images. Recently we found that BCI classifier
is able to distinguish not only EEG patterns corresponding to motor imagery but
also to visual imagery [8].

There are many approaches to designing a BCI classifier [3]. One of the most
efficient classifiers is based on the method of Common Spatial Patters (CSP) [30],
allowing classification of states of two classes. In a variety of combinations with
other methods it is widely used in BCI systems [4]. Later, CSP method was gener-
alized for classifying more than two classes of mental states(Multiple-class Common
Spatial Patterns, MCSP) [12, 17]. Both CSP and MCSP are based on multichannel
EEG covariance matrices for different mental states ignoring the frequency signal
structure. Recently MCSP was generalized to take it into account (Common Ten-
sor Discriminant Analysis, CTDA) [38]. The method CTDA demonstrates very
high efficacy in EEG pattern classification but it is computationally expensive.
We showed [8] that the simplest Bayesian classifier (BC) based on EEG covaria-
tion matrices (as CSP and MCSP) also provides classification accuracy comparable
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with CSP and MCSP. Since accounting of EEG frequency structure in CTDA sig-
nificantly increased classification accuracy, when compared with MCSP, it was a
challenge for us to modify BC to account this structure. We called the modified
classifier Multiband Bayesian classifier (MBBC). The goal of the present study is
to compare classification accuracy and computational cost of four classifiers: BC,
MCSP, MBBC and CTDA. The first two classifiers ignore EEG frequency structure
while the latter two take it into account.

To estimate classification accuracy, we used three EEG data sets. The first two
were obtained in our experiments with motor (MTR) and visual imagery (VIS)
[7, 8]. The third EEG data set (BCIC) contains EEG recordings corresponding to
motor imagery. It was provided by the organizers of BCI Competition IV (data set
2A, [4]). Different data sets were used to check whether the experimental paradigm
and data acquisition technique have influence on results of classifier comparison.

2. Description of the Data Sets

2.1 BCIC data set

The data set was provided by the Institute for Knowledge Discovery (Laboratory of
Brain Computer Interfaces), Graz University of Technology for BCI Competition
IV in 2008 [4]. The data correspond to imagining of 4 different movements: of left
hand, right hand, foot, and tongue. BCIC contains 22 electrode EEG recordings
of two sessions for 9 subjects. Each session is comprised of 6 runs of movement
mental imagery with 48 trials in each run (12 trials for each mental task). During
every trial subjects had to perform a particular mental task for 4 sec. Totally each
mental task had to be performed for 288 sec. A detailed description of experiment
paradigm is available [4].

2.2 MTR data set

MTR data set contains EEG recordings for 7 male subjects, 23-30 years of age.
EEG was recorded by 24 ActiCap (Munich, Germany) electrodes (Fz, F3, F4, Fcz,
Fc3, Fc4, Fc7, Fc8, Cz, C3, C4, Cpz, Cp3, Cp4, P3, P4, Po3, Po4, Po7, Po8, Oz,
O1, O2), Afz was used as reference. The data were digitized by 16 bit ADC NBL640
(NeuroBioLab, Russia) with sampling frequency 200 Hz and filtered within 1-30
Hz passband.

Subject was sitting in a comfortable chair, one meter from a 17” monitor, and
was instructed to fix his gaze on a motionless circle (1 cm in diameter) in the middle
of the screen. Four gray markers were placed around the circle to indicate the
mental task to be performed. The change of the marker color into green signaled
the subject to perform the corresponding mental task. Left and right markers
corresponded to left and right hand movement imagining respectively. The bottom
marker corresponded to leg movement imagining and the upper one corresponded
to relaxation. Each command to imagine a movement was displayed for 15 seconds
and was preceded by a relaxation period of 5 seconds. Each clue was preceded by
a 2-second warning. Three such pairs “relaxation - motor imagination” presented
in random order constituted a block, two blocks constituted a session. There were
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two sessions for each subject, training and testing. During the training session
classifier was switched off and recording was used only for its learning. During the
following testing session classifier was switched on and the result of classification
was presented to a subject by color of the central circle. The circle became green
if the result coincided with the instruction, and red in the opposite case. During
the instruction to relax the presentation of classification result was switched off
not to attract the subject‘s attention. The second, testing, session was designed to
provide subjects with the output of the BCI classifier in real time to enhance their
efforts to imagine movements.

