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Abstract: Voice over Internet Protocol (VoIP) networks are an increasingly im-
portant field in the world of telecommunication due to many involved advantages
and potential revenue. Measuring speech quality in VoIP networks is an important
aspect of such networks for legal, commercial and technical reasons. The E-model
is a widely used objective approach for measuring the quality as it is applicable
to monitoring live-traffic, automatically and non-intrusively. The E-model suffers
from several drawbacks. Firstly, it considers the effect of packet loss on the speech
quality collectively without looking at the content of the speech signal to check
whether the loss occurred in voiced or unvoiced parts of the signal. Secondly, it
depends on subjective tests to calibrate its parameters, which makes it applicable
to limited conditions corresponding to specific subjective experiments. In this pa-
per, a solution is proposed to overcome these two problems. The proposed solution
improves the accuracy of the E-model by differentiating between packet loss dur-
ing speech and silence periods. It also avoids the need for subjective tests, which
makes it extendable to new network conditions. The proposed solution is based on
an Artificial Neural Networks (ANN) approach and is compared with the accurate
Perceptual Evaluation of Speech Quality (PESQ) model and the original E-model
to confirm its accuracy. Several experiments are conducted to test the effectiveness
of the proposed solution on two well-known ITU-T speech codecs; namely, G.723.1
and G.729.
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1. Introduction

Transmitting Voice over IP networks (VoIP) is an increasingly important applica-
tion in the telecommunications world due to its advantages, including [6, 19]:

– Lower bandwidth requirements.

– Reduced cost for long-distance calls.

– Integration of voice and data applications into one unified network, which
reduces operation and management expenses and makes the creation of new
and innovative applications possible.

– Enabling live broadcasting of radio and TV channels.

Many enterprises and network operators adopted VoIP technology to achieve
some or all of the above advantages and some of the potential revenue by the tra-
ditional Public Switched Telephone Networks (PSTN) operators. In order to com-
pete with the PSTN networks, VoIP networks should achieve comparable quality
to that achieved by the highly-reputable telephony networks to meet customers’
quality expectations from any potential competitor.

Measuring the quality of VoIP networks is important for legal, commercial and
technical reasons. Customers and companies are bound by a service level agree-
ment usually requiring the company to provide a certain acceptable quality. Also,
measuring quality allows network administrators to overcome temporal problems
that may affect the quality of ongoing voice calls. It also allows service providers
to evaluate their own and their competitors’ service on a standard scale. It is also
a strong indicator of user’s satisfaction of the service provided. In doing so, a
specialized speech quality measurement mechanism is needed [28].

There are many methods for measuring the quality of a voice call. The selection
of a method for this task must take the characteristics of IP networks and voice
calls into consideration. Such characteristics that affect the selection include the
requirement to measure the quality while the network is running in a real environ-
ment during a voice call. Therefore, it is necessary to use an automated solution
that measures quality without human interference depending on the received signal
at the receiver side without the need for the reference (original) speech signal at the
sender side, i.e. non-intrusively. The model that satisfies the above requirements
is the E-model which was proposed by the International Telecommunication Union
– Telecommunication Standardization Sector (ITU-T).

However, the E-model suffers from several drawbacks that affect its usage. First,
when the E-model considers the effect of packet loss on the received quality, it does
not take the contents of the received signal into consideration in the estimation
of the quality and packet loss is taken as a whole without considering whether
packet loss occurs in the voiced or the unvoiced parts of the signal, i.e. during
speech or silence periods. Also the E-model requires subjective tests to calibrate
its parameters [9]. The inherent problems of subjective tests are that they are
hard-to-conduct (as they require strict lab conditions), time-consuming, expensive,
and lack repeatability.
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In this paper, a solution is proposed to extend the E-model to any new network
conditions and for newly emerging speech codecs without the need for the subjec-
tive tests. The proposed solution also improves the accuracy of the E-model by
differentiating between packet loss during speech and silence periods. The proposed
solution is based on an Artificial Neural Network (ANN) model and is compared
against the more accurate Perceptual Evaluation of Speech Quality (PESQ) [15]
and the original E-model [9] to check its prediction accuracy. The performance of
the system is tested using two well-known ITU-T speech codecs G.723.1 [11] and
G.729 [12].

The rest of this paper is organized as follows: Section 2 reviews the main
methods used for measuring the speech quality. It also discusses the E-model and
the main problems associated with it. Section 3 discusses the proposed technique
to avoid the use of subjective parameters and to improve the E-model’s accuracy.
Section 4 studies the design and the performance of ANNs in estimating the quality,
and Section 5 presents the results of applying the ANN model in quality estimation.
Section 6 summarizes the paper and presents avenues for future work.

2. Assessment Technologies for Measuring VoIP
Quality

Speech quality assessment techniques can be categorized into three main classes:
subjective assessment techniques, intrusive objective assessment techniques, and
non-intrusive objective assessment techniques.

2.1 Subjective assessment of speech quality

The user’s perception of service quality or subjective quality is the primary crite-
rion for voice and video communication. The most widely used subjective quality
assessment methodology is opinion rating standardized in ITU-T Recommenda-
tion P.800 [13]. The most common metric in opinion rating is Mean Opinion Score
(MOS) metric which is a five-point scale (5) Excellent, (4) Good, (3) Fair, (2)
Poor, and (1) Bad [13]. MOS is internationally accepted metric as it provides a
direct link to the quality, as perceived by the user. MOS score is obtained as an
arithmetic mean for a collection of MOS scores for a set of subjects [13, 14, 28, 29].

