
IDG
NEURAL NETWORK \\ Kl.l >

International Journal on Neural and Mass-Parallel

VOLUME 1

Computing and Information Systems

1991 NUMBER 3

ADC & anti
aliasing filter

Frequency

N
C Z f E

U
R■
A
L

N
E
T*
W
0
nK
K

w

iiimii

* * • • ■ t i •

O
Fault
Indicators

Kerckhoffs E. J. //.. A View on Problem-Solving Paradigins Including Neurocomputing
Cimagalli V., Balsi M., De Carolis A.: Information Storage in Neurocomputing

Jiřina M.: Blnary Model of Neural Net
Vítková G., Míček KnowSedge Processing by Neural Networks

Hořejš J.: A View on Neural Network Paradigins Development (Part 3)

NEURAL NETWORK WORLD is published in 6 issues per annum
by the Computer World Company, Czechoslovakia,
120 00 Prague, Blanická 16, Czechoslovakia,
the member of the IDG Communications, USA.

Editor-in-Chief: Dr. Mirko Novák

Associate Editors: Prof. Dr. V. Ilamata,
Dr. M. Jiřina,
Dr. O, Kufudaki

Institute of Computer and Information Science, Czechoslovak
Academy of Sciences, 182 07 Prague, Pod vodárenskou věží 2,
Czechoslovakia.

Phone: (00422) 82 16 39, (00422) 815 20 80, (00422) 815 31 00

Fax: (00422) 85 85 789,

E-Mail: CVS15@CSPGCS1 I. BIT NET'

International Editorial Board:
Prof. V. Cimagalli (Italy),
Prof. G. Dreyfus (France),
Prof. M. Dudziak (USA),
Prof. S. C. Dutta-Roy (India),
Prof. J. Faber (Czechoslovakia),
Prof. A. Frolov (USSR),
Prof. C. L, Giles (USA),
Prof. M. M. Gupta (Canada),
Prof. H. Haken (Germany),
Prof. R. Hecht-Nielsen (USA),
Prof. K. Hornik (Austria),
Prof. E. G. Kerckhoffs (Netherlands),
Prof. D. Koruga (Yugoslavia),
Dr. O. Kufudaki (Czechoslovakia),
Prof. H. Marko (Germany),
Prof. H. Mori (Japan),
Prof. S. Nordbotten (Norway),
Prof. D. I. Shapiro (USSR),
Prof. J. Taylor (GB),
Dr. K. Vicenik (Czechoslovakia).

General Manager of the ComputerWorld Co., Czechoslovakia:
Prof. Vladimír Tichý
Phone: (00422) 25 80 23, Fax: (00422) 25 73 59.

General Editor of all the ComputerWorld Co., Czechoslovakia
journals: Ing. Vítězslav Jelínek
Phone:(00422) 25 32 17.

Responsibility for the contents of all the published papers and
letters rests upon the authors and not upon the ComputerWorld Co.
Czechoslovakia or upon the Editors of the NNW.

Copyright and Reprint Permissions:
Abstracting is permitted with credit to the source. For all other co
pying, reprint or republication permission write to ComputerWorld
Co., Czechoslovakia. Cypyright © 1991 by the ComputerWorld Co.,
Czechoslovakia. All rights reserved.

Price Information:
Subscription rate 399 US $ per annum.
One issue price: 66.50 US $.
Subscription adress: ComputerWorld Co., Czechoslovakia,
120 00 Prague 2, Blanická 16, Czechoslovakia.

Advertisement: Ms. M. Váňová, Ms. Ing. H. Vančurová,
ComputerWorld Co., Czechoslovakia, 120 00 Prague 16,
Blanická 16
Phone:(00422) 25 80 23, Fax:(00422) 25 73 59.

Scanning the Issue

Editional.. 129

Kerckhoffs A View on Problem-Solving Paradigms Including
Neurocomputing............... 129

The spectrum of the complex problem-solving simulation and
knowledge-based expert systems is surveyed with respect to metho
dological, functional and application aspects. The role of parallel
processing in these is discussed. Some neural-network oriented pro
jects running at the Delft University of Technology arc mentioned

Cimagalli V., Balsi AT, De Carolis A.: Information Storage in Neu
rocomputing ... 155

The concept of relational information stored in neurocomputer
is presented and the method for its measurement both in dynamic
systems and in arbitrary neural network is proposed

Jiřina A4.. Binary Neural N e t ... 163
In this contribution a special case of binary neural net is introdu

ced. The inputs and outputs have values 0 or 1 and also the weights
have values just -■ 1,0 or 1. The thresholds are set so that the overall
function of neuron is either logical sum or logical product of di
rect (the weight + I) or inverted (the weight -1) inputs. Several vari
ants of adaptive dynamics are described. This kind of network re
presents a simplest purely digital kind of neural net. It is interesting
from the point of view of realization by digital technology.

Vítková G., Míček J.: Knowledge Processing by Neural Networks
. . . 171

The basic properties of neural associative memory and the main
abilities of fuzzy cognitive maps are described. The associative me
mory extrapolation based knowledge system for diagnostics is pre
sented.

Horejs J A View on Neural Network Paradims Development
(Part 3) ... 185

Literature Survey 162, 170, 183, 184, 192

ISSN 46999

Editorial

Being interested to bring to the readers a good se
lection of interesting contributions arising from the
East and the West in if possible equal range, we have
chosen from the increasing amount of manuscripts
which were send to us for the third issue of our Jour
nal: two papers from the Netherlands, one from Italy
and two from Czechoslovakia.

We also took care to the balance among theoretical
ly oriented papers, the papers presenting the overall
general views and the papers oriented more to appli
cations.

From the last point of view the paper prepared by
Vitkova and Micek is hoped to be interesting. The
paper written by Kerckhoffs opens very inspiring

insight on the development of complex user oriented
simulation and knowledge systems supporting the hu
man experts activity in several significant areas, like
banking, transportation control and engineering sys
tems faults prediction, detection and protection.

This represents the main part if this issue content.
Beside this, we insert in this issue some information
on papers and books which appeared in the last time.
Of course, the preference is given to the original con
tributions and the above mentioned information is
therefore presented in limited extend only.

M. Novak

A VIEW on
PROBLEM-SOLVING PARADIGMS INCLUDING

NEUROCOMPUTING
Eugene J. H. Kerckhoffs

Connectionism is considered as a problem-solving pa
radigm among other methodologies such as (numeric)
simulation and (symbolic) reasoning. In order to create
still more powerful and useful problem-solving tools, si
mulation systems, knowledge-based expert systems and
connestionist systems can, at least in principle, be cou
pled. The spectrum of these so-called “coupled sy
stems” (or “ hybrid systems”) is surveyed with respect to
methodological aspects, functionalities and practical
applications. The emerging role of parallel processing
when dealing with the more complex systems in either
domain is discussed. Finally, some neural-network ap
plication projects currently running at Delft University
of Technology (the Netherlands) are briefly dealt with;
they might illustrate some of the issues considered.

1. Introduction

Engineers are assumed to solve (technical) pro
blems in engineering, such as physical, chemical, me-

*) Delft University of Technology
The Netherlands

chanical, and civil engineering. At the universities stu
dents are instructed on how to solve problems in va
rious disciplines. “Problem solving” is a major issue
in daily life. There exist several paradigms to solve
problems. Problems can be solved a.o. by calculation,
by reasoning, by learning and subsequent generalizati
on, or by a combination of these. It depends on the
particular problem concerned and the circumstances
what is most efficient.

Let us consider a simple, even trivial, example to set
the scene. Suppose we have to organize a number of
matches, each with two players; the loser of a match is
out, the winner continues the competition. The total
number N of players is 16, and the problem is how
many matches are to be organized. In the very essen
ce, this is a computing problem. The straightforward
way to solve the problem is by numeric calculation.
The total number of matches is:
(16/2) + (8/2) + (4/2) + (2/2) = 15. However, the
straightforward or obvious way to solve a problem do
es not necessarily need to be the most efficient. For
example, the problem considered here could be solved
by reasoning. Instead of oft the match winners we fo
cus on the losers. At the very end there is only one (fi-

NNW 3/91, 129-154 Kerckhoffs: Problem-Solving Paradigms

nal) winner, hence we have M — N-l losers in total.
Since each match delivers one loser, we clearly have
to organize M, hence 15, matches. With respect to the
value of N (the number of players), obviously the rea
soning method is the most efficient, i.e. the effort to
solve the problem is entirely independent of this va
lue. (Note: if the problem was to find the number of
matches in each round, only the numeric computing
method is feasible).

Under certain conditions there is another way to
solve the above problem. Suppose, we have “learning
examples” : for N = 3, 9, and II it is known that the
number of matches to be organized is respectively 2, 8
and 10. “Generalization” of this immediately shows
that with 16 players 15 matches should be organized.
This is a really efficient way to solve the problem, be
cause given the learning examples we immediately see
the solution without consciously thinking as in the
above cases of computing and reasoning. The latter
paradigms can, of course, be used to verify the soluti
on we “fed” automatically.

The computer era, in which we live today, allows to
make extensive use of computers and computer-based
techniques to solve the real-world problems we are
confronted with. Also for computer-based problem
solving the above-mentioned paradigms and their
combinations are feasible: we distnguish numeric si
mulation systems for computer-based calculation, know
ledge-base (expert) systems for computer-based reaso
ning, artificial neural networks (ANNs) for computer-
based learning and generalization, coupled simulation
/ expert systems, coupled expert systems / AN Ns,
and the like. It depends on the problems concerned
and the circumstances what (combination of) tools
and techniques are most efficient. One of the key issu
es for future problem solving is: integration; various
tools and techniques will be integrated in order to en
hance their capabilities and compare alternative solu
tions with respect to, for instance, efficiency. Integra
ted environments to run simulations, expert systems,
artificial neural networks, and combinations of these
(compare this with the existing integrated packages
for word processing, spreadsheets and databases)
could perhaps provide — along with intelligent front-
and back-end systems — the ideal toolboxes for pro
blem solving in the future.

2. Some Problem-Solving Approaches in
a Nutshell
In this paper we focus on model-based approaches

to problem solving. As shown in Fig. 1 we may distin
guish (continuous and/or discrete) numeric models,
(rule-based and/or frame-based) symbolic models,
connectionist models and all possible combinations of
these, covered by the collective term “coupled mo
dels” (or “hybrid models”). In contrast with numeric
and symbolic systems, the are designed to model part
of the real-world problem domain we are interested

130 Kerckhoffs: Problem-Solving Paradigms

in, connectionist models are inspired by the functiona
lity of the brain. They reflect modelling at a different
level. Their network topologies may well depend on
the kind of application concerned (such as optimizati
on, classification, organization, and adaptive control).

Figure I: The spectrum of numeric, symbolic, connectionist and cou
pled models

In principle the numeric, symbolic and connectio
nist paradigms can be coupled in order to create still
more powerful, more useful and more user-friendly
problem-solving tools. The interdisciplinary use of
knowledgebased, numeric and connectionist methods
is still largely prescientific; the research community
has hardly begun to establish a rigorous methodology
for developing coupled systems. The current state-of-
the-art in coupled systems, although evolving especi
ally in the coupled numeric/symbolic field [Kowalik
and Kitzmiller, 1988], [Widman et ak, 1989], are not
particularly sophisticated. Most existing coupled sys
tems employ relatively simple coupling schemes and
combine the simpler methods of each discipline.

In general, it is useful to think of three methodolo
gical levels of coupling [Widman and Loparo, 1989]:
shallow, deep and “very deep”. (It should be noted
that the usage of the terms “shallow” and “deep' dif
fers from the usage of these in describing expert-sy
stem knowledge bases; see section 2.2). In shallow
coupling, a system treats another one as a black box to
be called as needed. In deeply coupled systems, in
a way a system has additional “knowledge” about
another system that is coupled to it. In “very deep'
coupling there is no real distinction between the sepa
rate systems; they are fully integrated.

In the technical sense, it is more common to speak
of loosely coupled, tightly coupled and fully integra
ted systems. In loosely coupled systems, the communi
cation relies mainly on simple file interfaces; variati
ons may include pre- and postprocessing by one sys
tem of data provided by another system. In tightly
coupled systems, the communication is established by
data passing. Variations may include blackboard-sys
tem, cooperating-system and embedded-system tech
niques. in fully integrated systems, it is hard to dis-

NNW3/91, 129-154

cern any separate modules and communication is ac
complished through a dual nature of the structure.

All of these have their benefits and limitations. As
for the loosely coupled systems the benefits include
model simplicity, ease of development, usability of
commercially available software, and reduced mainte
nance time, whereas limitations are operation speed,
communication overhead, overlapping data gathering
and redundancy in the development process.