On the whole, each instruction was presented for 30 sec during each session.

2.3 VIS data set

VIS data set contains EEG recordings for 7 male subjects, 24-31 years of age.
The data correspond to performance of three mental tasks: to imagine a house, a
face and to relax. At the beginning of the study each subject was presented with
two types of pictures: faces (10 pictures from the Yale Face Database B [16] and
houses (10 pictures from the Microsoft Research Cambridge Object Recognition
Data Base, version 1 [32], adjusted to black-and-white). Subject selected one face
and one house as samples to imagine during the experiment.

The experimental setting for each session of VIS data was very similar to that
used for MTR data set with 4 exceptions. First, the experiment with each subject
was conducted on 4 consecutive days, two sessions (training and testing) on each
day. Second, there were not four but three instructions. Third, during the first
three days of the study, EEG was recorded using the Emotiv Systems Inc. (San
Francisco, USA) EPOC 16-electrode cap. Fourth, each series contained 3 blocks,
each block contained two instruction for each visual image, and each instruction
to relax lasted 7 sec. Thus, in each training and testing series, each instruction to
imagine a picture was presented for 90 sec and to relax 84 sec. On the 4th day of
the experiment, EEG was recorded using the same system as for MTR data set.
Only data of the last, fourth, day were used for classifier comparing.

3. EEG Pattern Classification

3.1 Bayesian approach

Suppose that there are L different mental tasks to be distinguished and probabilities
of each task to be performed are equal to 1/L. Let also distribution of each mental
task EEG signal recorded by Nc electrodes be Gaussian with zero mean. Also, let
Ci, a covariance matrix of the signal corresponding to execution of the i-th mental
task (i = 1, . . . , L), be non-singular. Then, probability to obtain EEG signal X(t)
under the condition that the signal corresponds to performing the i-th mental
task is P (X(t) | i) ∝ e−

Vi(t)
2 , where Vi(t) = XT(t)C−1

i X(t) + ln (det(Ci)), and
X(t) is a column vector of dimensionality Nc. Following the Bayesian approach,
the maximum value of P (X(t) | i) over all i determines the class to which X(t)
belongs. Hence, the signal X(t) is considered to correspond to execution of the
k-th mental task as soon as k = argmini {Vi(t)}. The equality XT(t)C−1

i X(t) =

104



Frolov A. et al.: Comparison of four BCI method performance

trace
(
C−1

i X(t)XT(t)
)

implies that

Vi(t) = trace
(
C−1

i X(t)XT(t)
)

+ ln (det(Ci)) . (1)

In practice, all Vi(t) are rather variable so it is more beneficial to split signal
into epochs and compute average value 〈Vi〉 for each EEG epoch to be classified,
using equation (1)

〈Vi〉 = trace
(
CC−1

i

)
+ ln (det(Ci)) , (2)

where C denotes an epoch data covariance matrix estimated as
〈
XXT

〉
. Therefore,

to perform the classifier training it is sufficient to compute the covariance matrices
corresponding to each mental task. It makes BC computationally inexpensive.
In our experience reasonable classification accuracy is achieved when epochs of
1 second length are used for 〈Vi〉 computation. This is a tradeoff between time
resolution and classification accuracy.

3.2 Multi-band Bayesian approach

A natural way to take EEG frequency structure into consideration is to filter EEG
within several non-overlapping passbands, perform separate classification of the
filtered signals, and combine the results obtained for differed bands. This technique
can be rather effective, as suggested by results of the BCI Competition IV [4], see
also [2] for description of the classifier which was the most effective on the dataset
2a. The Bayesian approach can also be generalized in such a way so that Bayesian
classification is performed for signals filtered in different passbands. More detailed
description is as follows.

Let Xb be an epoch of EEG signal filtered within the b-th frequency band. Then,
as for BC (see (2)), probability of Xb to belong to the i-th class is determined by

〈Vb,i〉 = trace
(
CbC−1

b,i

)
+ ln (det(Cb,i)) ,

where Cb,i is the i-th class covariance matrix of EEG filtered within the b-th pass-
band and Cb =

〈
XbXT

b

〉
. Under the assumption that signals Xb are mutually

independent for different bands, the probability of signal X to correspond to the
i-th mental task is

P (X | i) =
∏

b

P (Xb | i) ∝ exp

(
−1

2

∑

b

〈Vb,i〉
)

.