The problem with MOS measurement and subjective tests in general is the dif-
ficulty in performing such tests as they require strict conditions regarding the lab
settings and the subjects participating in the subjective tests [13]. The inherent
problems in subjective MOS measurement are that it is: time-consuming, expen-
sive, lacks repeatability, and inapplicable for monitoring live traffic as commonly
needed for VoIP applications. This has made objective methods very attractive
to estimate the subjective quality for meeting the demand for voice quality mea-
surement in communication networks. However, subjective methods are used to
calibrate objective methods as they are the most accurate methods for measuring
speech quality.
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2.2 Intrusive objective assessment of speech quality

Intrusive methods for measuring speech quality are full reference as they require the
reference speech signal to measure speech quality. The most prominent intrusive
method is Perceptual Evaluation of Speech Quality (PESQ), which is the latest
ITU-T standard for objective evaluation of speech quality standardized in ITU-T
Recommendation P.862. PESQ measurements are highly correlated with subjective
tests with a correlation factor of 0.935 on 22 benchmark experiments which cover
9 different languages [15, 16, 17, 24, 30].

In PESQ, the reference and the degraded signals are time-aligned, then both
signals are transformed to an internal representation that is analogous to the psy-
chophysical representation of audio signals in the human auditory system, taking
account of perceptual frequency (Bark) and loudness. After this transformation,
the reference signal is compared with the degraded signal using a perceptual model
and distortion during silence is given different weight and hearing threshold is taken
into account [15, 24].

PESQ score lies in the range -0.5 to 4.5. A function is provided in ITU-T
Recommendation P.862.1 to map these values to the range 1 to 5 representing
MOS. Recommendation P.862.1 also provides a formula to move back to PESQ
score from an available MOS score [16]. PESQ and similar full-reference methods
provide an accurate measurement of speech quality, however, such methods are
inapplicable in monitoring live traffic because it is difficult or impossible to obtain
the reference signal at the receiver side.

2.3 Non-intrusive objective assessment of speech quality

Subjective methods and intrusive methods for measuring the quality cannot be
used in monitoring live traffic, this makes non-intrusive methods the only available
solution for monitoring the quality of live traffic in VoIP networks. One of the most
widely used methods for objectively evaluating speech quality non-intrusively is
opinion modeling. The most famous standard for opinion modeling is the E-model
which is standardized in ITU-T Recommendation G.107 [9, 28].

The E-model was used in an enormous number of studies for the purpose of
network planning or to help network operators in designing the network or to per-
form live monitoring of the network. Now the E-model is being used for objectively
estimating voice quality for VoIP applications using network and terminal quality
parameters. The E-model is a non-intrusive method as it does not use the refer-
ence signal in the estimation of the quality as the estimation is based purely on the
terminal and network parameters [9, 27, 28].

The E-model starts by calculating the degree of quality degradation due to
individual quality factors on the same psychological scale, therefore the E-model
is able to describe the effect of several impairments occurring simultaneously. The
sum of these values is then subtracted from a reference value to produce the output
of the E-model which is a single scalar value called the R-Rating factor. The R-
Rating factor lies in the range of 0 and 100 to indicate the level of estimated quality
where R = 0 represents an extremely bad quality and R = 100 represents a very
high quality. The computed R-Rating factor can be mapped into an MOS value
based on ITU-T Recommendation G.107. Recommendation G.107 also provides a

6



AL-Akhras M., ALMomani I., Sleit A.: An improved E-model using. . .

formula to move back to R-Rating factor from an available MOS score [9, 18, 20].
The R-Rating factor is calculated according to the following formula:

R = R0 − Is − Id − Ie-eff + A (1)

where

R0 Basic signal-to-noise ratio to group the effects of noise
Is Impairments which occur simultaneously with the voice signal
Id Impairments due to delay, echo
Ie-eff Impairments due to codec distortion, packet loss and jitter
A Advantage (expectation) factor (e.g. 0 in landline and 10 in cellular

networks)

When all parameters are set to their default values, the R-Rating factor as
defined in equation (1) has the value of 93.2 which is mapped into an MOS value
of 4.41.

Packet loss dependent Effective Equipment Impairment Factor (Ie-eff ) in equa-
tion (1) characterizes quality degradation due to packet loss. In this paper, the
effect of other parameters will not be considered and the default values for all the
parameters except Ie-eff -related parameters will be used. For example, Id will be
set to zero. Ie-eff is calculated according to the following formula [9]:

Ie-eff = Ie + (95− Ie).
Ppl

Ppl
BurstR + Bpl

(2)

where

Ie Codec-specific Equipment Impairment Factor
Bpl Codec-specific Packet-loss Robustness Factor
Ppl Packet loss Probability
BurstR Burst Ratio (to count for burstiness in packet loss)

Ie-eff – as defined in equation (2) – is derived using codec-specific values for
Ie and Bpl at zero packet-loss. The values for Ie and Bpl for several codecs are
listed in ITU-T Recommendation G.113 Appendix I [10] and they were derived
using subjective MOS test results. On the other hand, Ppl and BurstR depend on
the packet loss properties presented in the system. BurstR is defined in the latest
version of the E-model [9] as:

BurstR =
Average length of observed bursts in an arrival sequence

Average length of bursts expected for the network under “random” loss
(3)

When packet loss is random, i.e. independent, BurstR = 1 and when packet
loss is bursty, i.e. dependent, BurstR > 1.