Benefits of tight coupling include reduced commu
nication times, increased run-time performance, retai
ned modularity and being more robust and sophistica
ted than loose coupling. Limitations are the increased
development and maintenance complexity, limited
possibilities in using available software and more dif
ficult testing.

The benefits of fully integrated systems are operati
on speed and resource utilization, elegance and robust
ness of the model, flexibility in development and no
redundancy in data gathering. Limitations, however,
are the complexity in conceptual and design issues, in
creased development time and resource requrements,
the lack of commercially available tools, and increa
sed complexity in testing and maintenance.

2.1 Numeric simulation systems

Computer simulation is the problem-solving pro
cess of predicting the future state of a real-world sys
tem by studying a (more or less idealized) computer
model of this. Simulation experiments are usually per
formed to achieve predictive information that would
be costly or impractical to obtain with real devices.
Typical applications would include determining the
most energy-efficient design for a reactor, the best mix
of reactants to maximize production of a certain pro
duct, and the optimum capacity and lay-out of a facto
ry. Ultimately, information gained from simulation
experiments should contribute to decision making
with respect to real-world systems modelled by the si
mulations. Other purposes of simulation could be the
accessibility and documentation of knowledge about
specific real-world systems, and education and trai
ning.

There are two major types of simulation: conti
nuous and discrete. Continuous simulation predicts
the behavior of systems that can be described by (ordi
nary and partial) differential equations, such as elec
trical, mechanical, thermal, and fluid devices. Discrete
simulation predicts the behavior of event-driven sys
tems, such as manufacturing plants, purposeful mo
vements of people such as in bank queues, and messa
ge traffic on networks. Typically, these event-driven
systems use stochastic processes to model unknown
influences on the system.

Building and using a simulation model is a skilled
process requiring expertise in a number of theoretical
fields including statistics, systems analysis, and nume
rical analysis. Also, practical rules of thumb and expe

rience are needed to use simulation as an effective
tool. Simulation studies normally follow some well-
defined subsequent steps with possible feedbacks (see
Fig. 2):
— Problem specification (result: detailed abstract pro

blem description)
— Selection of modelling method, conceptual model

description (result; tool-independent mode des
cription)

— Selection of solution techniques and tools, realiza
tion of an executable model (result: tool/compu-
ter-dependent model)
Model validation (result: validated model)
Experiment planning, performing model experi
ments (result: simulation results)

— Analysis and interpretation of results.
The programming languages available for simulati

on include the general-purpose languages such as
FORTRAN, PL/1, C and Pascal. Specialized langua
ges have evolved for certain types of simulation. Con
tinuous simulation is supported bv DYNAMO,
CSMP, ACSL, CSSL IV, and many others. Discrete-
event simulation is supported by process-oriented lan
guages such as GPSS and SIMSCRIPT 11.5, and ob
ject-oriented languages such as SIMULA and
SMALL-TALK-80. As the limitations of these langua
ges have become more apparent, hybrid languages
combining features of several types of simulation have
become available (e.g. PROSIM, COSMOS, SLAM II,
SI MAN).

K P re tTuM ANALYSIS y

PROBLEM IDENTIFICATION
•nd SPECIFICATION

Figure 2: Stages in a typical modelling and simulation process

NNW 3/91, 129-154 Kerckhoffs: Problem-Solving Paradigms

There exist many good introductory textbooks in
the simulation field covering various aspects such as
simulation methodology [Zeigler, 1976 & 1984], ma
thematical modelling techniques (Spriet and Van-
steenkiste, 1982], continuous simulation (Roberts et
ah, 1983] and discrete simulation [Neelamkavil, 1987],

2.2 Knowledge-based (expert) systems

Artificial intelligence (AI) programs are assumed to
perform tasks that, if performed by a human being,
would be considered intelligent. AI includes many fi
elds, such as robotics, natural-language understan
ding, machine vision, character and speech recogniti
on, and machine learning. The area that currently has
the largest impact outside the research setting, how
ever, is that of knowledge-based (expert) computer
systems. The terms "knowledge-based systems" and
“expert systems” are commonly used to indicate the
subfield of AI that deals with reproducing human ex
perts’ behavior given a problem within their specia
lisms. A knowledge-based system is an intelligent
computer program that uses knowledge and inference
procedures to solve problems that are difficult enough
to require significant human expertise for their soluti
on; if the human expertise in a specific narrow do
main is emulated, we speak of a (knowledge-based)
expert system [Harmon and King, 1985], [Johnson,
1984],

Expert systems typically consist of a knowledge ba
se, which includes the expert knowledge available,
and an inference engine, which contains the control
structures that enable the program to use the knowled
ge base.

Modern expert systems contain one or more me
thods of knowledge representation, and one or more
control algorithms.

C O N S U L T A T I O N L E V E L

N . In s t a n t ia t e d g o a l* , o b j e c t * , ru le * ,

\ Ä n d In f e r r e d f a d #

P R O C E D U R A L L E V E L

Ns\ ^ G o a l * a n d « e t * of rule* \
D E S C R I P T I V E L E V E L

N . C o n t e x t * , o b j e c t * a n d r e l a t lo n * h l p *

\ ^ ' v

M E T A - L E V E L

R u t* * that e x a m i n e th e o t h e r l e v a i «

Figure 3: Knowledge at different conceptual levels

Knowledge can be represented at different concep
tual levels (see Fig. 3): consultation, procedural, des

criptive, and meta-level. Depending on the knowled
ge-representation technique used, knowledge-based
systems can be distinguished between:
— rule-based systems (knowledge at the procedural

and — if the system is being used — consultation
level), embodying independent chunks of knowled
ge (production rules), and
object-oriented or frame-based systems (knowledge
at the descriptive, procedural and — if being used-
consultation level).
In the latter case, the developer starts by describing

objects and their relationships; some of the objects
might have rules associated with them, and these rules
would create a procedural level. Structured rule-based
systems and context trees are between the above-men
tioned extrema.

For both above types of knowledge representation
the standard control algorithms are forward and back
ward “chaining". Backward chaining is a reasoning
method starting with the desired goal (goal driven); in
forward chaining the reasoning proceeds from input
data (data driven). A major strength of these algo
rithms is their ability to deal with uncertainty. Uncer
tainty can arise from noisy, unavailable or incorrect
data and incomplete or self-contradictory expert know
ledge. Uncertainty is quantified by “confidence fac
tors" with each datum and each rule, yielding in the
reasoning process to confidence factors for the con
clusions and recommended actions.

Most expert systems that nowadays are in widespre
ad use are of the “first generation" (i.e. shallow reaso
ning systems based on empiric rules of thumb). They
have shown limitations with respect to representing ti
me-varying phenomena, performance outside the nar
row range of expertise, ensuring consistency in the
knowledge base, and the ability to learn form errors.
Some of these are addressed in the “second-generati
on” and even “third-generation" expert programs. In
second-generation expert programs the knowledge is
primarily captured in {deep) models of the expert do
main rather than in empiric rules of thumb. In con
trast to production rules, that capture the empiric
mapping from causes to effects without asserting cau
sality, these models capture explicitly causal relation
ships in the system being modelled. As these deep mo
dels have become more complex, their application has
become progressively more difficult. Third-generation
expert systems focus on learning or parameter tuning
from examples; they still are rare.

AI programming has traditionally been done in the
FISP and in the PROLOG language. These are howe
ver not unique in supporting AI programming; some
large and complex expert computer programs have
been written in conventional languages such as C,
Pascal, Modula and even FORTRAN. FISP-to-C con
verters are becoming more popular because C is faster
and more widely available.

In addition to the above languages, there exist dedi
cated software packages that support the development
and application of expert systems: “on-the-shelf" sys-

Kerckhoffs: Problem-Solving Paradigms NNW3/91, 129-154

terns and expert system shells (or tools). Shells provi
de the user more general support than (A1-) languages
do; languages are however more flexible. Three well-
known hybrid tools with multiple knowledge repre
sentations and inference techniques) are: ART, KEE
and Knowledge Craft. These tools are LISP-based
and run on LJSP-machines (such as Symbolics and
TI-Explorer) or advanced workstations. KEE has
been ported to PC, which is an interesting develop
ment. Meanwhile, a collection of PC-based hybrid
tools has appeared on the market, which exploit the
enhanced capacity of PCs (like 386-based PCs) to of
fer a representational power comparable to the larger
systems at moderate prices. Examples are: Gold Hill’s
GoldWorks, Neuron Date’s Nexpert Object, TI’s Per
sonal Consultant Plus, and Intellicorp’s 386-based
version of KEE.

For a general introduction to A1 concepts, the rea
der is referred to [Tanimoto, 1987]. Expert system
technology is reviewed in [Hayes-Roth et ah, 1983],
[Buchanan and Shorlife, 1984] and [Szolovits, 1987],

2.3 Coupled simulation / expert systems

In the sections 2.1 and 2.2 there was talk of two his
torically distinct approaches to model reality: numeric
(quantitative) and symbolic (qualitative) modelling.
Since the mid 1980s the gap separating these two
schools has narrowed. Both the numerical modelling
community and the AI community have found that AI
can contribute to simulation and simulation to AE
The growing cross-fertilization of ideas between the fi
elds of AI and simulation is evidenced by the inclusi
on of special sessions at the major simulation confe
rences since 1985. Also in 1985, the first (stand alone)
Working Conference on “AI and Simulation” in Eu
rope was held at the University of Ghent, Belgium
[Kerckhoffs et ah, 1986]. In the AI community, the US
National Conference on Artificial Inteligence held its
first Workshop on AI and Simulation in 1986.

KNOWLEDGE BASED SIMULATION SIMULATION SUPPORTED REASONING

NUMERIC NU ME R I C / S Y M B O L I C SYMBOLIC

Figure 4. The spectrum o f numeric/symbolic systems

A) B)

C) D)

Figure 5: Expert systems in simulation: A) embedded, B) advisory, C)
intelligent front-ends (IFEs), and D) decision support; as distinct from
embedded systems and IFEs, the expert systems in B) and D) are nor

mally also denoted as “cooperating systems''

The spectrum of coupled numeric/symbolic sys
tems can globally be subdivided in “knowledge-ba
sed simulation systems” (AI included in simulation)
and “simulation-supported reasoning systems” (simu
lation included in AI). Fig. 4 shows examples in each
of these categories, seen from a functional point of vi
ew. Because of the diversity in practical realizations,
they may well overlap and shift along the spectrum of
coupled numeric/symbolic systems. Knowledge-ba
sed simulation systems can be distinguished in (see
Fig. 4 and 5):

1. (Numeric) simulation systems. See section 2.1.
2. Simulation systems with embedded expert systems.

For example, a simulation system may obtain know
ledge about queue priority from an embedded ex
pert system according to the states of the modelled
objects [Castillo et al., 1988].

3. Simulation systems and advisory expert systems.
An advisory system or advice giving system is an ex
pert system that gives coherent useful advice on an
particular topic following a short consultation. Simu
lation system and expert system are both accesible to
the user; they may well cooperate and share some da
ta (see Fig. 5B). Advisory systems for simulation are
developed for application in the various stages of the
modelling and simulation process as shown in Fig. 2.
Most of the first available expert systems are applica
ble for only one isolated problem area, such as the se
lection of a model-adapted and computer-adapted si
mulation language [Elmaghraby and Jagannathan,
1985] or analysis of results for presentation to the
user. Also conceptual modelling is a particular area of
the simulation process where users may benefit from
advice. An example of an expert system in this vein is
given in [Doukidis and Paul, 1985], which allows natu
ral-language input of model definitions and prompts
the user to extend these definitions, pointing out inac
curacies and inconsistences. More recent research

NNW3/91, 129—154 Kerckhoffs: Problem-Solving Paradigms

projects typically address more than on of these pha-
ses in the simulation process.

4. Simulation systems with intelligent front-ends
(IFEs). An intelligent front-end is a user-friendly inter
face to a simulation software-package that would
otherwise be technically incomprehensible and/or too
complex to be accessible to many potential users.
Front-ends are directly accessible to the user, whereas
the access to the simulation system is exclusively
through these front-ends (see Fig. 5C). This class of
expert systems is used to bridge over the gap between
problem domains and a certain modelling tool. The
meaning and description of items of a specific appli
cation domain are internally mapped into terms used
and needed by the particular modelling tool. Exam
ples of IFEs are described in [Fjellheim, 1986] and
[Muetzelfeldt et al., 19861.