Hence, the epoch can be attributed to the class with the number k = argmini

{〈
Ṽi

〉}
,

where
〈
Ṽi

〉
, i = 1, . . . , L, are computed as

〈
Ṽi

〉
=

∑

b

[
trace

(
C−1

b,i Cb

)
+ ln (det(Cb,i))

]
.
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3.3 Multi-class Common Spatial Patterns

Classification method based on MCSP can be described as follows. First, covari-
ance matrices Ci are estimated over multichannel EEG data recorded during the
classifier training. Then, matrices Wi are sought to meet the following require-
ments

WiCiWT
i = Di

WiC̃WT
i = I, (3)

where C̃ = C1 + · · ·+ CL, I is the identity matrix, and Di are diagonal matrices.
The problem of obtaining the matrices Wi has an explicit solution. Indeed, if
C̃ = UDUT is the singular value decomposition (SVD) of the matrix C̃, with U
being a unitary matrix and D being a diagonal matrix, then it is easy to prove
that Wi = UiD− 1

2 U with Ui being unitary matrix from SVD decomposition
D− 1

2 UCiUTD− 1
2 = UiDiUT

i .
After the matrices Wi are found, signal corresponding to a certain state is

segmented into epochs and for each epoch X vectors νi, i = 1, . . . , L, are com-
puted by estimating variances of all components of vectors ξi = WiX, i.e. νi =
diag

(
Wi

〈
XXT

〉
WT

i

)
. Then, X is mapped onto a feature vector ln(ν), where ν

is concatenation of all vectors νi and ln(·) means component-wise log transform.
Classification of the feature vectors can be performed using any multiclass clas-

sifier. In our experiments, we used multiclass SVM algorithm [11] with general
radial basis kernel γ = 0.5 and Euclidian metric for feature vectors classification.

When only two mental states are classified, MCSP is reduced to CSP. In this
case, W1 = W2 = W, ξ1 = ξ2 = ξ and

〈
ξξT

〉
is a diagonal matrix in both states

(D1 in the 1st state and D2 in the 2nd state). If a particular component of ξ
has low variance for a certain state, then this component has high variance for
the other state and vice versa, since D1 + D2 = I. It implies large difference in
feature vector components for different states, which underlines the possibility of
state discrimination. Similarly, when MCSP is applied to classify more than two
states, for each state i there usually exist components of ξi with low variance in
the state. This can explain the efficacy of MCSP.

3.4 Common Tensor Discriminant Analysis

MCSP method can be generalized in order to account for EEG frequency structure,
as proposed in [38]. EEG is represented as a tensor X ∈ RNc×Nf×Nt , where Nc is
the number of EEG channels, Nf is the number of frequency steps, and Nt is the
number of samples. An appropriate way to obtain such representation is to use
wavelet transform, in which case Nf equals the number of wavelet scales.

In tensor presentation covariance matrix C becomes a covariance tensor R ∈
RNc×Nf×Nf×Nc which is defined as contraction of outer product (1/Nt)X ◦ X on
the last index which corresponds to time.

Let Xi, i = 1, . . . , L be EEG tensors of L classes. The goal of CTDA is to find
matrices Wi,1 projecting Xi on the 1st mode and Wi,2 projecting Xi on the 2nd

mode, so that transformed tensors Zi = Xi ×1 WT
1 ×2 WT

2 would have diagonal

106



Frolov A. et al.: Comparison of four BCI method performance

covariance tensors and sum of the covariance tensors would also be diagonal with
all non-zero elements equal to 1:

Ri ×1 WT
i,1 ×2 WT

i,2 ×3 WT
i,2 ×4 WT

i,1 = Di(
L∑

i=1

Ri

)
×1 WT

i,1 ×2 WT
i,2 ×3 WT

i,2 ×4 WT
i,1 = I, (4)

where Ri is covariance tensors of Xi, Di = Di,1 ◦Di,2, and I = Ii,1 ◦ Ii,2 with Di,k

being diagonal and Ii,k being identity matrices. In matrix representation of EEG
data, i.e. when EEG recording is an Nc ×Nt matrix, (4) is reduced to (3) and the
problem of finding projection matrices becomes equivalent to that described in the
previous subsection.