The E-model is a good choice for the non-intrusive estimation of voice quality in
VoIP networks. However, the E-model suffers from several drawbacks that affect
its usage. These drawbacks concern the application of equation (2) to compute
Ie-eff .
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When the E-model considers the effect of packet loss on quality, it takes packet
loss as a whole and it does not pay attention to the contents of lost packets and
whether the loss occurred in voiced or unvoiced parts of the signal. Packet loss
during voiced parts (speech periods) would have a greater degradation effect on
the received signal than packet loss in unvoiced parts (silence periods) [23, 26].
During many experiments that led to the current paper, comparisons were made
between quality estimated from the E-model and quality calculated from PESQ,
it was observed that there is a deviation between quality estimation calculated
according to the E-model and quality measurements according to PESQ. The work
presented in this paper attempts to remove or decrease this deviation.

Also, the E-model requires subjective tests to calibrate some of the parameters
used in equation (2), specifically Ie and Bpl [9]. The inherent problems of subjective
tests are that they are hard-to-conduct (as they require strict lab conditions), time-
consuming, expensive and lack repeatability.

In this paper, a solution is proposed to extend the E-model to new network
conditions and for newly emerging speech codecs without the need for the subjective
tests by avoiding the use of Ie and Bpl. The proposed solution also improves the
accuracy of the E-model by differentiating between packet loss during speech and
silence periods. The proposed solution is based on an ANN model and is compared
with the more accurate PESQ [15] and with the original E-model [9] to check its
prediction accuracy. The effectiveness of the proposed technique is tested using
two speech codecs; namely, G.723.1 and G.729.

3. The Proposed Technique

Artificial Neural Networks and Genetic Algorithms can be used to solve various
kinds of problems varying from function approximation and clustering problems
to function maximization or minimization problems. These techniques have been
used in an enormous number of studies by the authors of this paper and other
authors to aid in solving various problems such as image processing, finding certain
patterns and networking problems, such as load balancing, finding the best route
and, in the current paper, to aid in the estimation of quality in VoIP networks
[1, 2, 3, 5, 7, 8, 21, 22, 25].

Recall that in the E-model, packet loss dependent Effective Equipment Im-
pairment Factor (Ie-eff ) is characterized by equation (2). The equation has four
parameters: Equipment Impairment Factor (Ie), Packet-loss Robustness Factor
(Bpl), packet-loss probability (Ppl) and burst ratio (BurstR). We identified two
problems with the applicability and accuracy of this equation which, in turn, af-
fect the applicability and the accuracy of the E-model in voice quality prediction.
The first problem is that the values for Ie and Bpl, which are codec-specific, are
derived using the time-consuming and expensive subjective MOS tests. The values
for several codecs derived using subjective tests are listed in ITU-T Recommenda-
tion G.113 Appendix I [10]. For G.723.1 speech codec, the values for Ie and Bpl
are 15 and 16.1, respectively. For G.729 their values are 11 and 19, respectively.
The second problem is that the other two parameters, Ppl and BurstR, consider
the effect of packet loss collectively without testing whether packet loss occurred
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during voiced or unvoiced parts of the signal as packet loss during different parts
of the signal has a different perceptual effect on perceived quality.

In previous publications by the authors, only the first problem was solved as
the dependency of the E-model on subjective parameters (Ie and Bpl) was avoided.
This was achieved by deriving a new formula to relate Ie-eff with Ppl and BurstR
in the absence of Ie and Bpl [1, 2, 3]. As this is a function approximation problem,
several methods can be used to derive such a new formula, including: Genetic Al-
gorithms (GA) [1], Artificial Neural Networks (ANN) [2] and statistical methods,
such as linear and non-linear regression [3]. Using the previous function approxima-
tion techniques, Ie-eff has only two input parameters which are Ppl and BurstR,
while Ie and Bpl parameters are integrated in the derived linear and non-linear
regression equations or absorbed in the form of weights and biases in the ANN,
thereby, the subjectivity of the E-model is avoided.

Considering the second problem, packet-loss probability (Ppl) and burst ratio
(BurstR) depend on packet loss properties presented in the system. Ppl and
BurstR represent the overall packet loss as the E-model does not look at the
contents of received signal as it considers the effect of packet loss on received
quality collectively; i.e. no distinction is made between packet loss during voiced
or unvoiced parts of the signal during speech or silence periods.

Previous studies [26, 27] have shown that packet loss during voiced parts of the
signal has a more perceptual effect on the quality than packet loss during unvoiced
parts of the signal. The E-model can be modified so that it considers the content
of the lost frames and whether they represent voiced parts of the signal or unvoiced
parts.

To improve the accuracy of the E-model and bring its estimation closer to
the PESQ measurement of quality as PESQ is more accurate due to its intrusive
nature, we classified packet loss into either Voiced or Unvoiced loss to give different
weights for different classes of loss, the new weights were derived using a Genetic
Algorithms (GA) approach. In this case, Ppl is broken into Voiced Ppl (PplV oiced)
and Unvoiced Ppl (PplUnvoiced). Similarly, the BurstR is broken into BurstRV oiced

and BurstRUnvoiced.
The classification of lost packets into voiced or unvoiced is based on surrounding

received packets based on the fact that the shape of the vocal tract and its mode
of excitation change relatively slowly. Therefore, speech signal can be considered
to be quasi-stationary over a short period of time, which allows it to show high
degree of predictability. Ie-eff can be calculated using a modified equation

Ie-eff = Ie + (95− Ie).
newPpl

newPpl
newBurstR + Bpl

(4)

where
newPpl = αV .PplV oiced + αU .PplUnvoiced (5)

and

newBurstR = αV .BurstRV oiced + αU .BurstRUnvoiced (6)

In equation (4), the subjective parameters Ie and Bpl are used as in the original
E-model as the purpose is to consider the effect of packet loss using voiced and
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unvoiced parts of the signal to improve the accuracy of the E-model and bring its
estimation closer to the PESQ measurement of the quality without avoiding the
use of subjective parameters (Ie and Bpl). In other words, this would solve only
the second problem presented in the original Ie-eff equation.