5. Simulation-based decision support systems. Frequ
ently, simulation studies are aimed to provide predic
tive information which ultimately should contribute to
decisions. Expert systems can select (especially in da
ta overload situations) pertinent data and help in the
interpretation of trends, provide perspectives from si
milar cases in its database, and help define further qu
estions and new simulation experiments addressing
unresolved issues [Mellichamp and Wahab, 1987]. Si
milar to the advisory systems mentioned above, decisi
on support systems and their related simulation sys
tems are separately accessible to the user (see
Fig. 5D). Decision supporting expert systems take ob
viously more part in the proper problem-solving pro
cess than the expert systems included in the knowled
ge-based simulation systems considered in the forego
ing points 2—4.

6. Simulation systems with multiple decision-making
agents. Here, the real-world system is modelled partly
by a traditional simulation model (e.g., physical pro
cesses) and partly by an expert system to mode! the
decision making processes.

7. New integrated systems. In these systems the si
mulation paradigm is changed essentially using know
ledge-based technology; we speak of new simulation
development environments. In fact, the simulation sys
tem and expert system are fully integrated. Well-
known examples are Knowledge-Based Simulation
System (KBS) developed at Carnegie-Melon [Fox et
al., 1989], and Rule-Oriented Simulation System
(ROSS) developed by the Rand Cooperation.

The systems considered in point 3, 5 and 6 are so
metimes termed as “cooperating systems” [Merkurye-
va et al., 1990]. Programming paradigms for knowled
ge-based simulation systems include:

— Object-oriented programming (eventually with em
bedded rules). Examples are: LASER/SIM (IntelH-
Sys. Corp.), KBS (Carnegie-Mellon), ROSS (Rand
Corp.).

— Rule-based programming. Examples are given in
[Merkuryeva et al., 1990].

— Logic programming. The knowledge-based simulati
on systems may be based on different derivations
from the Prolog family such as T-CP, T-Prolog and
TS-Prolog, adapted particularly for simulation.
Examples are given in [Merkuryeva et al., 1990],

— Multiple programming. Different programming sty
les are used in one simulation environment. For
example, available hybrid expert system tools, inte
grating several programming styles, are used to bu
ild knowledge-based simulation systems (e.g., KBS
using SRL [Fox et al., 1989], SIMKIT using KEE
[Nielsen, 1987]).

Simulation-supported reasoning systems may be
functionally distinguished in (see Fig. 4):

1. Knowledge-based control systems in simulation en
vironment. Using knowledge-based expert systems in
(real-world) supervisory and also direct process con
trol is becoming an increasingly important application
domain. Simulation of the process to control would
replace the often complex, expensive and fault-prone
input and output interfaces and related programs bet
ween the controller and the process. It can also serve
as a testbed within which precise, well-designed expe
riments might be run in order to check the knowledge-
based controller with respect to its perfect working.
Hence, in the simulation domain we are confronted
with a knowledge-based expert system controlling
a simulation system. The knowledge base may contain
process knowledge (such as the order of the process,
the parameters and their values and variations, non-li
nearities), technical control knowledge (e.g., rules to
control damping and overshoot) and heuristic know
ledge based on past experiences (for example, with
respect to similar processes).

2. Simulation systems as a testbed for expert systems.
Simulation may be used to verify expert system rea
soning as a refinement of the expert knowledge base.
For example, in a design problem the expert system
would select reasonable bounds for each of the para
meters concerned; simulation with optimization routi
nes could then be used to select the best parameter
values. Simulation can also be used as a double-check
on the expert program in tasks such as fault identifica
tion or planning, in which the system concludes that
a given problem exists or a given sequence of actions
will lead to the desired goal.

3. Expert systems with embedded simulation systems.
During its operation the expert systems may use data
which are produced by an embedded simulation sys
tem. For example, the expert system may need a si
mulation to obtain some results for the user [O’Keefe,
1986]. An expert system may use one or more time-de
pendent variables and a simulation is needed for up
dating their values; in [Russel, 1989], applications are

134 Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129—154

considered where the expert system needs to know the
position of a military aircraft.

4. Qualitative simulation systems. Qualitative simula
tion, also termed “envisionment”, is the most com
mon application of qualitative reasoning; it is used to
describe changes in quantities and their propagation
[Forbus, 1984], These changes are characterized by qu
alitative values, such as “increasing” and “decrea
sing”. Along with describing changes in quantities,
the qualitative simulation identifies possible changes
in the state of behavior of the device. For instance, if
water is being heated, at some time it may begin to bo
il, representing a change of state from liquid to ga
seous. While there are many advantages to qualitative
simulation, it does have its limitations. A primary
drawback is the frequency of ambiguities in determi
ning how quantities change. To resolve these, several
methods have been explored such as combining quali
tative reasoning with quantitative techniques to choo
se among the different possibilities generated by the
envisionment.

5. Knowledge-based expert systems: 2nd-generation
(deep-model based) and 1 st-generation systems. See sec
tion 2.2.

For more details about coupled numeric/symbolic
systems including knowledge-based simulation sys
tems and simulation-supported reasoning systems,
the reader is referred to the literature fFishwiek and
Modjeski, 1991], [Widman et ah, 1989], [Merkuryeva et
ah, 1990], [Kowalik and Kitzmiller, 1988].

2.4 Artificial Neural Networks

An artificial neural network (ANN) is an adaptive
information-processing system that develops its own
algorithms (in response to its environment) to solve
the problems concerned, without especially having
been programmed for that. A neural network is adap
tive or self-organizing: it learns on the basis of trai
ning. These characteristics reveal AN Ns truly a new
computing paradigm.

An ANN consists of a number of identical, fairly
simple processing elements called neurons, that are
densely interconnected. The particular fashion in
which the neurons are connected is called a network
paradigm, of which there are currently some 15 in
common use. Just like a human neuron, each artificial
neuron can have any number of inputs but only one
output, which may branch out to become the input for
many other neurons (see Fig. 6). Some neurons in an
ANN receive their input from the outside world (in
put neurons). The signals handled by an ANN may be
analog or digital. In either case, during processing
a neuron performs a weighted sum of its inputs, and if
that sum exceeds a given threshold, the neuron out
puts a signal: it “fires” or is “stimulated”. (Often, the
neuron’s “activation function” is not a hard limiter,

but a continuous function such as the Sigmoid-functi
on considered below). During “learning” the weights,
which affect the relative strength of each input of any
neuron, are modified according to both a “learning
rule” and the data being presented to the ANN. Infor
mation or knowledge in an ANN is represented by the
complex patterns of neuron stimulations and the adju
sted weights associated with each interconnection.
The knowledge associated with an ANN is therefore
distributed throughout the network, and not located
in any one location as it is in other computing sys
tems.

The diffuse, highly parallel structure of information
in an ANN offers interesting advantages. First, it may
make an ANN inherently more resistant to damage
than a traditional computing system. Second, it may
eventually allow AN Ns to be implemented successful
ly in very large VLSI chips, since they could tolerate
many more defects. Third, in a parallel processing en
vironment it would enable an ANN to solve many
problems very quickly, even though its individual pro
cessors are quite slow. Despite their superficial resem
blance, AN Ns exhibit a surprising number of the
brain's characteristics. For example, they can learn
from experience (i.e. modify their behavior in respon
se to their environment), generalize from previous
examples to new ones (note the example in section 1)
and abstract essential characterises from inputs con
taining irrelevant data.

ANNs are currently implemented with several diffe
rent training algorithms. The most popular network is
the multilayer backpropagation neural network
(BNN) which has a structure similar to the one in
Fig. 6, however in general with multiple hidden
layers; the training is supervised (i.e. on the basis of
the differences between actual and desired outputs),
and during the training phase the errors that appear at
the output neurons are “baekpropagated” through the
net [Rumelhart and McClelland, 1987], In the BNN of
Fig. 7 the variables ujs_ M, w|¡’1 and Ijs| respectively re
present the current output state of the i-th neuron in
layer s-1 to a j-th neuron in layer s and the weighted

NNW 3/9I, 129—154 Kerckhoffs: Problem-Solving Paradigms

summation of inputs to a j-th neuron in layer s. Trai
ning the BNN implies the computation of the synaptic
weights (w’s) such that corresponding desired or tar
get outputs (d’s) will appear on the output layer neu
rons when a set of data is presented to the neurons of
the input layer. Once training is completed, correct
outputs are available, also if previously unknown data
samples are presented (generalization).

LAYER (s-1) LAYER (s) (OUTPUT) LAYER (s+t)
NEURONÍ NEURONÍ NEURONk

(4)
k

For more details on BNNs the reader is referred to the
literature on neural networks [Soucek, 1989], [Wasser-
man, 1989], [Dayhoff, 1990],

ANNs can be simulated on traditional sequential
computers. There exist many commercially available
neural network development systems, e.g. Neural-
Works from NeuralWare Inc., Nestor Development
System (NDS), Cognitron from Cognitive Software
Inc., ANSirn from Science Application International
Corp., DESIRE/NEUNET [Korn, 1989], Genesis
from Neural Systems Inc., and many others. It is evi
dent that there is an increasing interest to implement
ANNs on general-purpose parallel computers in order
to try reducing especially the often long training ti
mes; an example is presented in section 4.4.

2.5 Coupled systems including ANNs

Figure 7: The backpropagation neural network (BNN)

The process in the BNN-neuron j in layer s results
in an activation u |s| which is mathematically characte
rized

where

g(I)
__ 1
1 + e i

(I)

is the so-called Sigmoid-function. In the forward pass
these activations are propagated from predecessor
layer to successor layer.

During the backward pass (in the training phase)
weights are modified according to

Aw ^ (t + 1) = i]5 !s,u !s M + aAw ^(t) (2)

Recently, we have seen a beginning appearance of
articles and papers dealling with the combined usage
of expert systems and ANNs as well as simulation sys
tems and ANNs, and even all three approaches com
bined in one application. It would be useful to arran
ge those coupled systems functionally along the two
edges concerned of the triangle in Fig. 1, and in the in
terior of this triangle as well, just as we did for cou
pled numeric/symbolic systems (see section 2.3 and
Fig. 4). It is the author’s current study and research to
do so in the near future. Therefore, rather than presen
ting a functionally systematic overview on coupled
symbolic/connectionist and numeric/connectionist
systems, in this section we shall restrict ourselves to
some preliminary notes and comments. One remark in
advance is, that up to now coupled symbolic/connec
tionist and numeric/connectionist systems did not
mature to such wide-spread applications as we current
ly see with coupled numeric/symbolic systems, and
even for the latter we are just in the very beginning
[Kowalik and Kitzmiller, 1988], [Widman et ah, 1989],

where q and a respectively denote the “learning rate”
and “momentum”, and t characterizes the backward
cycle concerned. The so-called error signal 5 in Eq. (2)
is defined for neuron k in the (output) layer s + 1 as
(see also Fig. 7):

51; ‘ 11 * (A - u'l 1 "% '(C °) : ck ~ ia = r.k, (3)
where

g'(i) = 4f- = g (i -g) .

For neuron j in a hidden layer s this error signal 5 is
given by:

a) Combining neural and symbolic processing

Historically, AI has been separated into symbolic
and nonsymbolic approaches to simulate intelligence.
For a considerable time the symbolic approach has
dominated, but the interest in parallel (distributed)
processing in recent years has given the nonsymbolic
approach new momentum. The symbolic approach (or
more specifically knowledge-based systems and ex
pert systems), however, have yielded systems with ca
pabilities different from those of nonsymbolic systems
(such as ANNs or connectionist systems). ANNs have
shown to be adept in tasks such as image processing
and pattern recognition, whereas expert systems have
had more success in problem solving and game
playing. To provide systems that demonstrate both

136 Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129—154

characteristics (referred to as “ low- and high-level
cognitive processing“ [Hendler, 1989] or “behavior-
based and knowledge-based problem solving” [Steels,
1989], several approaches are possible:
— Designing a methodology for getting expert sys

tems to handle image processing, pattern recogni
tion and other perceptual processes

— Designing a methodology for getting AN Ns to hand
le high-level symbol-processing tasks in applied
domains, involving for example manipulation of
data structures and handling variable bindings

— Linking the current connectionist systems and the
current symbolic systems, and produce coupled sys
tems exploiting the strengths of both.

Currently, the focus is mainly on the last-mentioned
possibility. The most important reason for combining
neural and symbolic processing are their complemen
tary characteristics. Most ol (he limitations of expert
systems, such as

unadaptiveness,
no generalization capabilities,
difficulty with complex pattern matching,

—- the knowledge-acquisition bottleneck, and
relatively slow' performance in normal operating
environments

may be overcome by the benefits of AN Ns. Vice versa,
the limitations of AN Ns, such as

non-transparency
— lack of explanation facilities, and

extensive initial training needs
may be overcome by the benefits of expert systems.