After the projection matrices are computed, based on training data EEG epoch
tensor X to be classified is transformed as Z = X ×1 WT

1 ×2 WT
2 and feature vector

ν = ln
(
diag

(
mat3

(Z)mat3(Z)T
)))

is obtained. The feature vectors are classified
in the same way as when MCSP method is used.

Note that in contrast to MBBC the CTDA accounts for correlations between
EEG rhythms of different frequencies which are reported to be present in EEG
signals [31].

4. Classification Quality Evaluation

To compare the classifiers, off-line analysis of both training and testing session
data was performed using MATLAB (the Mathworks Inc., Natick, MA, USA).
Additional filtering within 5-30 Hz passband was performed prior to BC and MCSP
classification, and within multiple passbands (4-8, 8-12, 12-16, 16-20, 20-24, and 24-
28 Hz) prior to MBBC classification. The data were converted into tensor of order 3
using continuous wavelet transform (CWT) prior to CTDA classification. Order 5
Tchebychev Type 2 filters (MATLAB Filter Design Toolbox) were used for filtering.
Continuous wavelet transform was performed using MATLAB Wavelet Toolbox
cwt function with Morlet wavelet and 26 scales corresponding to frequencies from
5 to 30 Hz. CWT with Morlet wavelet is reported to be an effective technique of
band-power extraction in BCI technology [9].

The preprocessed EEG recordings corresponding to execution of mental tasks
were then split into epochs of 1-second length. Then, 70% of epochs corresponding
to each state were chosen randomly for classifier training, and the remaining 30%
of epochs were used to test classifier. 100 such classification trials were made.
Averaging over all classification trials resulted in L×L confusion matrix P = (pij)
for each classifier. Here pij is an estimate of probability to recognize the i-th mental
task in case the instruction is to perform the j-th mental task.

We chose the mean probability of correct classification p, mutual information g
between states recognized and instructions presented, and Cohen’s κ as indices of
classification efficacy. Given the confusion matrix P, these indices can be calculated
as follows:
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p =
1
L

∑

i

pii,

g = −
∑

i,j

pijp0j log2 (pij/pi0) , (5)

κ =
∑

i piip0i −
∑

i [p0ipi0]
1−∑

i [p0ipi0]
,

where p0j is probability of the j-th instruction to be presented and pi0 =
∑

j pijp0j

is probability of the i-th mental state to be recognized. The probabilities p0j were
estimated by dividing the number of epochs corresponding to the j-th state by the
number of all epochs. For all datasets considered p0j were equal or very close to
1/L. This is in agreement with our a priori supposition that all BCI commands
are equally needed.

The better classifier performs the more confusion matrix is close to identity
matrix. In case L states are classified perfectly p = 1, g = log2 L, and κ = 1. If
classification is random, i.e. pij = pi0 for all j, then p = 1/L, g = 0, and κ = 0.

Index p has an advantage of being evidently interpreted as the percentage of
correct classification. Its disadvantage is that it does not depend on non-diagonal
elements of confusion matrix and hence does not account for distribution of errors.
That is why information index g was used together with p. Cohen’s κ was chosen
to be presented because this index is widely used to estimate classification quality
[4].

When all probabilities of correct classification are equal, i.e. pii = p for all i,
and all probabilities of incorrect classification are equal, i.e. pij = (1− p)/(L− 1)
for all i 6= j, the mutual information between instructions presented and the states
classified can be obtained as:

g = log2 L + p log2 p + (1− p) log2

(
1− p

L− 1

)
. (6)

Based on [35], (6) is often used to estimate BCI efficacy ([5], [19] [36]). But if the
corresponding assumptions do not hold true, the value of g, calculated according
to (6), is lower than the actual mutual information. In this study, we used the
general formula (5).

5. Results

MTR data set. Tab. I exemplifies confusion matrix obtained as a result of
Bayesian classification of one subject testing session data. The matrix is diago-
nally dominant, which means prevalence of correct classifier responses. For the
presented confusion matrix p = 0.79, g = 0.99, and κ = 0.71. Note that p = 0.25
for random classification of 4 states.

