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Abstract: In this short note, we introduce a new architecture for spiking percep-
tron: The actual output is a linear combination of the firing time of the perceptron
and the spiking intensity (the gradient of the state function) at the firing time.
It is shown by numerical experiments that this novel spiking perceptron can solve
the XOR problem, while a classical spiking neuron usually needs a hidden layer to
solve the XOR problem.
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1. Introduction

Spiking neural networks have been used as a brain-like tool by neuroscientists for
practical applications [1, 2], such as auto-associator, pattern-association, classifi-
cation and clustering. Formally, a spiking perceptron receives a set of spikes with
firing times and fires if the state variable crosses a threshold [3]. In the existing
literature, the output of the spiking perceptron is usually taken as the firing time,
and the target of training is to learn a set of target firing times for a set of train-
ing samples. The XOR classification problem is a well-known benchmark problem
for testing the capacity of a certain kind of neural network. It has been shown
that a hidden layer is usually included in the spiking perceptron for solving the
XOR problem [1, 4, 5]. We recall that a classical feedforward perceptron without
a hidden layer, of which the output is the value of a Sigmoid function at the inner
product of the weight vector and the input vector, cannot solve the XOR problem
either. However, we note that a spiking perceptron obtains its output with much
more effort than a classical feedforward perceptron, in that for a given input (a
set of spikes), the spiking perceptron has to go through a sequence of temporary
outputs by increasing the time parameter until the state variable crosses a given
threshold. Therefore, it seems reasonable to expect the spiking perceptron to be-
have better than the classical feedforward perceptron. For instance, can we modify
the traditional spiking neuron a little bit such that it can solve the XOR problem?
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A novel spiking neuron is proposed in this paper to give a positive answer to
the above question. We introduce a new parameter for the output, i.e., the spiking
intensity (the gradient of the state function) at the firing time. Now, the output
of the neuron is not the firing time alone, but a linear combination of the firing
time and the spiking intensity. We show by numerical experiments that this new
spiking perceptron is capable of solving the XOR problem, and we believe that this
novel spiking perceptron can be used as a building block to build up more efficient
spiking neural networks.

2. Spiking Perceptron

First, let us describe the traditional spiking perceptron defined in [4]. A spiking
perceptron has a set of presynaptic neurons that receives and processes the input
vector t = (t1, · · · , tn), consisting of a set of spiking times ti, as follows:

x(t) =
n∑

i=1

K∑

k=1

wikε(t− ti − dk
i ) (1)

where x(t) is called state function, wik is the k-th synaptic weight between the
presynaptic neuron i and the postsynaptic neuron, ε(t) is an activation function
modeling the actual postsynaptic potential to a single spike, ti is the time of the
presynaptic spike of neuron i, and dk

i is the given synaptic delay of the k-th synaptic
sub-connection between i and the postsynaptic neuron. As in [4], the activation
function ε(t) is chosen as:

ε(t) =
{

t
τ e1− t

τ , if t > 0
0, if t ≤ 0

(2)

where τ is the time decay constant that describes how quickly a neuron will respond
to an input spike. This function is asymmetrical and has a maximum value of 1 at
t = τ [5]. The firing time ta of the postsynaptic neuron is defined as the first time
when the state variable x(t) exceeds a given threshold υ:

ta = min{t | x(t) ≥ v, t ≥ 0}. (3)

The target of training a spiking perceptron is to choose the weights such that
the perceptron gives a set of desired target firing times of the output neurons for
a given set of input patterns.

The idea of our novel spiking perceptron is that the response to the input should
be measured not only by the firing time ta, but also by the firing intensity x′(ta).
Therefore, the output of our novel spiking perceptron is defined as

y = f(u1t
a + u2x

′(ta)− u3) (4)

where ta is computed by Eq. (3); and the weights u1 and u2, the threshold u3, and
the weights wik are determined through learning as described in the next section. In
particular, the activation function for the output neuron is selected as the sigmoid
function

f(x) =
1

1 + e−x
. (5)
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The structure of the new perceptron is shown in Fig. 1. We observe that the
lower part of the network described by Eq. (1) and Eq. (3) is the original spiking
perceptron, and the upper part described by Eq. (4) is a classical feedforward
perceptron.
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Fig. 1 Structure of the novel spiking perceptron Eq. (4).