The three models for coupled (or hybrid) systems
that we described in the heading of section 2, namely
loosely coupled, tightly coupled, and fully integrated,
do obviously apply to coupled eonnectionist/symbo-
lic systems [Serra, 1989],[Amy et al., 1990], Loose cou
pling may include coprocessing as well as pre- and
postprocessing by AN Ns functioning as a user-inter
face. As shown in Fig. 9, tightly coupled systems may
embody blackboard systems, cooperating systems and
embedded systems; an example of the latter can be
found in [Hendler, 1989], w'here a local connectionist-
like network is embedded into a symbolic network.
Fully integrated systems are sometimes referred to as
connectionist expert systems [Gallant, 1988], In the
spectrum of coupled connectionist/symbolic systems,
these connectionist expert systems have the same loca
tion (namely, in the middle) as the new integrated
knowledge-based simulation systems have in the spec
trum of numeric/symbolic systems (see Fig. 4).

For practical applications of coupled connectio
nist/symbolic systems the reader is referred to the lite
rature, a.o. [Bigus and Goolsbey, 1990], [Schreinema-
kers and Touretzky, 1990], [Rabelo and Alptekin,
1989], and [Vercauteren et al., 1989],

b) Combining neural and numeric processing

In principle, again the above three models of cou
pled systems do apply. Loose coupling may include

f igure 8: Loosely-coupled connectionist symbolic systems (NN: neural
net)

preprocessing by AN Ns of data needed as input for
numeric simulation systems (an example of this is gi
ven in section 5.2) or preprocessing by numeric sys
tems of input data for AN Ns (see the example dis
cussed in section 5.3). lightly coupled connectionist/
numeric systems may embody cooperating systems
and AN Ns embedded in numeric systems. Systems in
which neural and numeric processing are fully inte
grated may be possible, since analytical functions can
be learned and generalized by AN Ns (note: in con
trast with “connectionist expert systems”, the author
never met the term “connectionist (numeric) simulati
on system”).

Since AN Ns do well in pattern-recognition tasks
and simulation modelling can often be formulated as
a pattern-recognition problem, AN Ns could at least in
principle be employed in the modelling process. As
such, the use ol them is comparable with the employ
ment ol expert advisory systems in numeric simulati
on (see section 2.3). Let us consider an example con
cerned with the selection of an appropriate numeric
model for a given input-output data stream of a so-
called ill-defined system (input-output measurements
subject to noise and other inaccuracies). Each candi
date model (on the basis of a priori knowledge) can be
characterized by a point in an n-dimensional feature-
space. If all the features are independent, it is possible

(a) BLACKBOARD

(b) COOPERATING (c) EMBEDDED

Figure 9: Tightly-coupled connectionist/symbolic systems (NN: neural
net, ES: expert system)

NNW 3/91, 129-154 Kerckhoffs: Problem-Solving Paradigms 137

3. Problem-Solving Capabilitiesto select a model on the basis of feature selection.
Then, by investigating the variability of each feature,
one can decide which model best corresponds with
the real-world system. ANNs are proposed for classi
fication of the least variable feature [Vermeersch et al.,
1990],

There is an increasing use of ANNs in nonlinear
process control. A reason may be that the control
tasks are extremely knowledge-intensive and there is
a need to integrate various decision-making modules
into one effecively functioning mechanism. The
ANN’s training process reflects that complexity, super
imposing different pieces of knowledge onto the dis
tributed memory of the ANN [Pao and Sobajic, 1990].
Moreover, the benefit of adaptiveness of ANNs may
be very useful in process control. The development of
a neural-net control system strategy normally pro
ceeds in two steps: first, we deal with a simulated en
vironment (see Fig. 10) and second, the simulated sys
tem is replaced by the real-world system. So, in the
simulation domain we have to cope with a coupled
connectionist/numeric system: neural-net control sys
tem. in the spectrum of coupled connectionist/nume
ric systems, neural-net control systems are functional
ly similar to the knowledge-based control systems in
the spectrum of coupled numeric/symbolic systems
(see section 2.3).

a) DIRECT MODE b) INDIRECT MODE

Figure 10: Direct and indirect mode neural-net control in the simulati
on domain

c) Integrating numeric, symbolic and neural computing

In [Ballard, 1990], an ongoing research effort is des
cribed whose goal is to develop a single, unified com
putational paradigm for conjoint computing which in
tegrates concepts from symbolic processing, numeric
processing, and neural-network technologies. The re
sult should be a novel methodology for synthesizing
intelligent systems. By combining these technologies,
it may be possible to build systems that really behave
intelligently, i.e. operate in real time, exhibit adaptive,
goal-oriented problem-solving skills, tolerate errors,
exploit large amounts of knowledge, use symbols and
abstractions, and learn from the environment.

The term“problem solving” is frequently met in the
simulation and AI literature. In simulation, problem
solving is based on model formalism and model use to
tackle e.g. “what-if” and optimization questions, whe
reas in AI problem-solving may include methods such
as generate-and-test, heuristic search, inferences, and
many others (in this paper, we concentrate on inferen
ce techniques). In the ANN-literature we also meet
the term “problem solving”, especially as far as con-
nectionist reasoning and connectionist expert systems
are concerned (see section 2.5a). For interesting gene
ral considerations on problem solving the reader is re
ferred to [Newell and Simon, 1972].

In this paper we are using a fairly broad definition
of (computer-based) problem solving. Problem sol
ving is simply the process of finding relevant answers
to questions about real-world situations by employing
problem-domain related knowledge formerly stored in
the computer. This, irrespective of the particular know
ledge representation (e.g., implicit in a differential
model, explicit in a rule- or frame-base, diffuse and
distributed in a neural net), and irrespective of the
particular knowledge acquisition (e.g., a priori know
ledge and measurements for deductive and inductive
modelling, extraction from experts, training ANN as
a form of problem solving, namely the answering of
the question: “to which class does this pattern be
long”.

a) Numeric simulation

In numeric simulation the quality of the problem
solving depends on the validity of the model used. Let
us restrict ourselves to mathematical models. Sources
for mathematical modelling are: a priori knowledge,
measurements (a posteriori knowledge) and goals. For
“well-defined systems”, the modelling methodology
encompasses deductive analysis with additional para
meter estimation and validation. For so-called “ill-de
fined systems’, appropriate techniques are necessary
to combine the (often small) a priori knowledge with
data information and goal considerations. Here, ad
vanced methods are needed for frame definition, in
ductive structure-characterization, inductive parame
ter-estimation, experimental design and goal incorpo
ration, and in addition, more than normal attention
must be paid to model validation [Spriet and Van-
steenkiste, 1982].

In Table 1, systems and goals for problem solving
by numeric simulation are listed. The ordering is ba
sed on the well-known “Arc of Karplus” [Karplus,
1976]. From top to bottom, systems are gradually
changing from “hard” to “soft” disciplines, from
“white” or well-defined to “black” or ill-defined, and
from mathematical models of high validity to those of
low validity. In fact, the table reveals the concept of
“ill-definition” : a property of systems that makes the
ir mathematical models be less valid so that their pro-

138 Kerckhoffs: Problem-Solving Paradigms NNW3/91, 129-154

blem-solving capability by simulation is reduced, For
well-defined systems we have high-quality a priori
knowledge, i.e. general mathematical laws and princi
ples of broad generality and large validity, allowing
a deducive way of modelling. For ill-defined systems,
a priori knowledge is of low quality or missing at all,
forcing us to inductive modelling techniques on the
basis of experimental fits and data interpretations of
often narrow generality and small validity.

As can be seen from Table 1, for physical and engi
neering systems the problem-solving goals can be set
on a higher level than for systems from other discipli
nes. For ill-defined systems the goals have to be more
modest so that a proper (goal-dependent) model can
be assembled.

SYSTEMS GOALS

Mechanical Systems Design

Electrical Systama
Prediction

Aero-hydro dynamical

Systama Control

Haat Systama

Chemical System« Test ot strategies

Hydrological Systems

Biochemical Systems Test of
hypotheses

Microbial Systems

Physiological Syslems
Increase Insight

Ecological System«

Economic Systems Help thinking

Psychologic Systems
Analyse data

Sociologie Systems

Political Systems Arouse public
opinion

Tahle I : Systems ami goals in numeric simulation

For satisfactory handling of ill-defined systems, ad
vanced information processing environments are ge
nerally felt to be necessary. Such environments would
comprise number crunching, advanced on-line con
trol, database management, and symbolic and neural
processing in addition to purely numeric.

Just like the other approaches to problem solving,
numeric simulation has its benefits and limitations.
While quantitative solutions to problems can be very
accurate and provide a consistent set of values for the
parameters involved, traditional numeric simulation
systems are difficult to build and modify (since they
require extensive programming effort), expensive in
their use of resources, generally inflexible and not ex
tendable in expressing model structures, insufficient
in handling incompleteness and impreciseness, lac
king of automatic examination of consistency, and are

not able to distinguish causes from effects; moreover,
explanation facilities are missing and there are no
possibilities of heuristic solutions. These drawbacks
can be eliminated by combining numeric processing
with symbolic and/or neural processing in coupled
(or hybrid) systems (see sections 2.3 and 2.5).

b) Knowledge-based reasoning

In contrast with the procedural algorithms for pro
blem solving in numeric simulation, in symbolic com
puting they are more declarative: the program specifi
es how to Find the sequence of steps needed to solve
the given problem. For example, a numeric (procedu
ral) program for selecting and optimal drug prescripti
on might calculate the quantity of drug and the inter
val between doses using a formula adjusted to the pa
tient’s age, weight, liver and kidney function, and se
verity of illness. In contrast, an expert-system (decla
rative) program for selecting the best of several antibio
tics to administer when the exact infecting organism
is not known, might assemble a list of possible orga
nisms using a knowledge base of frequent and/or se
rious organisms in the involved part of the body, the
particular part of the hospital, and the specific under
lying condition of the patient.

PROBLEM
DOMAIN PROBLEM DESCRIPTION

CONTROL Performing real world irrlervenlions
lo achieve desired goals

DESIGN The making ol specif leal ions lo create
objects saiisfying particular requirements

INSTRUCTION Teaching concepts and inlormalion to
non-experts

INTERPRETATION Analysis ol data lo determine
their meaning

REPAIR Prescription ol real-world
interventions lo resolve problems

PREDICTION Forecasting the future from a model
ol the past and present

PLANNING Creating programs ol actions that can
be carried out lo achieve goals

MONITORING Continuous interpretation ol signals
and Ihe setting ol alarms when
intervention is required

DEBUGGING
DIAGNOSIS

Finding faults in a syslem based on
Interpretation ol potentially noisy and
Incomplete data

Table 2: Some types o f problems to which expert systems have been ap
plied

Table 2 lists some problems to which knowledge-
based expert systems have been applied. Some of the

NNW 3/91, 129—154 Kerckhoffs: Problem-Solving Paradigms

criteria to decide whether a particular area of kno
wledge is suitable for problem solving by expert-sys
tem reasoning are [Widman and Loparo, 1989], [Wal
ters and Nielsen, 1988]:

The knowledge required is weli circumscribed
— There are acknowledged experts in the field

Experts can find high-quality solutions to a typical
problem in a reasonable time
Nonexperts require much more time to achieve so
lutions of generally lower quality
A timely solution to the problem is worthwhile
The knowledge base is stable: once the knowledge
is extracted, it can be used with only little modifi
cations for a substantial period of time.
Also the employment of knowledge-based expert

systems for problem solving has its benefits and limi
tations. While expert systems can reason under uncer
tainty, provide explanations about their solutions, and
are generally explicit and transparent in the capturing
of knowledge, they suffer from the well-known know-
ledge-acquistion bottleneck [Bounds, 1989], are inhe
rently very domain-specific (non-graceful degradation
of results), are difficult to ensure consistency in the
knowledge base, and are generally nonadaptive; mo
reover, they are not specifically good in image proces
sing, pattern recognition and other perceptual proces
ses, and they are difficult to parallelize due to their
inherently sequential nature (see section 4.3). To over
come these drawbacks, dependent on the problem
area concerned one might prefer another problem-sol
ving approach (neural net or coupled system appro
ach).

c.) Neural computing

AN Ns are not a panacea. They are not specificly su
ited to such tasks as, for example, calculating the pay
roll. it appears that they will, however, become the
preferred technique for a large class of pattern-recog
nition, classification and image-processing tasks that
conventional techniques do poorly, if at all. There ha
ve been many impressive demonstrations of ANN ca
pabilities: a network has been trained to convert text
to phonetic representations, which were then conver
ted to speech by other means [Sejnowsky and Rosen
berg, 1987]; another network can recognize handwrit
ten characters [B urr, 1987], and a neural-network ba
sed image compression system has been devised [Cot
trell et al., 1987]. These all used the backpropagation
network (see section 2.4).