The algorithm for calculating PplV oiced, PplUnvoiced, BurstRV oiced and
BurstRUnvoiced first starts with applying a Voice Activity Detector (VAD) al-
gorithm on the received packets to classify received packets into either voiced or
unvoiced. Then, missing packets are classified into either voiced or unvoiced based
on surrounding received packets utilizing the fact that speech signal has quasi-
stationary characteristics. This classification is not 100% accurate, but conducted
experiments indicate that the prediction accuracy is 87.35%, which is significantly
better than considering the effect of packet loss collectively.

PplV oiced and PplUnvoiced are calculated as percentages of lost packets classified
as voiced and unvoiced packets over the total number of packets, respectively.
BurstRV oiced and BurstRUnvoiced are also calculated using a modified version of
equation (3) to consider burstiness in voiced and voiced parts of the signal.

BurstRV oiced =
Length of burst in Voiced Lost Frames in a sequence
Length of burst under “random” loss (PplV oiced)

(7)

BurstRV oiced =
Length of burst in Unvoiced Lost Frames in a sequence
Length of burst under “random” loss (PplUnV oiced)

(8)

In the original E-model, no distinction is made between voiced and unvoiced
losses and the values of αV and αU are 1, i.e. no difference is made between
packet loss during voiced and unvoiced parts of the signal. After conducting several
experiments using GA, the optimum values for αV and αU in equations (5) and (6)
were found to be 2.364 and 0.00238, respectively. Having a value greater than 1
for αV and a value less than 1 for αU is consistent with the fact that loss in voiced
parts of the signal has more effect on the quality than loss during unvoiced parts.

The new classified losses are integrated with the E-model using equation (4)
with the same form of equation used to calculate the original Ie-eff . This enforces
some restriction on the power of the classification extension for the E-model as
the same form of equation is used with or without classification. Also, in the new
equation, subjective parameters Ie and Bpl are still present.

The above two ideas aim to improve the E-model in different ways indepen-
dently, to avoid the subjectivity of the parameters and to give different weights to
different classes of loss. If the above two ideas are combined together to produce
a non-intrusive extension for the E-model that is as accurate as PESQ, by consid-
ering the effect of loss in voiced and unvoiced parts of the signal separately. At
the same time, the extension does not depend on subjective tests to calibrate its
parameters, i.e. no use for Ie and Bpl parameters. This new model will solve the
problems of the E-model and will have a wide applicability in estimating speech
quality for real-time applications.

In this paper, a technique is proposed to offer both improvements to solve the
two problems. The proposed extension is tested on several speech codecs and over
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several packet loss probabilities to confirm its effectiveness. Also, the proposed
extension is compared with the accurate PESQ measurement and with the original
E-model.

The setup for the system is depicted in Fig. 1. In the system setup, PESQ is used
as a base criterion for comparison to avoid the need for subjective tests required to
retrieve the E-model’s parameters. Also, by comparing the E-model’s estimation
of quality with PESQ’s measurement of quality, the accuracy of the E-model is
improved by bringing its estimation closer to the accurate PESQ measurement.
The modified model satisfies the requirements of quality estimation of voice traffic
in IP networks. Such requirements include having an automated, non-intrusive,
and accurate solution that does not depend on subjective parameters to calibrate
its parameters.

In the system setup, the reference speech signal is first encoded and then packet
loss is simulated with different possible probabilities. The received stream is de-
coded to retrieve the degraded speech signal, and quality is measured by compar-
ing the reference speech signal with the degraded speech signal using PESQ. This
measured PESQ value is then mapped into MOS score which, in turn, is used
to calculate R-Rating factor and then Ie-eff . The calculated Ie-eff is considered
an accurate measurement, as it is calculated using the accurate PESQ algorithm.
Also this calculated value does not depend on subjective parameters Ie and Bpl
but rather it is calculated using Ppl and BurstR.

At the same time, the degraded signal at the receiver side is analyzed to cal-
culate packet loss statistics for Voiced and Unvoiced parts of the signal. These
statistics include PplV oiced, PplUnvoiced, BurstRV oiced and BurstRUnvoiced. By

Fig. 1 System setup for the E-model extension based on PESQ with voice classifi-
cation.
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feeding these four packet loss statistics as four inputs to an ANN structure and
using the calculated Ie-eff as target information, an ANN model can be trained to
find a relation between packet loss statistics and Ie-eff , i.e. to predict Ie-eff based
on input packet loss statistics. This is a function approximation problem which is
a classical use of ANN.