Fig. 1 shows p, g, and κ values computed after classification of all subjects‘
training (bar graphs A, B, C) and testing (bar graphs D, E, F) session data using
each method. Maximum values of indices presented over all subjects and sessions

108



Frolov A. et al.: Comparison of four BCI method performance

Instructions presented
1 2 3 4

States recognized

1 0.72 0.00 0.00 0.02
2 0.09 0.77 0.04 0.07
3 0.09 0.08 0.84 0.06
4 0.11 0.15 0.12 0.85

Tab. I Confusion matrices obtained as a result of BC classification of one subject
testing session data.

are p = 0.79, g = 0.99, and κ = 0.71 for BC, p = 0.78, g = 0.92, and κ = 0.71
for MCSP, p = 0.87, g = 1.3, and κ = 0.83 for MBBC, p = 0.77, g = 0.92, and
κ = 0.69 for CTDA.

Although Fig. 1 demonstrates large difference in subject performance, all indices
exceed values characterizing random classification. Classification accuracy of BC
and MCSP methods, both ignoring EEG frequency structure, differs just slightly.
Although on average MCSP occurred to perform 15% better in terms of κ, the
difference is insignificant in terms of p and g indices (one sample t-test, P > 0.06 for
both indices). Accounting for EEG frequency structure has increased classification
quality significantly. MBBC performs much better than BC (one sample t-test,
P < 10−5 for all indices) and CTDA is better than MCSP (one sample t-test,
P < 10−5), moreover, CTDA has shown better performance than a MBBC (one
sample t-test, P < 0.02 for all quality indices). Despite maximum values of quality
indices are lower for CTDA, in average its classification accuracy is much higher
than for other methods, as shown in Tabs. II, III, and IV.
VIS data set. Relations between methods, revealed by VIS data set analysis, are
similar to those observed for MTR data set, as suggested by Fig. 2 and Tabs. II,
III, IV. Again, MCSP performed slightly better than BC. But for VIS data the
difference in performance is significant in terms of all indices (one sample t-test,
P < 0.02 for all indices). MBBC performed better than BC (one sample t-test,
P < 10−5 for all indices) and CTDA performed better than MCSP (one sample
t-test, P < 10−4 for all indices). CTDA classification accuracy was also the best
in average.

Maximum values of indices presented over all subjects and sessions are p = 0.62,
g = 0.31, and κ = 0.44 for BC, p = 0.66, g = 0.41, and κ = 0.51 for MCSP,
p = 0.67, g = 0.41, and κ = 0.52 for MBBC, p = 0.79, g = 0.63, and κ = 0.68 for
CTDA. Note that p = 0.33 for random classification of three states.
BCIC data set. The results of BCIC data analysis are shown in Fig. 3 and
Tabs. II, III, IV. Similarly to MTR and VIS data sets MCSP has shown better
performance than BC (one sample t-test, P < 0.001 for all indices). MBBC per-
formed better than BC (one sample t-test, P < 10−4 for all indices) and CTDA
performed better than MCSP (one sample t-test, P < 0.002 for all indices).
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Fig. 1 Indices p, g and κ obtained as a result of MTR training and testing sessions
classification for all subjects, using all methods (1 — BC, 2 — MCSP, 3 — MBBC,
4 — CTDA). Note that graphs A and D represent exceeding of p over level of

random classification.

BC MCSP MBBC CTDA
1a 0.50 ± 0.05 0.52 ± 0.05 0.61 ± 0.06 0.70 ± 0.02
1b 0.45 ± 0.03 0.49 ± 0.03 0.59 ± 0.02 0.68 ± 0.01
2a 0.50 ± 0.01 0.52 ± 0.02 0.56 ± 0.02 0.64 ± 0.02
2b 0.52 ± 0.02 0.57 ± 0.02 0.60 ± 0.02 0.71 ± 0.02
3a 0.47 ± 0.04 0.51 ± 0.04 0.54 ± 0.04 0.63 ± 0.02
3b 0.46 ± 0.04 0.49 ± 0.04 0.55 ± 0.04 0.64 ± 0.03

Tab. II Average values of p index computed after processing of different data sets:
MTR training session (1a), MTR testing session (1b), VIS training session (2a),

VIS testing session (2b), two BCIC sessions (3a and 3b).

6. Discussion

Figs. 1, 2, and 3 show that three quality indices p, g, and κ are in good agreement,
particularly, high value of any index for some subject implies that values of other
two indices are also high for this subject. Generally, these indices do not duplicate
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Fig. 2 Indices p, g and κ obtained as a result of VIS training and testing sessions
classification for all subjects, using all methods (1 — BC, 2 — MCSP, 3 — MBBC,
4 — CTDA). Note that graphs A and D represent exceeding of p over level of

random classification.