In Table 3, some ANN applications currently under
development and investigation are listed. It shows
that the spectrum of practical ANN applications co
vers much more than the ones mentioned-above. New,
still unexpected application possibilities might be dis
covered in the (near) future. With a view to the above
broad definition of problem solving, we may conclude
that very many of the today’s ANN applications show
problem-solving aspects, especially those concerned

with optimization, adaptive control, prediction, sche
duling, and the like.

*• SALES PREDICTION
*• AIRLINE SEAT SCHEDULING
" STOCK FORECASTING
** MEDICAL EXPERT SYSTEMS
“ PHONETIC TYPEWRITER
" SENSOR FUSION
•* HEARING AID CHIP
*• PATTERN RECOGNITION
** TOYS
** SHARE PORTFOLIO MANAGEMENT
•* INDUSTRIAL DEFECT DETECTION
*• OPTIMI7AUON
** ADAPTIVE CONTROL
** SIGNATURE RECOGNITION
** FACE RECOGNITION
*• RADAR ECHO IDENTIFICATION
*• SONAR CLASSIFIER
'* VISUAL TEXTURE ANALYSIS
** ROBOTS
•* HANDWRITTEN CHARACTER

RECOGNITION
” MULTISENSOR ANALYSER
'* EVALUATING INSURANCE RISKS
*• ACOUSTIC EMISSION ANALYSIS

CREDIT WORTHINESS EVALUATION

Table .1: Some ANN applications

Just as numeric and symbolic cumputing, neural
computing has its benefits (such as adaptiveness, ge
neralization, robustness, graceful degradation, lear
ning and abstraction capabilities) and drawbacks; in
coupled systems (see section 2.3 and 2.5), the first
might be strengthened and the latter be reduced. So
me major limitations of the ANN approach are that
the network cannot be “told” facts, as can conventio
nal expert systems, and that knowledge in the network
is not easily available to the user. Unlike a symbolic
AI system, the ANN elements cannot “explain” their
numeric weighting factors.

d) Hybrid computing

In hybrid systems we are confronted with four pos
sible combinations: numeric/symbolic, numeric/con-
nectionist, symbolic/connectionist, and numeric/sym-
bolic/connectionist. From the problemsolving capabi
lities of numeric, symbolic and neural computing each
(see section 3a, b, c) and the motivations and possibili
ties to couple them (see sections 2.3 and 2.5), it is ea
sy to conclude the problem-solving capabilities of hyb
rid systems.

Returning to expert systems and ANNs, some may
that ANNs are going to replace expert systems, but
there are many indications (see section 2.5a) that the
two will coexist and be combined into systems in
which each technique performs the tasks for which it
is best suited. This viewpoint is supported by the way
how humans operate in the world. Activities requiring
rapid responses are governed by pattern cognition (wi
thout conscious effort). When our pattern-recognition
system fails to produce an unambigous interpretation
(and when time permits), the matter is referred to hig
her mental functions. These may require more infor-

140 Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129—154

mation and certainly more time, but the quality of the
resulting decisions can be superior. One can envision
a acoupled conneetionist/symbolic system as an artifi
cial system that mimics this division of labor [Wasser-
man, 1989],

4. The Emerging Role of Parallel Processing

The design motivations and application areas of pa
rallel processing systems cover a broad spectrum, and
there is increasing overlap. Along with parallel Office
Systems (such as parallel UNIX systems, e.g. Sequent
SYMMETRY and Encore MULTI MAX, parallel da
tabase systems supporting large relational databases,
and parallel Communication Systems for simulta
neously routing a number of messages, e.g. BNN
BUTTERFLY), three notable application areas do re
flect exactly the angular points of the triangle in
Fig. 1:

(Mini)supereomputers for numeric computation
and simulation
Artificial Intelligence systems for symbolic compu
tation, also denoted as 5th-generation computers
Neurocomputers, specifically designed to imple
ment artificial neural networks, also denoted as
6th-generation computers.
Users of digital computers for numeric computation

and simulation are strongly motivated to demand high
processing speeds for two distinct reasons [Kerckhoffs
and Vansteenkiste, 1990]; the increasingly detailed re
presentation required for more and more complex dis
tributed parameter systems, characterized by partial
differential equations (PDEs), and the real-time (or fa
ster than real-time) computation of complex and lar
ge-scale lumped parameter systems, described by ordi
nary differential equations (ODEs).

Also the AI community is fully aware of the crucial
importance of robust, flexible, extremely fast (hence
highly parallel) systems. Such systems are necessary to
handle the complexity and stringent real-time de
mands of the real-world problems we are confronted
with. Without computers that are enormously large
and highly parallel, true artificial intelligence is im
possible, and we are doomed to remaining tackle the
rigid toylike problems for which Al systems are too
often developed. In order to be able to develop AI sy
stems (such as e.g. intelligent robots with vision) that
concurrently recognize, move to, gain control over
and interact with moving and changing real-world ob
jects, AI researchers are increasingly turning to paral
lel processes [Uhr, 1987],

The use of artificial neural (AN Ns) to perform such
tasks as artificial vision, speech recognition, signal
processing, and the like, is promising, but especially
the training algorithms (such as backpropagation, see
section 2.4) tend to be very time-consuming. It is the
refore natural to try to capitalize on the intrinsic pa
rallelism of these systems in order to speed up the
computations. Also the increasing demands for larger

and larger networks as well as the beginning real-time
use of AN Ns require their implementation on neuro
computers or on general-purpose (massively) parallel
computers [Treleaven, 1989], [Soucek, 1989],

In section 4.1, we examine the above-mentioned
three classes of parallel computers in some more de
tail. In the subsequent sections 4.2- 4.5, we deal with
implementation aspects of respectively simulations,
knowledge-based systems, AN Ns and coupled sy
stems on general-purpose parallel computers.

4.1 Parallel computing framework

One of the earliest and most common taxonomies
for parallel computers is that of Flynn [Flynn, 1972],
He differentiated between computer structures in two
dimensions, namely flow of control and flow of data:

SISD (single instruction stream, single data stre
am), which covers all conventional uniprocessor sys
tems (such as IBM 370, DEC VAX, Sun)
SIMD (single instruction stream, multiple data
stream), which includes both vector processors
(such as Cray-1) and array processors (such as EPS
and the classic ILLIAC IV)
Ml MI) (multiple instruction stream, multiple data
stream), which covers multiprocessor systems with
both shared memory (such as Sequent SYMME
TRY) and distributed local memories (such as Intel
iPSC and NCube hypercubes).
For the MISD-architecture, no obvious example is

forthcoming.

a) Numeric supercomputers and minisupercomputers

Numeric simulation has been particularly influenti
al in the evolution of SIMD and MIMD systems,
which resulted in a wide range of supercomputers and
minisupercomputers. Although these systems have
been specificly developed for complex numeric com
putation and simulation, they may well be used (and
indeed often are being used) for AI purposes or neu-
rocomputing.

The first supercomputer to win wide-spread accep
tance was the Cray-1, which was installed in 1976. In
this computer the pipelining (vector processing) con
cept was incorporated in the architecture. The machi
ne had a peak performance of 160 Mflop/s (i.e. 160
million floating point operations per second). This
Cray-1 was the trend-setter for many later supercom
puters with a similar approach to high-speed compu
tation. Control Data introduced in 1980 the Cyber 205
with a peak performance of 400 Mflop/s. These two
(American) machines have dominated the market un
til the early 1980s, when three Japanese vendors (Hita
chi, Fujitsu, and NEC) introduced a new generation
of supercomputers with peak performances of
710—11 300 Mflop/s. Along with a better performan
ce, these machines had better vectorizing compilers.
Cray and Control Data responded to this challenge in

NNW3/91, 129— 154 Kerckhoffs: Problem-Solving Paradigms

the mid and late 1980s with new models (Cray X-MP,
Cray-2, Cray Y-MP, Eta-10); these MIMD-structured
systems were no longer uniprocessors and had consi
derably improved software. After then, new super
computers emerged and surely will emerge (Hitac
S820, Fujitsu VP2000, Cray-3).

In the above systems the individual processor is
a vector-processing unit. Currently, there is an increa
sing interest to develop massively parallel computers,
in which the individual processors are scalar CPUs.
These machines are expected to be able to deliver the
same or even more computing power than the “traditi
onal” vector-oriented supercomputers. Recently, Cray
announced to start developments in the direction of
massively parallel computers. In this respect, NCube
has starting experiences and expertise for many years.
They recently announced the fastest supercomputer of
today. Ncube-2 system (model 80) with 8192 proces
sors arranged in a 13-dimensional hypercube structure
(peak performance: 27 000 Mflop/s).

In the mid 1980s, some vendors started to fill the
gap between supercomputers and mainframes by in
troducing computers with peak performances of
“only” several tens of Mflop/s for prices comparable
to those of large minicomputers or small mainframes.
These became known as “minisupercomputers”. Their
architectures contain concepts used in supercompu
ters (both vector-processing units and multiple scalar-
CPUs), but they are built mainly with of-the-shelf hard
ware resulting in good price/performance ratios.
Currently, market leaders are Convex, Alliant and
SCS, which produce computers with peak performan
ces in the range 20 — 200 Mflop/s.

For more details on supercomputers and minisuper
computers the reader is referred to the literature, e.g.
[Hockney and Jesshope, 1988].

b) Parallel Artificial Intelligence Systems (5th-generati-
on systems)

The term “5th-generation computer” was introduced
in the mid 1980s by the Japanese authorities to an
nounce an extensive research program by Japanese
universities and computer manufacturers with respect
to a new computer paradigm. This project, with 1990
as its original goal, has had enormous amounts of fun
ding, and of publicity and imitation both in the USA
and Europe. The project focusses on developing a gi
gantic Prolog machine, capable of executing 1 000
Mlips (i.e. one billion logical inferences per second,
where each logic inference needs the equivalence of
100 to 1 000 ordinary instructions).

The Japanese initiative has had as a result, that also
elsewhere in the world extensive research projects ha
ve been started with respect to 5th-generation systems.
At present, it is not fully clear what exactly is meant
with “5th-generation computers”. The term is general
ly reserved for parallel AI systems, i.e. parallel com
puters designed to efficiently support symbolic pro

cessing. These parallel computers might also be called
“high-level language computers”, because each is ty
pically optimized to support a specific class' of high-
level programming languages. The four major approa
ches are [Treleaven, 1990]:

Object-oriented (e.g. Philips DOOM [Bronnenberg
et al., 1987])
Functional (e.g. ICE FLAGSHIP [Watson et ah,
1987])

— Logic (e.g. Bull DDC [Bergsten et ah, 1988])
Knowledge-based (e.g. the rule-based computers
NON-VON and DADO [Treleaven et ah, 1987],
and the cellular array computer Thinking Machi
ne’s Connection Machine [Hillis, 1985]).
For more details about 5th-generation systems, the

reader is referred dto the literature, e.g. [Uhr, 1987],
[Treleaven et ah, 1987] and [Treleaven, 1990]; in the
latter reference, 5th-generation system developments
within the framework of ESPRIT (the well-known Eu
ropean Stragegic Programme for Research and Deve
lopment in Information Technology) are reported.

c) Neurocomputers (6th-generation systems)

A neurocomputer is an information-processing sys
tem specifically designed to implement ANNs [Trele
aven, 1989]. Neurocomputers are said to be ol the
sixth generation, since they reflect a really new compu
ting paradigm. Current implementations involve one
or more of three basic technologies: electronic, optical
and electro-optical, although electronic implementati
ons of neurocomputers are presently dominant (the
other two technologies are beyond the scope of this
paper). Each of these implementations can be “fully
implemented” or virtual. In a lull) implemented sys
tem, each neuron is an individual processor with a fi
xed interconnection geometry, A virtual neurocompu
ter implements most of the neurons sequentially and
uses standard memory to maintain their states and in
terconnection weights. For many current applications,
virtual neurocomputers are more poupular. They are
slower than hard-wired systems, but have the advanta
ge of being more general and flexible. Many of the
current implementations use high-speed digital signal
processing VLSI chips with advanced CMOS memory
and virtual network strategies; examples of this class
of (virtual) neurocomputers are HNC ANZA and
SAIC Sigma. The next level of perfomance can be rea
ched by using multiprocessor techniques, such as in
the TRW Mark III (still virtual) neurocomputer. The
logical ultimate extension of this last kind of neuro
computers is a fully-implemented configuration, in
which each processing element consists of a unique
piece of silicon (or gallium arsenide). These systems
could be realized with digital or analog circuits. Work
on analog neurochips is being performed by AT&T
and Synapties.