As packet loss statistics PplV oiced, PplUnvoiced, BurstRV oiced and
BurstRUnvoiced are calculated and used as input information and Ie-eff from PESQ
is used as output information, this scheme gives more accurate estimation of speech
quality than packet loss dependent Effective Equipment Impairment Factor (Ie-eff )
in the the original E-model which affects the E-model accuracy. Additionally, as
the subjective-dependent parameters, namely Ie and Bpl, are not used as input
parameters, this scheme also does not depend on subjective tests to calibrate its
parameters but rather both Ie and Bpl parameters are absorbed in the form of
the ANN weights and biases. The performance of the proposed improvement of
the E-model system and its advantage over the original E-model is to be con-
firmed by statistical analysis. To check whether the proposed system gives similar
performance to that provided by the intrusive PESQ but in a non-intrusive way
depending on the received voice stream, a two paired-t statistical test is performed
to confirm that there is no significant difference between the two methods.

The choice of ANNs over linear or non linear regression models to find a relation
between packet loss statistics and Ie-eff comes from the fact that ANN performed
the best in modeling Ie-eff with Ppl and Burst [1, 2, 3]. Also by choosing linear
regression, we assume the underlying relation to be linear, which may not be true.
In case of non-linear regression, the form and the degree of the non-linear polyno-
mial need to be determined while the underlying relation could be better modeled
by a non-polynomial function.

Based on the above, the combined scheme offers an automatic solution for mon-
itoring live traffic accurately, non-intrusively and without the need for subjective
tests to calibrate the parameters. As such, this model has wide applicability in
estimating speech quality for real-time applications. Fig. 2 shows how the new
scheme can be used as a production system to monitor conversational speech qual-
ity non-intrusively.

Fig. 2 Application of the new system in monitoring live systems non-intrusively.
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In Fig. 2 the degraded speech signal is analyzed to extract packet loss statistics
non-intrusively, the extracted four statistics (PplV oiced, PplUnvoiced, BurstRV oiced

and BurstRUnvoiced) are fed into the trained ANN to estimate Ie-eff . This Ie-eff
is then combined with Id , Is and the Advantage factor (A) are added to calculate
R-Rating factor according to equation (1). This R-Rating factor is then mapped
into a corresponding MOS, which is an accurate estimation of speech quality that
is highly-correlated with PESQ estimation, as confirmed by the conducted experi-
ments and analyzed statistically.

4. Performance of ANN in Estimating Ie-eff

Packet loss is simulated using the 2-state Markov model, also known as the Gilbert
Model. In the Gilbert model, the system moves between two states “found” and
“loss”, as shown in Fig. 3. The system suffers from burst loss when it remains in
“loss” state.

Fig. 3 2-State Markov Model.

The 2-state Markov model depends on two parameters p and q, where p is the
probability of transition from “found” state to “loss” state and q is the probability
of transition from “loss” state to “found” state. p and q are derived from Ppl and
BurstR using the following equation [9]:

BurstR =
1

p + q
=

Ppl
100

p
=

1− Ppl
100

q
. (9)

Several values for Ppl and Burst are attempted. Ppl in the range 0 to 20
and BurstR in the range 1 to 2. These ranges are chosen in order to be able to
compare the results with those of the E-model, as the original E-model was defined
over these two ranges. For each combination of Ppl and BurstR, the experiment is
repeated for 30 times to obtain degraded signals with several loss locations, which
makes up a total of 1320 runs. During each run, packet loss is simulated using the
Gilbert model constructed based on corresponding Ppl and BurstR to retrieve a
degraded signal. The degraded signal is compared against the original signal to
calculate PESQ score. This PESQ score is then used to calculate MOS score, then
R-Rating factor and Ie-eff can be computed. These are the empirical values to be
used as targets for the ANN structure.
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The degraded signal is also used for further calculations. The received pack-
ets are classified into either Voiced or Unvoiced using the VAD algorithm that
comes as part of G.729 standard [12]. Then, these packets are used to classify
the surrounding missing packets and to calculate statistics about the missing pack-
ets. This yields 1320 vectors, each vector contains packet loss statistics for Voiced
and Unvoiced losses (PplV oiced, PplUnvoiced, BurstRV oiced and BurstRUnvoiced)
as well as estimation of quality according to PESQ, mapped MOS value, R-Rating
factor, and Ie-eff , as depicted in Fig. 1. The above experiments are repeated for
two speech codecs, G.723.1 and G.729.

A standard 10-fold cross validation is applied, where in each fold 10% of the data
is chosen as testing subset and the remaining data is divided as 80% training subset
and 10% validation subset. This corresponds to 1056 training, 132 validation and
132 testing vectors. The chosen testing subsets in the 10-folds have no overlapping.
The use of validation subset is to improve generalization accuracy and avoid over
fitting the trained network into the training data. Training, validation and test
subsets were picked as equally spaced points throughout the original data to avoid
bias in the training set.

To obtain an ANN network that acts as function approximator between
PplV oiced, PplUnvoiced, BurstRV oiced and BurstRUnvoiced input data and Ie-eff
target, a two-layer neural network with sigmoid transfer function in the first layer
and linear transfer function in the output layer is used, and the network is trained
using the Levenberg-Marquardt (LM) algorithm. The sigmoid function is able to
model non-linear relations between the input and the output while it squashes the
output to the range −1 to 1. The linear transfer function gives values outside this
range.

Different number of neurons in the hidden layer are attempted, ranging from 1
neuron to 100 neurons. With one neuron, the total number of weights and biases
in the network equals 7, which could be not enough for generalization. With 100
neurons the network will have the capability fully to remember the training set
which may result in overfitting. For each setting the experiment is repeated for 30
different trials, where different random initial weights are used in each trial. This
adds up to 3000 experiments in total (100x30).