BC MCSP MBBC CTDA
1a 0.35 ± 0.12 0.33 ± 0.11 0.55 ± 0.14 0.70 ± 0.06
1b 0.23 ± 0.05 0.27 ± 0.06 0.48 ± 0.04 0.63 ± 0.03
2a 0.12 ± 0.01 0.15 ± 0.02 0.21 ± 0.02 0.29 ± 0.03
2b 0.16 ± 0.03 0.21 ± 0.04 0.26 ± 0.03 0.43 ± 0.04
3a 0.30 ± 0.05 0.35 ± 0.06 0.38 ± 0.05 0.53 ± 0.07
3b 0.28 ± 0.06 0.32 ± 0.06 0.40 ± 0.05 0.50 ± 0.05

Tab. III Average values of g index computed after processing of different data sets:
MTR training session (1a), MTR testing session (1b), VIS training session (2a),

VIS testing session (2b), two BCIC sessions (3a and 3b).

but complement each other. Index p has the most evident interpretation but it
ignores classification error distribution. In contrast, indices g and κ depend on
error distribution. Index κ evaluates only classification quality reaching 1 in case of
perfect classification independently of number of states classified while information
index g evaluates information gain provided by BCI reaching log2 L in case L states
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Fig. 3 Indices p, g and κ obtained as a result of BCIC training and testing sessions
classification for all subjects, using all methods (1 — BC, 2 — MCSP, 3 — MBBC,
4 — CTDA). Note that graphs A and D represent exceeding of p over level of

random classification.

BC MCSP MBBC CTDA
1a 0.33 ± 0.07 0.37 ± 0.06 0.48 ± 0.07 0.60 ± 0.02
1b 0.26 ± 0.05 0.33 ± 0.05 0.46 ± 0.02 0.58 ± 0.02
2a 0.24 ± 0.01 0.29 ± 0.03 0.35 ± 0.02 0.46 ± 0.02
2b 0.28 ± 0.03 0.37 ± 0.04 0.40 ± 0.03 0.56 ± 0.03
3a 0.25 ± 0.07 0.31 ± 0.08 0.35 ± 0.07 0.50 ± 0.04
3b 0.25 ± 0.07 0.28 ± 0.08 0.36 ± 0.08 0.51 ± 0.04

Tab. IV Average values of κ index computed after processing of different data sets:
MTR training session (1a), MTR testing session (1b), VIS training session (2a),

VIS testing session (2b), two BCIC sessions (3a and 3b).

are classified perfectly. Therefore, information index g is an appropriate measure for
comparing performance of brain-computer interfaces based on different principles
(e.g. BCI based on voluntary switching of different mental states and BCI based
on P300).
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Classifier comparison yielded quite similar results for all data sets. BC and
MCSP classifiers based solely on interchannel covariance are shown to be compara-
ble in performance while loosing to MBBC and CTDA classifiers which additionally
account for EEG frequency structure. Although for MTR data set maximal quality
of performance is provided by MBBC, CTDA based classifier is shown to provide
the best classification accuracy on average over subjects for all data set. One expla-
nation for CTDA superiority might be that it accounts for cross-band correlations
which are reported to be present in EEG [31].

In conclusion, it is interesting to compare computational costs of the classifiers.
Computational cost was evaluated by time spent on EEG preprocessing, classi-
fier training, and classifier testing. Evaluation was performed using one subject’s
MTR training session data. Preprocessing was done as described in Section 4. A
single classification trial was made with all data used both to train and to test the
classifiers. Results of evaluation obtained on PC, Intel Core 2 Duo T9300 CPU
2.50 GHz, are shown in Tab. V along with kappa averaged over all subjects and
datasets.

κ tpre, sec ttrn, sec ttst, sec
BC 0.29 0.10 0.04 0.07

MCSP 0.34 0.10 0.48 0.06
MBBC 0.45 0.57 0.17 0.24
CTDA 0.55 0.61 50.43 21.39

Tab. V Comparison of execution time for different classification methods and dif-
ferent classification steps: preprocessing(tpre), classifier training(ttrn), and classi-

fier testing (ttst).