142 Kerckhoffs: Problem-Solving Paradigms NNW3/91, 129—154

4,2 Parallel implementation of numeric simulation sys
tems

The definition of a supercomputer, i.e. top-of-the-li-
ne computer, given by N. Lincoln: “a system that is
only one generation behind the computing require
ments of leading edge efforts in science and enginee
ring" is not only a flexible one, but it also emphasizes
the relationship between (mini)supercomputers and
computational science, which is essentially simulati
on-based. Realistic problems may lead to very com
plex models requiring extensive computational re
sources.

For many often encountered numerical problems,
stable and robust algorithms have been devised for
SISD-type computers. It is usually clear which vari
ants of those algorithms will lead to the most efficient
implementations. This has stimulated the birth of pro
gram libraries: collections of standard portable soft
ware for problems of very different nature. Some of
these have matured to widely accepted collections of
subroutines at a distinguished high level, preventing
the user from large programming efforts and testing
problems. At present, many scientists have access to
vector computers, such as Cray-1, Cray X-MP, Cyber
205, ETA 10-P, Convex, Alliant, and the like. Early
experiences indicated that the efficient use of these
computers requires a considerable modification of
many existing codes and many popular algorithms
had to be replaced by more suitable ones. As a conse
quence, existing libraries are gradually being adapted
to other than SISD-architectures; some general soft
ware packages that are, or will be made, suitable for
a wide variety of vector computers as well include
1MSL, NAG and LAPACK.

While the use of vecor processors is quite well un
derstood by now, this is far from being true for paral
lel computers that embody shared-memory systems
with a modest number of vector processors (such as
Cray X-MP/4, Cray-2, Convex C-240, Alliant FX/80)
and local memory systems with either (a large number
of) scalar processors or (a modest number of) vector
processors, such as NCube’s hvpercubes, Intel’s hy
percubes, ETA-10E/8, and transputer-based systems
like MEIKO. At present, a major problem with those
systems is that there are many different programming
styles and different algorithms, and therefore it seems
impossible to construct general efficient transportable
software for the various computers concerned.

Rather than performance measures in, for instance,
Mflop/s provided by the vendors, realistic performan
ce comparisons and predictions are to be based more
reliably upon benchmark problems. A general additio
nal remark is that, based on the special characteristics
of the parallel or vector computer and the size of the
simulation system (e.g. the number of state equations,
the number of finite difference or finite element po
ints, the types of nonlinearities to be included), the
user must be enabled to provide various directives to
allow the compilers to recognize parallelizable or vec-

torizable code in order to take optimal advantage of
the computers’ potentialities.

For a thorough treatment of vector-oriented and pa
rallel numeric computing methods, the reader is refer
red to the literature, e.g. [Ortega, 1988] and [Schendel,
1984].

In addition to the motivations of using parallel
computers in (real-time or faster than real-time) simu
lations of complex distributed or lumped parameter-
systems as mentioned in the heading of section 4, the
re may be other motivations to apply parallel simulati
on. In methodology-based interactive simulation, the
specific architectures of such parallel computers
might well be exploited. Focussing the attention on
MIME) arrays of scalar processors, examples of this in
model implementation and experimentation are
[Kerckhoffs and Brok, 1985]:

— the exploitation of a one-to-one analogy between
a model's structure and its physical implementati
on on the computer,
model composition by assembling submodels run
ning on different processing elements (configuring
excitable units), and
interactive experimentation on model bases (for in
stance, multimodel output analysis after one single
run).

4.3 Parallel implementation of knowledge-based (ex
pert) systems

As said before (heading of section 4), the AI com
munity is increasingly turning to parallel processing.
Examples are: the use of multicomputers in percepti
on (such as image processing, pattern recognition and
computer vision); parallel processing in the structu
ring and accessing of symbolic, linguistic and percep
tual information; the use of multicomputers in speech
recognition and language analysis; the use of multi
computers in robot motor control; parallel learning
systems. A good survey can be found in [Uhr, 1987],
where is examined how well the multicomputer archi
tectures meet the demands from the various subfields
of AI. In this section, we restrict ourselves to paralle
lism in reasoning and problem-solving systems, and
more particularly to parallelism in expert systems ba
sed on production rules.

In their original pure form, expert production sys
tems use
a) sets of if-then production rules pertaining to condi
tions to be searched for in:
b) a single common memory.

Pure production systems have no control structures
(such as the ordering of rules and procedure calls)
that specify how to move between productions. How
ever, most systems are given a number of additional
control capabilities. In the following, we examine the
various possibilities of parallelism in a rule-based ex-
pert system. At the highest level we have to distingu-

NNW 3/91, 129—154 Kerckhoffs: Problem-Solving Paradigms

ish knowledge-representation (rule-base) parallelism
and knowledge-manipulation parallelism.

Rule-base parallelism can be subdivided in the follo
wing distinct types:

1. Context parallelism. In context parallelism several
disjunct contexts (groups of rules) are distributed
among different processors. Since it is plausible that
data dependency is high within a context, but low bet
ween different contexts, theoretically speed-ups can
be obtained. The speed-up attainable is determined by
the ratio of internal and inter-context data dependen
cies. Therefore, context parallelism is domain depen
dent since this ratio varies among applications. A
slightly different form of context parallelism can be
obtained if processing redundancy is allowed (over
lapping instead of disjunct contexts). The introduc
tion of redundant processing of rules in a rule-based
system can reduce the data dependency and might
well increase the speed-ups attainable.

2. Production parallelism. Production parallelism ex-
plits the possibility of distributing all productions (ru
les) among different processors. Besides the large
number of processors needed, the major disadvantage
of production parallelism is the small fraction of pro
cessors that can run concurrently. This is caused by
the implicit sequential coding of production rules.

3. Action parallelism. Action parallelism exploits the
possibility of executing the actions in the consequence
(then-part) of a rule concurrently. Since variable bin
dings occur in the antecedent (if-part) of the rule and
the actions often are independent from each other,
true parallelism might be possible. The major disad
vantage of action parallelism is the small number of
actions normally occurring in the consequence of a ru
le and the relatively short time needed to execute the
se actions, even if they are executed sequentially
[Gupta, 1987], Therefore, the possible speed-up resul
ting from action parallelism is rather limited.

4. Clause parallelism. Clause parallelism can be ex
ploited to obtain further speed-ups. In clause paralle
lism different clauses in a production are executed in
parallel. Clause parallelism can be subdivided in two
subclasses [Conery, 1987]:

4a. Or-parallelism. Consider the following clauses in
a production:
p(X) or q(X) or r(X) — , where X is an unbound

variable.
Three processes can be executed concurrently to eva
luate p, q and r respectively. If p binds X to a constant
a, q binds X to a constant b and r binds X to a con
stant c, all three bindings are legitimate and we have
found three solutions simultaneously. For example,
“p(b) or q(b) or r(b)” is true, since q(b) is true. There
fore, or-parallelism can be exploited to speed-up the
reasoning process.

4b. And-parallelism. Consider the following clauses
in a production:
p(X) and q(X) and r(X) ► , where X is an un

bound variable.
If three processes are executed concurrently to evalua
te p, q and r respectively, and p binds X to a constant
a, q binds X to a constant b and r binds X to a con
stant c, we do not have a solution of the antecedent of
the rule. For example, “p(b) and q(b) and r(b)” needs
further evaluation, since the truth values of p(b) and
r(b) are unknown. Therefore, and-parallelism cannot
be exploited directly to speed-up the reasoning pro
cess. If p(X) is evaluated first, the resulting binding
can be used to evaluate q and r concurrently. For
example, if p binds X to a, q(a) and r(a) can be evalua
ted in parallel since they are independent. Note that
this scheme does not work for antecedents of the fol
lowing type:
p(X) and q(X,Y) and r(X,Y) —► , where X and Y

are unbound variables.
On the other hand, if in this case r(X,Y) is evaluated
first, resulting in a binding of X to a and Y to b, p(a)
and q(a,b) can be evaluated in parallel. This type of
and-parallelism is only possible if the ordering in
which p, q and r are evaluated is not important. In
many production systems, however, the ordering in
which the clauses are evaluated is important and, con
sequently, and-parallelism cannot be exploited.

According to [Gupta, 1987], the average number of
clauses in a production (although dependent on the
kind of application) is about 2. Hence, the possibility
of speeding-up the reasoning process by and-paralle
lism is rather limited.

Knowledge-manipulation parallelism can be subdivi
ded in two types of conceptual parallelism (inference
parallelism and case parallelism) and functional pa
rallelism :

1. Inference parallelism. Inference parallelism explo
its the stategy to use several different inference (reaso
ning) techniques to attack a problem (note: this strate
gy is based on ideas from [Newell and Simon, 1972]
regarding “strategy shifts” of human problem solvers)
and to execute these different techniques concurrent
ly. As soon as one technique succeeds in solving the
problem, the other processes can be halted. In compa
rison with a sequential approach (where the techniqu
es have to be performed on after each other) relevant
speed-ups can be obtained if the number of techniqu
es is relatively large.

2. Case parallelism. Case parallelism can be used
whenever a variable can take on a limited number of
different values. For every possible value of the varia
ble a process can be run in parallel (independent of
the others) to infer the validity of a certain conclusion.
Proofs by exhaustion are quite common in mathemati
cal problems. Case parallelism can also be used in
those situations, where the validity of a certain state-

144 Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129-154

ment b can be proven by proving “a-*b” and “not
a-*b”. These two cases can be evaluated in parallel.
For example, induction proofs cosist of two parts. The
first part of the proof is based on an assumption such
as “i = 0“. The second part of the proof is based on
the assumption “i< > 0“ (actually, most inductions
are based on “i> 0 ”). Both partial proofs can be per*
formed in parallel. It is allowed to have a part of
a proof dependent on another part of the proof, as
long as such proo-dependencies are not cyclic.

3. Functional parallelism, Functional parallelism ex
ploits the distinct concurrent functions within an ex
pert system and the possibility to implement these on
different processors. Some functions can be imple
mented in manifold to increase the speed-up of the sys
tem further. For instance, functional parallelism was
used in the HYDRA-2 system [Kerckhoffs et al.,
1989]. Here, a User Interface, Rule-Agenda Manager,
Question-Agenda Manager, Data-Base Manager, and
Rule Processor (in manifold) were implemented to
run in parallel. Research in the HYDRA-project has
shown that functional parallelism suffers too much
from inherent sequentialism (contention problems)
and that speed-ups are limited to a factor considera
bly below 10.

It has turned out that parallelizing standard produc
tion expert systems normally yields disappointingly
little speed-up when using most of the above-mentio
ned rule-base parallelism techniques or the functio
nal-parallelism approach [Gupta, 1987], [Uhr, 1987],
[Kerckhoffs et al., 1989]. Although this is not systema-
ticly examined, to the author’s opinion more substan
tial speed-up might be attained in combining a num
ber of the various approaches, or in expert systems
that are more complex than the standard ones (for in
stance, functional parallelism could do well in expert
systems with embedded numeric simulations [Kerck
hoffs et al., 1989]), or dependent on the specific
rule base concerned by the context-parallelism ap
proach with overlapping contexts, or by ultimately ex
ploiting the inference-parallelism and case-parallelism
approaches. Nevertheless, a general feeling is that
production systems with entirely different formulati
ons and algorithms than the traditional ones, and hen
ce much greater inherent parallelism, should be explo
red in today’s and future research.

4.4 Parallel implementation of ANNs

The regular architecture of ANNs suggests their si
mulations on general-purpose parallel computers to
be implemented with simple placement rules. How
ever, the processors which are available on many paral
lel computers are much more powerful, and have
a much smaller number of input-output ports, than an
individual neuron. Hence, the placement problem is
not trivial and deserves attention since the communi
cation problem is obviously crucial.

Many ANN-implementations on general-purpose
parallel computers have been reported in literature
[Petrowski et al.. 1989], [Bourrelv, 1989], [Wang et al,
1989], | Be> non and Dodd, 1987], As an illustrative
example, in this section we consider briefly our own
implementation of backpropagation neural networks
(BNNs), see section 2.4, on an NCube/4+ parallel
computer [Kerckhoffs et al., 1991], This NCube/4+ is
a lst-generation hvpercube computer, that consists of
16 processing elements with 512 kbyte memory each,
arranged in a 4-dimensional hypercube architecture;
see Fig. I I.

Node Binary
Mo

Node Binary
No

0000 To 10
1 0001 11 1011
2 0010 12 1100

3 0011 13 1101
4 0100 14 1110
5 0101 15 1111
0 0110
7 0111
0 1000
9 1001

Figure 11 : The NCuhe 4 f architecture (neighbouring nodes only dif
fer in one single bit o f their binary addresses)

The BNN-implementation, considered here, partitions
the units (neurons) of any layer among all the availab
le nodes of the requested hypercube (subcube), so
exploiting parallelism per layer. The subsequent
layers have to be handled sequentially. This approach
allows large networks to be trained and recalled ac
cording to the pure unchanged backpropagation algo
rithm.