During the experiments, each network was allowed to be trained as far as 10000
epochs. In all cases, training stopped before reaching this number due to the error
in the validation set exceeding the error in the training set. For speech codec
G.723.1, the best network in terms of performance of the test set was found to be
a network with 5 neurons in the hidden layer. This network has 31 weights and
biases in total. For speech codec G.729, the best network in terms of performance
of the test set was found to be a network with 3 neurons in the hidden layer, this
network has 19 weights and biases in total. These two networks will be used for
subsequent derivations in the next section.

5. Results of Applying ANN in Quality
Estimation

Using the best networks obtained in the last section for G.723.1 and G.729, Ie-eff
from the ANN can be compared with Ie-eff obtained experimentally and with Ie-eff
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obtained from the original E-model over the whole data set. Having 1320 vector
in total and 132 test vector in each fold, comparisons are made between the test
data with the output of ANN trained by the corresponding training data in that
fold. The total number of comparable pairs equal 1320 for the 10-folds. Using the
empirical Ie-eff and the ANN predicted Ie-eff , the corresponding R-Rating factor
and MOS values are calculated for more meaningful comparisons. The conducted
experiments and the comparison are for two well-known speech codecs, G.723.1
and G.729. The same methodology and comparisons can be performed as well on
other speech codecs.

5.1 Results & comparison for speech codec G.729

After performing a standard 10-fold cross validation where in each fold 10% of the
data is chosen as testing subset and the remaining data is divided as 80% training
subset and 10% validation subset. This corresponds to 1056 training, 132 validation
and 132 testing vectors. For each fold, an ANN is trained, using the training set
where the input for the training was packet loss statistics to predict Ie-eff and the
performance is tested using the testing subset.

To check whether there is a difference between the empirical values and the
values obtained through ANN, two paired-t statistical test is performed for the
produced classifier in each fold to compare between empirical Ie-eff values and
Ie-eff values produced by ANN. The produced t-values are listed in Tab. I where
the degree of freedom is 131 as there are 132 testing pair of empirical and ANN
produced values in each fold.

Fold 1 2 3 4 5 6 7 8 9 10

t-value -0.0024 -0.0054 -0.0008 -0.0055 0.0043 0.0044 0.0007 -0.0015 -0.0125 -0.0003

Tab. I t-values between empirical and ANN predicted Ie-eff in each of the 10-folds
for speech codec G.729.

Looking at Tab. I, it can be concluded that there is no significant difference
between the empirical and the ANN prediction of Ie-eff at the 1% significance
level (99% confidence level) for the 10 ANNs as all the t-values are included in
the interval [−2.5758, 2.5758] which confirms the effectiveness of the 10 ANNs in
different folds in predicting an accurate Ie-eff that corresponds to the empirical
Ie-eff produced by the accurate PESQ method. When different test sets (1320
vector) are grouped together to compare the empirical value with the predicted
values produced by the corresponding ANN, the produced t-value was −0.00062,
which also indicates that there is no significant difference between the empirical
and the ANN values at 1% significance level.

Performing comparison between empirical and ANN values over the whole data
sets yields multiple correlation coefficient (R) of value 0.9457 between Ie-eff ob-
tained empirically and Ie-eff from the ANN model for speech codec G.729, which
indicates a strong positive correlation and a good fit. The R2, the coefficient of
determination has the value of 0.8943, which indicates that 89.43% of the time the
variation in the independent variable is explained by the model.
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Boxplot of differences between Ie-eff obtained empirically and Ie-eff obtained
from ANN for speech codec G.729 over the whole data sets is shown in Fig. 4 where
it appears that the values of prediction error are clustered in the lower range with
the first quartile below 1.14 Ie-eff and the lower two quartiles (median value) below
2.35 Ie-eff . More than 75% of the data are below 4 Ie-eff . There are few outliers
(out of 1320) with high prediction error. The maximum absolute Ie-eff difference
equals 11.9131 while the average absolute difference equals 2.7880.

Fig. 4 Boxplot of the error in Ie-eff between empirical values and Artificial Neural
Network prediction for speech codec G.729.

Fig. 5 shows the scatter diagram between Ie-eff values obtained empirically
and Ie-eff from ANN model to visualize the correlation between the corresponding
values. Most of the points are located near the perfect fit line due to the very high
correlation.

Fig. 5 G.729 scatter diagram of Ie-eff quality prediction.

From the Ie-eff , R-Rating factor can be calculated, which can then be mapped
into MOS score. Comparisons in terms of MOS differences are of more interest as
it is more plausible to the listener since it represents the output according to the
user’s perception.

The t-values produced by two paired-t statistical test to check whether there is a
difference between the empirical MOS values and the MOS values obtained through
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ANN are listed in Tab. II. The t-test is performed for the produced classifier in
each fold to compare between empirical MOS values and MOS values produced by
ANN. The produced t-values are listed in Tab. II, where the degree of freedom is
131 as there are 132 pairs of empirical and ANN produced values.

Fold 1 2 3 4 5 6 7 8 9 10

t-value 0.0022 0.0038 -8.6210E-05 0.6498 -0.0049 -0.0046 -0.0019 0.0007 0.0114 -0.0005

Tab. II t-values between empirical and ANN predicted MOS in each of the 10-folds
for speech codec G.729.

From Tab. II, it can be concluded that there is no significant difference between
the empirical and the ANN prediction of MOS at the 1% significance level (99%
confidence level), which confirms the effectiveness of the 10 ANNs in different folds
in predicting an accurate MOS score that is close to the MOS produced by the
PESQ method. The produced t-value, when different test sets (1320 vector) are
grouped together, was 0.000364046, which indicates there is no significant difference
between the empirical and the ANN values at 1% significance level.