3. Error-Backpropagation Training Algorithm

We use online gradient descent method for supervised learning of the perceptron.
Given is a training pattern set {t(s), o(s)}S

s=1 ∈ Rn×R, where o(s) is the desired out-
put for the input t(s). A training sequence {tT , oT }∞T=1 is generated by randomly
choosing each pair (tT , oT ) from the training set {t(s), o(s)}S

s=1. At the T -th step
of the training, we use the gradient descent method to minimize the instantaneous
error function

E = E(wT , uT ) =
1
2
(yT −OT )2 (6)

where yT is the actual output of the neuron for the input tT with the present
weights wT = {wT

ik} and uT = {uT
i }. Then, the present weights are updated by

uT+1
i = uT

i +4uT
i (7)

and
wT+1

ik = wT
ik +4wT

ik (8)
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where
4uT

i = −η1
∂E

∂uT
i

(9)

4wT
ik = −η2

∂E

∂wT
ik

(10)

and η1 and η2 are the learning rates.
The computation of ∂E

∂uT
i

in Eq. (9) is an easy job by using Eq. (4):

∂E

∂uT
i

=
∂E

∂yT

∂yT

∂uT
i

(11)

Note that the derivative of the sigmoid function Eq. (5) is

f ′(x) = (1− f(x))f(x).

Hence
∂E

∂uT
1

= (yT −OT )(1− yT )yT ta (12)

∂E

∂uT
2

= (yT −OT )(1− yT )yT x′(ta) (13)

and
∂E

∂uT
3

= −(yT −OT )(1− yT )yT . (14)

Next, we compute ∂E
∂wT

ik

. Using the chain rule, we have

∂E

∂wik
=

∂E

∂y

∂y

∂ta
∂ta

∂x(ta)
∂x(ta)
∂wik

+
∂E

∂y

∂y

∂x′(ta)
∂x′(ta)
∂wik

(15)

Here the superscript T has been removed for sake of clear representation. The only
trouble here is the computation of the term ∂ta

∂x(ta) , because ta is a functional of the
function x(·), and this functional cannot be expressed explicitly. To overcome this
difficulty, we follow Bohte et al. [4] to compute the term ∂ta

∂x(ta) as

∂ta

∂x(ta)
= −1/x′(ta). (16)

From Eq. (1) the derivative of the state variable is computed as

x′(ta) =
n∑

i=1

K∑

k=1

wikε′(ta − ti − dk
i ) (17)

where
ε′(ta − ti − dk

i )

=

{
1
τ e1− ta−ti−dk

i
τ (1− ta−ti−dk

i

τ ), if ta − ti − dk
i > 0

0, else
(18)

Then, Eq. (15) is rewritten as
∂E

∂wik
= (yT −OT )(1− yT )yT [−u1

1
x′(ta)ε(t

a − ti − dk
i )

+u2ε
′(ta − ti − dk

i )]
(19)
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4. Numerical Experiment

In this section, we test the performance of the proposed new spiking perceptron
Eq. (4) with two inputs and one output for XOR problem. As a matter of fact, the
terminal output of network Eq. (4) is finally computed by a classical feedforward
perceptron, so there is no need to encode the output, i.e., the desired output is
either 0 or 1. For the input, the coordinate values 0 and 1 are usually encoded as
firing times 6 and 0, respectively [1, 4, 5]. To sum up, the time coded inputs and
the corresponding desired outputs for the XOR problem are as follows:

Input Output
0 0 1
0 6 0
6 0 0
6 6 1

In this paper, however, we use analog input values to test the spiking perceptron.
First, a set of vectors {zs

1, z
s
2}160s=1 are generated by adding small random noises

within [−0.1, 0.1] to the four basic input vectors {0, 0}, {0, 1}, {1, 0}, and {1, 1}.
Then, each zs

i is encoded in the following way:

tsi =
Max− zs

i

Max−Min
· 6 (20)

where the values Max and Min are extremal values of zs
i . Now we get a set of

training patterns {ts, Os}160s=1, among which 80 patterns are used for training and
the rest for testing.

The perceptron has K = 6 synapses, and the delay dk = k for k = 1, 2, · · · , 6.
The initial synaptic weights are restricted to be positive. But some synaptic weights
may become negative later on in the training procedure. Set τ = 7 in Eq. (2). The
output weights ui are initialized as random numbers close to zero. Fig. 2 displays
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Fig. 2 The mean square error for XOR problem.
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the result with the learning rate η1 = 0.04 and η2 = 0.01, and the firing threshold
v = 1. As shown in the figure, the value of the instantaneous error function Eq.
(6) becomes consistently less than 0.003 after about 620 training cycles, and the
error-rate (the number of wrongly classified samples divided by the total sample
number 80) is zero. In the testing process, each test input vector is supplied to the
neuron. The average mean square error is 0.0012 and the classification accuracy
is 95%. We can see that our novel spiking perceptron successfully solves the XOR
problem.
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