For each unit the relevant data (such as incoming
weights, bias, activation, backpropagated error) are
stored locally on the node that holds the unit concer
ned. For the purpose of propagating the activations
and backpropagating the errors (differences between
actual and target outputs), both during the forward
and backward pass (in the training phase) data from
the neurons in the current layer have to be transferred
to all neurons in the next layer to be handled. Conse
quently, after the parallel computations for a certain
layer any node of the hypercube has to transfer data
to each other node. This is realized by shifting the in
formation several times along the nodes placed in
a ring structure. It is easy to map the hypercube struc
ture on such a ring structure; see Fig. 12. By a techni
que of shifting partial sums along the ring, while buil
ding up the required total sums representing the back-
propagated errors, the efficiency of the computation
has been optimized [Kerckhoffs et al., 1991J.

The speed-up of a parallel BNN-implementation is
defined as the “sequential time” divided by the “pa
rallel time” necessary to complete a fixed number of
learning cycles. The time, it takes to execute this on
one single node, is defined as the “sequential time”.
Efficiency is defined as the speed-up divided by the
needed number of nodes. To get an indication of the

NNW 3/91, 129—154 Kerckhoffs: Problem-Solving Paradigms

Figure 12: Ring structure (node numbers correspond with those o f
Fig. 11)

speed-up dependent upon the network size some dif
ferent net configurations have been executed on the
Ncube/4 + , The results of varying the sizes of respec
tively the input, hidden and output layer in a three-
layer network with a fixed number of 64 units in the
remaining layers are depicted in Fig. 13. It shows that
varying the size of the input or output layer has less
influence on the results than varying the size of the
hidden layer. This can be explained by the fact that
the processing of a hidden unit amounts to more com
putation than that of an input or output unit.

In Table 4, peak performances are given for two-,
three- and four-layer networks with equal layers, both
in training and recall phases, measured over ten pat
terns in one sweep. The input and target patterns are
stored on the nodes, so a greater number of examples
will lead to smaller maximum network sizes and lower
peak performance rates. Performance rates are given
in KLips, meaning the number of thousands of links
that are updated per second in the training phase, or
the number of thousands of links that are passed per
second in the recall phase.

N e t T r a i n i n g R e c a l l W e i g h t s

896-896 187 635 803
624-624-
624

137 609 779

512-512-
512-512

124 594 786

Table 4: Peak performances for the “unit distribution per layer" proce
dure on an NCube/4+ computer (with 10 training examples): network
size, performance in KLips for training and recall phases, and number

of weights in Kweights.

4.5 DUTIES: A parallel environment for coupled simu
lation / expert systems

At present, parallel implementations of coupled sys
tems are rare. In this section, as an illustrative exam
ple we describe an environment for parallel coupled
numeric/symbolic systems currently being developed
at Delft University of Technology: DUTIES (Delft
University ol Technology Intelligent Environment for
Simulation). It is meant to support running concurrent
ly simulations and coupled expert systems on a distri

buted and/or parallel hardware platform. Both the si
mulation and expert systems themselves can be paral
lelized too (see sections 4.2 and 4.3). Starting points
such as accessibility, flexibility, openness and maintai
nability have led to a design philosophy based on:
— Automatic code generation and program mapping
— Abstraction of concepts
— Modularity of software
— Machine-independence.

a) Global system set-up: code generation and program
mapping

The DUTIES environment provides programming
tools to implement simulation systems, expert systems
and combinations of both on distributed hardware en
vironments and/or MIMD-structured parallel compu
ters. Roughly speaking, the programming tools can be
subdivided in three groups:
— Code generator for (numeric) simulation systems
— Code generator for (symbolic) expert systems
— Program mapper.

Code generator for numeric systems:
For the time being, DUTIES only supports the use

of (first-order) ordinary differential equations (ODEs)
to model the numeric system. The ODEs must be for
mulated as a set of systems of ODEs. The code gene
rator implements every system of differential equati
ons as a separate subprogram to be placed on a sepa
rate processor. The differential equations are solved
by means of a selected numerical integration method.
Furthermore, the code generator generates data (to be
processed by the program mapper) regarding the in
formation needed (input) and generated (output) by
each of the subprograms. The final generated pro
grams (C-source code) include the communication
procedures generated by the program mapper. They
are linked to the above-mentioned subprograms. Fi
nally, these subprograms are linked to a special libra
ry containing specific machine-dependent procedures.

In principle, the final generated programs can be
ported to any distributed environment and/or multi
processor machine, provided that a C-compiler and
linker are available. The special library, containing
the machine-dependent procedures, should be ported
separately. If the processor-interconnection structure
dillers from the original one, the program mapper
must be re-invoked.

Code generator for expert systems:
The structure of the code generator for (symbolic)

expert systems is more elaborate. Basically, a rule ba
se is translated into an intermediate code which is in
terpreted by an expert system shell (inference engine).
Different rule bases are translated into different parts
of intermediate code, interpreted by different (concur
rently running) expert system shells. The rule base
compiler and the expert system shell are constructed
from several modules. These modules support the use

146 Kerckhoffs: Problem-Solving Paradigms NNW3/91, 129-154

Figure 13: Speed-up (a, b, c) and efficiency (A, B, C) o f three-layer back propagation neural networks

NNW 3/91, 129—154 Kerckhoffs: Problem-Solving Paradigms 147

of specific data structures, functions or inference me
chanisms.
In addition to creating intermediate code, the rule-ba
se compiler also generates data to be processed by the
program mapper to map efficiently the different ex
pert systems on different processors (taking into ac
count the communications between the symbolic sub
programs mutually and between the numeric and sym
bolic subprograms).

Program mapper:
The program mapper maps the generated (numeric

and symbolic) subprograms on the available proces
sors and generates the communication procedures to
be used by these programs. In order to be able to per
form these tasks, the program mapper needs informa
tion about the intercommunication between the va
rious subprograms. This information is generated by
the code generators for the symbolic and numeric sys
tems. For mapping the programs on the processors
the program mapper uses several heuristics to achieve
a reasonably optimal distribution. It tries to minimize
the communication overhead by placing the programs
as efficiently as possible. After the programs have
been mapped on the various processors, the imple
mented system routes the data through the intercon
nection structure. Since, in general, there are several
paths between two processors in a network, the data
can be routed along various different routes. Several
switches are introduced to enable the user to influence
the mapping and routing,

b) Abstraction o f concepts

The meaning of abstraction is to generalize, i.e. to
extract the essential elements while ignoring the irrele
vant details. Abstractions play an important role in
problem solving by reducing the problem to the fun
damental issues which underlie the problem. Software
development uses abstractions in order to achieve uni
formity and clarity in the code. An important form of
abstraction in software development is procedural ab
straction, which is available in advanced high-level
computer languages, such as Pascal, ADA, etc. In the
se languages, one can declare procedures to perform
a certain task. The programmer is only interested in
“what” kind of a task a procedure will perform, not
“how" it is done.

Although more concepts have been generalized, the
following abstractions play a key role in DUTIES:

— Data abstraction: This mechanism allows to access
of each data element available in DUTIES, irrespe-
cive of its type, form or location.

— Communication abstraction: This mechanism facili
tates a uniform way to address any type of commu
nication device, whether it is serial, parallel, a LAN
or modem. Implementation details concerning rou
ting, protocol and multiplexing are hidden from
the user.

Medium abstraction: A medium is defined as any
IO device or memory device, which accepts or pro
duces a stream of bytes. Typical examples of such
devices are files, windows, keyboards, cache me
mory, etc. The medium abstraction is a powerful
mechanism allowing to access each medium in
a uniform way.

— Administration abstraction: A variety of strategies to
organize information (such as, sequential, indexed,
and sorted) is accessed through the administration
mechanism in an identical way.
Lazy evaluation abstraction: This mechanism is
used to create a “truth-maintenance facility” for
the expert systems in the DUTIES environment.

The main idea behind the generalization of a con
cept (such as the above “data”, “communication”,
“medium”, “administration”, “lazy evaluation” con
cept) is to create a uniform way to deal with that con
cept, and at the same time hide implementation de
tails. Every concept is sustained by a specific set of
functions. “Abstraction” implies creating a new set of
generalized (abstract) functions and generalized (ab
stract) elements. The abstract functions operate on the
abstract elements to cover the actual functions with
a conceptually equivalent working.

Simulation system Progam Expert system
code generator mapper code generator

A bstract

Support

Base

Machine

APPIJCATION
LAYER

GROUND
LAYFJt

Figure 14: Software modularity in DUTIES

c) Modularity o f software

The DUTIES software is based on two main layers
(see Fig. 14):
— the "application layer", containing the afore-mentio

ned code generators for the simulation systems
and expert systems as well as the program mapper,
and

— the "ground layer", forming the basis of the DUTI
ES environment on which the applications are bu
ilt. It is constructed as a set of increasingly com
plex sublayers:

Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129—154

— the “machine layer”, which is the interface to the
operating system of a particular computer system.
It is this layer that renders DUTIES its machine in
dependence (see section 3.5d). Every time the soft
ware of DUTIES needs to access a piece of hard
ware, the calls are routed through the machine
layer, which hides specific implementation details
from the operating system. To port DUTIES to
another hardware platform, only the machine layer
must be rewritten; the other layers only have to be
recompiled.

* the “base layer“, which contains a number of type
less (i.e. solely byte-oriented) mechanisms, such as
memory management routines and primitive 10
mechanisms. Some base-layer functions are meant
to improve the quality of the machine-layer functi
ons, for instance by adding error handling. Other
functions provide utilities that can be used throug
hout the system, such as “stack mechanism“, “pool
mechanism” and “semaphore mechanism”,
the “support layer", which imposes structure and li
mitations on the base layer and introduces the ty
pes of data, medium and other concepts on top of
this base layer. For instance, on the base level one
can print information anywhere on the screen whi
le on the support level printing is only allowed wi
thin the borders of a predefined window. Strings,
integers and lists with their supporting manipula
ting functions are examples of data types that are
introduced in the support layer.

— the “abstract layer", which utilizes the similarities
of the data, medium and other concept types intro
duced in the support layer to cover each class
through a set of abstract functions (see section
3.5b). In this layer several kinds of abstractions are
created for the various concepts implemented in
the support layer, such as data, medium, etc.

d) Machine independence

med to run concurrently with the simulation and to
reason on the basis of (continuously changing) in
formation monitored from the simulation system.
Simulation system and expert system run on sepa
rate (clusters of) nodes of the hypercube machine
and they regularly exchange data.

— Multiple expert systems acting on a simulated dyna
mic object: For example, in a moving robot with vi
sion multiple intelligent processes have to be per
formed concurrently.

— Parallel treatment of “method bases” : For instan
ce, several dynamic parameter optimization algo
rithms can be run concurrently on separate (clu
sters of) nodes. An expert system, running in paral
lel on one or more additional nodes, might be used
to select the best method(s) on the basis of interme
diate dynamic system results.
Parallel treatment o f “model bases": For instance,
inductive mathematical modelling leads to nonuni
que models which might result in more or less ex
tensive model bases. The various mathematical mo
dels with related additional equations (such as e.g.
parameter sensitivity equations) can be run simul
taneously on different (clusters of) nodes, and
again an expert system may be used for decision
making ‘on the fly’ (i.e. in parallel with and based
on the model simulations).

— Parallel implementation o f progressive reasoning
techniques: In real-time applications expert systems
have often to respond within a certain time-frame.
Running multiple inference engines in parallel on
different rule bases with knowledge on different le
vels of abstraction allows to select “on the fly" the
best advice (on the possibly deepest level) given the
available time; the more time available, the more
accurate and detailed the expert system’s advice.
The rules bases must obviously be constructed in
such a way that this kind of explicit parallelism can
be exploited.

Machine indepence, as defined by the designers of
DUTIES, exists when the software does hardly reli
es on the structure or functionality of a particular
computer or operating system. Therefore, in princi
ple DUTIES can be ported to any computer system
different from the target computer NCube/4+ (see
section 4,4) used in this research. Our objective was
to minimize the efforts needed to do so.

e) Applicability o f DUTIES

At the moment of writing this paper the actual im
plementation of the DUTIES environment on the
NCube/4 + computer is in its final stage. After
completion the system will be used to run practical
applications of coupled numeric/symbolic systems.
Examples are:
Knowledge-based direct or supervisory control of (si
mulated) continuous processes [Meijer and Ker-
ckhoffs, 1990]: A control (expert) system is assu-

5. Some ANN-Aplicatson Research Projects

In this section, we describe shortly three current
ANN-application research projects of the Group KBS
(Knowledge-based Systems) at Delft University of
Technology. The chosen example projects may illu
strate some of the issues dealt with earlier in this pa
per.