In most cases higher classification accuracy demands more execution time as
one could expect. Surprising is that computationally inexpensive basic Bayesian
classifier showed accuracy comparable with that of much more sophisticated clas-
sifiers.

Acknowledgement

The work was supported in part by program of the Presidium of RAS “Basic
research for medicine” and by the projects MSMT 1M0567, GA CR 201/05/0079,
GA CR P202/10/02 and by the IRP ICS v. v. i. AS CR AV0Z10300504.

References

[1] Allison B., Brunner C., Kaiser V., Muller-Putz G., Neuper C., et al.: Toward a hybrid brain-
computer interface based on imagined movement and visual attention. Journal of Neural
Engineering, 7, 2010, 026007.

[2] Ang K. K., Chin Z. Y., Zhang H., Guan C.: Filter Bank Common Spatial Patterns (FBCSP)
in Brain-Computer Interface. Proceedings of the IEEE International Joint Conference on
Neural Networks, 2008, pp. 2391-2398.

113



Neural Network World 2/11, 101-115

[3] Bashashati A., Fatourechi M., Ward R., Birch G.: A survey of signal processing algorithms
in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering,
4, 2007, R32.

[4] BCI competition IV. http://www.bbci.de/competition/

[5] Besserve M., Jerbi K., Laurent F., Baillet S., Martinerie J., et al.: Classification methods
for ongoing EEG and MEG signals. Biological Research, 40, 2007, pp. 415-437.

[6] Blankertz B., Dornhege G., Krauledat M., Muller K., Curio G.: The non-invasive Berlin
Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects.
NeuroImage, 37 2007, pp. 539-550.

[7] Bobrov P. D., Korshakov A. V., Roschin V. Y., Frolov A. A.: Investigation of Bayesian
Approach in Motor-Base BCI Implementation. 10-th International Conference on Pattern
Recognition and Image Analysis: New Information Technologies, 2010.

[8] Bobrov P., Frolov A., Cantor C., Fedulova I., Bakhnyan M., Zhavoronkov A.: Brain-computer
interface based on generation of visual images Plos-Biology (in press).

[9] Brodu N., Lotte F., Lecuyer A.: Comparative Study of Band-Power Extracyion Techniques
for Motor Imagery Classification, IEEE Symposium on Computational Intellignce, Codnitive
Algorithms, Mind and Brain, 2011.

[10] Campbell A., Choudhury T., Hu S., Lu H., Mukerjee M., et al.: NeuroPhone: brain-mobile
phone interface using a wireless EEG headset, ACM, 2010, pp. 3-8.

[11] Crammer K., Singer Y.: On the Algorithmic Implementation of Multiclass Kernel-based
Vector Machines, Journal of Machine Learning Research, 2, 2004, pp. 265-292.

[12] Dornhege G., Blankertz B., Curio G., Muller K.: Increase information transfer rates in BCI
by CSP extension to multi-class. Advances in Neural Information Processing Systems, 16,
2004, pp. 733-740.

[13] Emotiv Systems. Emotiv – brain computer interface technology. http://www.emotiv.com

[14] Faber J., Pekny J., Pieknik R., Tichy T., Faber V., Bouchner P., Novak M.: Simultaneous
recording of electric and methabolic brain activity. Neural Network World, 20, 4, 2010, pp.
539-557.

[15] Finke A., Lenhardt A., Ritter H.: The MindGame: A P300-based brain-computer interface
game. Neural Networks, 22, 2009, pp. 1329-1333.

[16] Georghiades A., Belhumeur P., Kriegman D.: From few to many: Illumination cone models
for face recognition under variable lighting and pose. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 23, 2002, pp. 643-660.

[17] Grosse-Wentrup M., Buss M.: Multiclass common spatial patterns and information theoretic
feature extraction. Biomedical Engineering, IEEE Transactions on, 55, 2008, pp. 1991-2000.

[18] Haynes J., Rees G.: Decoding mental states from brain activity in humans. Nature Reviews
Neuroscience, 7, 2006, pp. 523-534.

[19] Krepki R., Curio G., Blankertz B., Muller K.: Berlin Brain-Computer Interface – The HCI
communication channel for discovery. International Journal of Human-Computer Studies,
65, 2007, pp. 460-477.