The multiple correlation coefficient (R) has the value of 0.9466 between MOS
obtained empirically and MOS obtained from the ANN model for speech codec
G.729, which indicates a strong positive correlation and a good fit. The R2, the
coefficient of determination has the value of 0.8961, which indicates that 89.61%
of the time the variation in the independent variable is explained by the model.
Boxplot of differences between MOS obtained empirically and MOS obtained from
the ANN model for speech codec G.729 over the whole data set is shown in Fig. 6,
where it appears that the values of prediction error are clustered in the lower range
with the first quartile below 0.0566 MOS and the lower two quartiles (median
value) below 0.1112 MOS. More than 75% of the data are below 0.1953 MOS. The
maximum absolute MOS difference equals 0.6199 while the average absolute MOS
difference equals 0.1389 MOS.

Fig. 6 Boxplot of the error in MOS between empirical values and Artificial Neural
Network prediction for speech codec G.729.

A scatter diagram between the ANN prediction and the empirical PESQ-derived
MOS scores is shown in Fig. 7 to visualize the correlation between the corresponding
values. Most of the points are located near the perfect fit line due to the very high
correlation.

Tab. III compares the accuracy of the derived ANN with the empirical values
obtained through the accurate PESQ measurement, with those values obtained by
the original E-model and with the results obtained in [2] for speech codec G.729
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Fig. 7 G.729 scatter diagram of MOS quality prediction.

to prove the effectiveness of the proposed technique. It should be noted that
the aim of the work proposed in [2] by the authors was to avoid the subjective
parameters not to improve the accuracy, while the aim of this work is to avoid
the subjectivity and to improve the accuracy. The values in the Table are average
values over 30 different iterations performed for each combination of BurstR and
Ppl.

The column that comes after MOS value for each of the three methods lists the
difference between the MOS in that method and the empirical MOS values for each
combination of BurstR and Ppl. At the end of the Table, the average differences
are computed for each method. When BurstR = 1, the average differences are
0.313, 0.271, and 0.061 for the E-modelMOS , the work in [2], and the improved
E-model proposed in this paper, respectively. When BurstR = 2, the average
differences are 0.357, 0.379, and 0.053 for the E-modelMOS , the work in [2], and
the improved E-model proposed in this paper, respectively.

It is clear from the figures that the proposed method outperforms the the orig-
inal E-model and the work presented in [2] in terms of quality prediction accuracy.

5.2 Results & comparisons for speech codec G.723.1

Similar set of experiments and tests are conducted for speech codec G.723.1 as for
speech codec G.729. A two paired-t test is conducted to check whether there is a
difference between the empirical values and the values obtained through ANN. The
test is repeated for each fold to compare between empirical Ie-eff values and Ie-eff
values produced by ANN in that fold, where in each fold the degree of freedom is
131, as there are 132 pair of empirical and ANN produced values. The t-values are
listed in Tab. IV.

From Tab. IV, it can be concluded that there is no significant difference be-
tween the empirical and the ANN prediction of Ie-eff at the 1% significance level
(99% confidence level) for the 10 ANNs. When different test sets (1320 vector)
are grouped together to compare the empirical values with the predicted values
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Fold 1 2 3 4 5 6 7 8 9 10

t-value -0.0057 -0.0037 -0.0055 -0.0053 -0.0044 -0.0023 0.0016 -0.0059 -0.0044 0.0041

Tab. IV t-values between empirical and ANN predicted Ie-eff in each of the 10-folds
for speech codec G.723.1.

produced by the corresponding ANN, the produced t-value was −0.0010, which
also indicates that there is no significant difference between the empirical and the
ANN values at 1% significance level.

The multiple correlation coefficient (R) between empirical Ie-eff and Ie-eff
from the ANN model for speech codec G.723.1 has the value of 0.9520, which
indicates a strong positive correlation and a good fit. The R2, the coefficient of
determination has the value of 0.9064, which shows that 90.64% of the variation in
the independent variable is explained by the ANN model.

Boxplot of differences between empirical Ie-eff and Ie-eff obtained from ANN
for speech codec G.723.1 over the whole data set is shown in Fig. 8, where it appears
that the values of prediction error are clustered in the lower range with the first
quartile below 1.098 Ie-eff and the lower two quartiles (median value) below 2.219
Ie-eff . More than 75% of the data are below 3.8 Ie-eff . There are few outliers
(out of 1320) with high prediction error. The maximum absolute Ie-eff difference
equals 14.2291, while the average absolute difference equals 2.7226.

Fig. 8 Boxplot of the error in Ie-eff between empirical values and Artificial Neural
Network prediction for speech codec G.723.1.

The scatter diagram between Ie-eff values obtained empirically and Ie-eff from
ANN is shown in Fig. 9 to visualize the correlation between the corresponding
values. Most of the points are located near the perfect fit line due to the very high
correlation.

Empirical and ANN predicted Ie-eff values are used to calculate the corre-
sponding R-Rating factor, which are then mapped into MOS score. Comparisons
in terms of MOS differences are more readable to the listeners, as it represents the
output according to the user’s perception.

The t-values produced by two paired-t statistical test conducted to check if there
is a difference between the empirical MOS values and the MOS values obtained
through ANN are listed in Tab. V. The t test is conducted for each fold with the
degree of freedom being 131, as there are 132 pair of empirical and ANN produced
values.
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Fig. 9 G.723.1 scatter diagram of Ie-eff quality prediction.

Fold 1 2 3 4 5 6 7 8 9 10

t-value 0.0053 0.0025 0.0045 0.0045 0.0032 0.0015 -0.0029 0.0048 0.0039 -0.0050

Tab. V t-values between empirical and ANN predicted MOS in each of the 10-folds.

From Tab. V, it can be concluded that there is no significant difference between
the empirical and the ANN prediction of Ie-eff at the 1% significance level (99%
confidence level), which confirms the effectiveness of the 10 ANNs in different
folds in predicting an accurate MOS score that is close to the MOS produced
by the PESQ method. The produced t-value, when different test sets (1320 vector)
are grouped together, is 0.00073, which indicates there is no significant difference
between the empirical and the ANN values at 1% significance level.

The multiple correlation coefficient (R) has the value of 0.9519 between MOS
obtained empirically and MOS obtained from the ANN model for speech codec
G.723.1, which indicates a strong positive correlation and a good fit. The R2, the
coefficient of determination has the value of 0.9060, which indicates that 90.60% of
the variation in the independent variable is explained by the ANN model. Boxplot
of differences between MOS values obtained empirically and MOS values obtained
from the ANN model for speech codec G.723.1 over the whole data set is shown
in Fig. 10, where it appears that the values of prediction error are clustered in the
lower range with the first quartile below 0.05437 MOS and the lower two quartiles
(median value) below 0.1114 MOS. More than 75% of the data are below 0.1906
MOS. The maximum absolute MOS difference equals 0.7484, while the average
absolute MOS difference equals 0.1357 MOS.

The scatter diagram between the ANN prediction and the empirical PESQ-
derived MOS scores is shown in Fig. 11 to visualize the correlation between the
corresponding values. Most of the points are located near the perfect fit line due
to the very high correlation.
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Fig. 10 Boxplot of the error in MOS between empirical values and Artificial Neural
Network prediction for speech codec G.723.1.

Fig. 11 G.723.1 scatter diagram of MOS quality prediction.

Tab. VI compares the accuracy of the derived ANN with the empirical values
obtained through the PESQ measurement. The values obtained through the origi-
nal E-model are also compared with the empirical PESQ measurements for speech
codec G.723.1 to prove the effectiveness of the proposed technique. The values in
the Table are average values over 30 different iterations performed for each combi-
nation of BurstR and Ppl. It should be noted that these results are not compared
with the results obtained in [2], as the results of [2] were for speech codec G.729
only, and no results were obtained for G.723.1, as the experiments conducted in
this paper are more comprehensive.

The differences between the values obtained using the original E-model and
the values obtained using the improved E-model are listed for each combination of
BurstR and Ppl. The table also lists the average differences. When BurstR = 1,
the average differences are 0.524 and 0.051 for the E-modelMOS and the improved
E-model proposed in this paper, respectively. When BurstR = 2, the average dif-
ferences are 0.571 and 0.053 for the E-modelMOS and the improved E-model
proposed in this paper, respectively. It is clear from the differences that the im-
proved E-model presented in this paper outperforms the original E-model, as it has
smaller differences from the empirically obtained values from the accurate PESQ
measurement.
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6. Conclusions

Measurement of voice quality is an important aspect in VoIP networks. Several
methods have been proposed for the task of quality measurement. The proposed
methods can be categorized into three main classes: subjective assessment tech-
niques, intrusive objective assessment techniques and non-intrusive objective as-
sessment techniques. The E-model standardized by the ITU-T in Recommendation
G.107 is a well-known non-intrusive objective method for estimating speech quality
[9].

The authors proposed in this paper improvements to the E-model to avoid two
drawbacks that hinder its applicability. The proposed model improves the E-model
as it avoids the hard-to-conduct, time-consuming and expensive subjective tests
required to estimate the E-model’s parameters by using Perceptual Evaluation of
Speech Quality PESQ (PESQ) to find a model (Artificial Neural Network, ANN in
this case) that does not use the subjective test related parameters Ie and Bpl.

The new model also offers more accurate estimation to speech quality by consid-
ering the class of lost packets, as statistics have shown that loss during voiced parts
of the signal has a different perceptual effect than loss during unvoiced part of the
signal, depending on the more accurate intrusive-based PESQ method standardized
by the ITU-T in Recommendation P.862 [15] as a baseline criterion. Packet loss
in the E-model is treated collectively without differentiating between voiced and
unvoiced loss. An algorithm is provided to calculate different packet loss statis-
tics. By calculating packet loss statistics and finding a relation with the PESQ
measurement, the E-model estimation can be improved and the subjectivity of
parameters can be avoided. The relation between packet loss statistics and the
quality is derived, using an ANN structure that works as function approximator.

Several experiments are conducted on two speech codecs G.723.1 and G.729
with 10-fold cross validation. To check the accuracy of the proposed ANN structure
in predicting quality, several statistical tests are performed to check if there is a
difference between the proposed method and the empirical values. Comparisons
are also made with the original E-model. Experimental results indicate that the
proposed method improves quality prediction over the original E-model. The same
principles presented in this paper can be tested with other speech codecs by running
the required experiments and training an appropriate ANN model to gain the same
advantages.

The proposed model is an attractive and accurate solution for measuring speech
quality objectively and non-intrusively in live networks. Therefore, it has wide
applicability in estimating speech quality for voice applications over IP networks,
which increases its significance as it provides better features than the E-model for
VoIP traffic by being more accurate in estimating the quality and being able to
avoid the subjectivity in estimating the E-model’s parameters.
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