[20] Leuthardt E., Schalk G., Roland J., Rouse A., Moran D.: Evolution of brain-computer
interfaces: going beyond classic motor physiology. Neurosurgical Focus, 27, 2009, E4.

[21] Mellinger J., Schalk G., Braun C., Preissl H., Rosenstiel W., Birbaumer N., Kubler A.: An
MEG-based brain-computer interface (BCI). Neuroimage, 36, 2007, pp. 581-593.

[22] Millan J., Mourino J., Marciani M., Babiloni F., Topani F., et al.: Adaptive brain interfaces
for physically-disabled people, Citeseer, 1998, pp. 2008-2011.

[23] Millan J., Rupp R., Muller-Putz G., Murray-Smith R., Giugliemma C., et al.: Combin-
ing Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.
Frontiers in Neuroscience, 4, 2010.

[24] Nijholt A.: BCI for games: A ‘state of the art’ survey. Entertainment Computing-ICEC,
2008, pp. 225-228.

114



Frolov A. et al.: Comparison of four BCI method performance

[25] Nikolaev A., Ivanitskii G., Ivanitskii A.: Reproducible EEG alpha-patterns in psychological
task solving. Human Physiology, 24, 1998, pp. 261-268.

[26] Neuper C., Scherer R., Wriessnegger S., Pfurtscheller G.: Motor imagery and action observa-
tion: modulation of sensorimotor brain rhythms during mental control of a brain-computer
interface. Clinical Neurophysiology, 120, 2009, pp. 239-247.

[27] Pfurtscheller G., Flotzinger D., Kalcher J.: Brain-computer Interface – a new communication
device for handicapped persons. Journal of Microcomputer Applications, 16, 1993, pp. 293-
299.

[28] Pfurtscheller G., Neuper C., Flotzinger D., Pregenzer M.: EEG-based discrimination be-
tween imagination of right and left hand movement. Electroencephalography and Clinical
Neurophysiology, 103, 1997, pp. 642-651.

[29] Pfurtscheller G., Brunner C., Schlogl A., Lopes da Silva F.: Mu rhythm (de) synchronization
and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31, 2006,
pp. 153-159.

[30] Ramoser H., Muller-Gerking J., Pfurtscheller G.: Optimal spatial filtering of single trial
EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering,
8, 2000, pp. 441-446.

[31] Schanze T., Eckhorn R.: Phase correlation among rhythms present at different frequencies:
spectral methods, application to microelectrode recordings from visual cortex, and functional
implications. Int. J. Neurophysiol., 26, 1997, pp. 171-189.

[32] Shotton J., Winn J. M., Rother C., Criminisi A.: Texton-Boost: Joint appearance, shape
and context modeling for multiclass object recognition and segmentation. In Proceedings of
the European conference on computer vision, 2006, pp. 1-15.

[33] Sitaram R., Zhang H., Guan C., Thulasidas M., Hoshi Y., Ishikawa A., Shimizu K., Bir-
baumer N.: Temporal classification of multichannel near-infrared spectroscopy signals of
motor imagery for developing a brain-computer interface. NeuroImage 34, 4, 2007, pp. 1416-
1427.

[34] Weiskopf N., Veit R., Erb M., Mathiak K., Grodd W., Goebel R., Birbaumer N.: Physiolog-
ical self-regulation of regional brain activity using real-time functional magnetic resonance
imaging (fMRI): methodology and exemplary data. Neuroimage, 19, 2003, pp. 577-586.

[35] Wolpaw J., Birbaumer N., Heetderks W., McFarland D., Peckham P., et al.: Brain-computer
interface technology: a review of the first international meeting. IEEE Transactions on Re-
habilitation Engineering, 8, 2000, pp. 164-173.

[36] Wolpaw J., Birbaumer N., McFarland D., Pfurtscheller G., Vaughan T.: Brain-computer
interfaces for communication and control. Clinical Neurophysiology, 113, 2002, pp. 767-791.

[37] Wolpaw J., McFarland D.: Control of a two-dimensional movement signal by a noninvasive
brain-computer interface in humans. Proceedings of the National Academy of Sciences of the
United States of America, 101, 2004, pp. 17849-17854.

[38] Zhao Q., Zhang L., Cichocki A.: Multilinear generalization of Common Spatial Pattern,
IEEE, 2009, pp. 525-528.

115



116