In the first project, the problem is how to have more
grip on the cost related to large software development
projects, especially in the beginning phase when un
certainties and incomplete information are to be faced.
This essentially budgetting problem is tackled with the
use of two backpropagation neural networks (see sec
tion 2.4) in cascade.

The second project concerns the problem of finding
the optimal (in the sense of minimum cost) air-route
among a limited number of (5 —10) possible routes
connecting two cities. The cost as a function of the de-

NNW 3/91, 129-154 Kerekhoffs: Problem-Solving Paradigms

lay (i.e. difference between actual and scheduled de
parture-time) is actually calculated in a numeric simu
lation model; an ANN-based preprocessor is propo
sed to provide some of the needed input data to this
simulation system.

In the third project, the problem of predicting in an
early stage the remaining life of mechanical assembly
on the basis of vibration responses is dealt with. Here,
time-signals arc preprocessed numerically (Discrete
Fast Fourier Transform (DFT) processing) in order to
provide training data and input data for a classifying
ANN.

The systems in the second and third project are ac
tual examples of practical applications of (loosely)
coupled connectionist/numeric systems as considered
in section 2,5a.

5.1 Budgetting large software projects

Frequently, the budgetting of big software develop
ment projects suffers from serial problems. A number
of causes that may constitute these budgetting pro
blems are, for instance, the lack of empiric data from
finished projects, the instability of the system specifi
cations during the software development, the specific
features of the software development process, the lar
ge number of factors that influence the development
effort, the unknown influence of factors on the deve
lopment effort, etc. There exists a general need for
techniques which support the budgetting process,
A technique that has proven its usefulness is the so-
called “Function Point Analysis” (FPA) developed by
IBM Data Processing Services. This technique was
originally meant to measure objectively and in a uni
form way the productivity of software developers, but
it has also shown its value in budgetting software de
velopment projects. The FPA technique estimates the
functionality of the desired software system. This fun
ctionality, expressed in function points, is transfor
med into effort, i.e. manhours, by using productivity
curves. The productivity curves are derived from em
piric data gathered from previous finished projects.

Unfortunately, FPA is only applicable when the
functionality of the system can be measured (System
Implementation Phase), i.e. when the greater part of
the development process has already taken place. It is
highly desirable to have also insight in the effort nee
ded in an earlier stage of the software development
process (Information Analysis Phase), Techniques
that support this do not yet exist, mainly due to the
specific features of the budgetting problems in this
earlier stage of the development process.

In this research, it is tried to tackle the budgetting
problem (for the earlier stages of the development
process) in a way similar to the FPA technique. Just as
is the case with FPA, the technique proposed actually
consists of two submodels (see Fig. 15). The first sub
model, the Complexity Point Analysis (CPA) model,
transforms the problem, identified through problem

characteristics, into complexity points. Hence, com
plexity points (being an as yet non-existing measure)
are an environment-independent indicator of the sco
pe of the problem. These complexity points, added
with environment characteristics, are then transfor
med into effort by the second submodel, the Producti
vity model. Because of the constraints of lack of rules
and empiric data, as well as the needed adaptation to
changing environments, in this research both submo
dels are realized by (backpropagation) neural net
works (see section 2.4). The topology of the networks
and their training have been subject to examination.

Problem
Characteristics

Environment
Characierislics

Figure 15: Neural networks in a budgetting model

The research considered is a common project of the
NMB Bank (the Netherlands) and the Delft Universi
ty of Technology. The results achieved are satisfactory
[Pellikaan and in ’t Veld, 1990]; these will be publis
hed in the near future.

5.2 Optima! air-route selection

Recent years showed an increasing trend in the
number of delayed European flights with a delay of
more than 15 minutes (see Fig 16). A substantial part
of these delays was due to a growing congestion in the
airspace. Causes for this congestion are among others:
shortage of air-traffic controllers, lack of radar capaci
ty, incompatible air-traffic control systems and the (in
time and space compressed) number of (lights to be
dealt with. One of the options to avoid or reduce the
delay caused by congestion is to fly over less popular,
hence less congested, routes. It is not known in advan
ce, however, which of the possible alternative routes
has the least delay. It is also unknown whether the ad
ditional operational cost of these, often longer and
more expensive, routes counterbalance the gains of
less delay.

The problem of choosing the (near) optimal route in
a particular situation focusses in the very essence on
determining the (for the moment unknown) quantiti
es:
—- actual departure-times of each of the possible rou

tes
— cost of delay as a function of delay-time.

The problems that arise in determining these quan
tities are due to the fact that there are no data about
the consequences of delays and about the cost of these
consequences. Furthermore, the actual time of depar
ture for a route is unknown until the authorities (in

1 ^ 0 Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129-154

1 9 8 6

D - 1 9 8 7

1 9 8 8

1 9 8 9

Figure 16: Flight delays from January 1986 until June 1989

the Dutch case, the RLD: Dutch Airspace Authority)
have determined a time-slot for departure, while only
one slot at a time can be requested from them.

A numeric simulation model to calculate the cost of
a delay as a function of delay-time has been built with
the use of the simulation-package STELLA (a graphi
cal simulation tool, originally designed to model fi
nancial and economical processes). The model is ba
sed on extensive research with respect to the causaliti
es and values of the parameters of a particular schedu
led service (KL501) Amsterdam-Athens), big. 17
shows a typical graphical representation of a part of
the model, that is mainly meant to calculate the influ
ence of the delay on passenger yield. This submodel
also deals with some elements, that are hard to quanti
fy, such as cost of non-quality experiences by passen
gers as a result of a delay. The spherical shapes in
Tig. 17 represent the parameters, defined as mathema
tical functions of other parameters or as constant va
lues; the arrows represent relations between these pa
rameters.

Inklm l Inbml yieldtrftti bml rftb kirn 1 rwnc^i 1 nouqbhotel 1 good 1 pasl Ir r t noritq

depdelay goodcon3 dep3

Figure / 7: Submodel for calculating the influence o f a delay on the
passenger yield

With the aid of this model an empirical sensitivity
analysis has been perfomed to determine the influen
ce of some 55 relevant parameters on the model’s out
put. Parameter sensitivities are determined in three
different setpoints, then averaged, and the results here
of are compared with their average (see big, 18). The
sensitivity analysis shows that there is a limited num
ber of more sensitive parameters. After further investi
gation it became evident that a few of these can be
quantitatively evaluated without any problem, but
a seven parameters cannot, since the information nee
ded to this is incomplete for the parameters cannot di
rectly be expressed in numeric values (e.g., passenger
satisfaction). So, further research had to be concentra
ted on a “quantification” of these seven parameters.
With them known, and given the actual departure-ti
me per route (the main input variable for the model),
the model can provide the final cost per route. The
route with the minimum cost is the wanted optimal
route. Unfortunately, also the actual routes’ departu
re-times are unknown in advance and should in a way
be predicted on the basis of past (incomplete) data.

The above problem might be solved by coupling to
the numerical simulation system additional modules
based on other techniques, such as knowledge-based
or ANN approaches (or perhaps constraint propagati
on techniques). At present, it is tried to estimate the
unknown departure-times by using an ANN appro
ach, A (backpropagation) network architecture has
been designed (and is currently being tested) to pre
dict delays (i.e. differences between actual and sche
duled departure-times) for multiple routes in a given
situation on the basis of available historical data.

The project considered is a common project bet
ween KLM (Royal Dutch Airlines) and Delft Univer
sity of Technology.

5.3 Guarding of a mechanical “ fingerprint”

All rotating machinery generate their own vibration
patterns, the analysis of which renders valuable data
about the condition of the machines. This so-called
“fingerprint”, represented by a repetitive waveform, is
composed of multiple time-varying real-time respon
ses 1 ¡(t) (such as acceleration, velocity, pressure and
temperature), detected by superior surface mounted
transducers, which are mounted practically near or
even within the Mechanical Assembly (MA) in order
to be able to produce optimum responses. Diagnostics
performed in an early stage not only permits estimati
on of the remaining life of each MA, but also is of
particular engineering interest in order to be able to
non-destructively evaluate the overall conditions and
in situ determine the amount of degradation of the va
rious subparts with respect to preconditioned toleran
ces.

A more efficient use of all the information embed
ded in the vibration signal can be achieved by charac
terizing the differences (due to disturbances and wear

NNW 3/91, 129-154 Kerckhoffs: Problem-Solving Paradigms 151

••tpolnts «v#r*g#

7 0

SO - ■

SO * *

1 3 5 7 8 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5
1 3 5 7 0 1 3 5 7 0 1 3 5 7 © 1 3 5 7 9 1 3 5

Figure 18: Parameter sensitivities

of the mechanical components within a MA) with re
spect to the “fingerprint” by analyzing either the Po-
wer/Frequency or Amplitude/Frequency spectrum.
In order to be able to exploit the real-time situation to
the utmost, the processed result of the previous trai
ning-set has to determine the moment of occurrence
of the next training-set. So, superior occurring defects
of increasing gravity will decrease the time with re
spect to the succeeding training-set. This can be achie
ved by developing a mechanism in which an actual
trespassing of a predetermined “error” threshold ap
points the moment of occurrence of the next training-
set.

Figure 19: A block-schematic overview of the "fingerprint" analysis
and guarding

After the time signals have been transformed to
a discrete frequency spectrum by way of a numerical
DFT algorithm, an array of numbers, representing the
amplitudes of the various frequency components, is
subject to a connectionist analysis with the help of an
ANN algorithm (see Fig. 19). ANN techniques, sup
porting massively parallel networks of simple structu
red neurons, offer an approach to recognize differen

ces in patterns based on automatic learning procedu
res. The application is attractive, not only because it
provides faster responses, but also because of its capa
bility to automatically discover irregularities in a pat
tern not seen or detected before. It even enables the
discovery of regularities in the training signal itself as
a consequence of the learning process.

A backpropagation algorithm (see section 2.4) is
probably the most applied method to perform a super
vised learning task, which in this context means the
adaptation of an ANN in that actual outputs Ok(t) ap
proach a set of target outputs Tk(t), given a training-
set containing P learning patterns. But before varia
bles or parameters can ever be adapted, first a training
database of actual information and correct classifica
tion have to be processed. An overall bandwidth of at
least 2 KHz combined with a frequency interleave of
2 Hz composes a database, filled up with 1 000 discre
te frequency components. Classification of a certain
vibration guarding pattern could easily require 100 of
such learning patterns, which not only represents the
actual “fingerprint” but also the alterations caused by
the influences of mechanical failures.

During execution, the “interconnection topology”
will first define the influence of the inputs I,(t), on the
(in our case five-digits wide) actual outputs Ok(t), ta
king into account the information of the disired
results Tk(t). This relationship then forms a set of
weights W,j, representing the variables or parameters,
which will be adjusted concurrently during the lear
ning process. The procedure passes into a so-called
“learning rule”, during which the weights are adju
sted as to force the actual outputs Ok(t) to approxima
te the desired results Tk(t),

The final goal is to adapt the parameters of the
ANN in such a way that it also adapts to those pat
terns, which were not generated before in the original
training-set. A feature of essential importance when
processing data with varying contents due to changes
in the location of the sensors and possible deformati
ons in the material.

The project considered has been started at Delf
University of Technology and will be continued in
cooperation with the Academy of Sciences in Prague
(Czechoslovakia).

6. Final Note

In this paper we surveyed the usage of numeric,
symbolic, connectionist and coupled systems to “pro
blem solving”. The emerging role of parallel proces
sing in all of these has been stressed.

We have made the suggestion that integrated envi
ronments to run simulations, expert systems, artificial
neural networks, and combinations of these (coupled
systems) could perhaps provide along with intelli
gent front- and back-ends — the ideal toolboxes for
“problem solving”. It is the authors opinion that the
ideal hardware platform for such integrated environ-

Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129—154

merits is a distributed network ol dedicated processors
or a heterogeneous parallel computer, in which the
above different techniques could run (councurrently
and with mutual data exchange) on different dedica
ted (clusters of) processors. Such heterogeneous paral
lel machines do not exist. The best alternatives are
provided by (massively) parallel computers that are
really “generalpurpose”, i.e. with powerful nodes, fast
and sufficiently dense interconnection structures, ex
tensive local memories and appropirate general-pur
pose software facilities. We think that, for example,
NCube’s 2nd-generation hypercube parallel compu
ters, launched as (massively) parallel systems for both
scientific and business purposes which also underli
nes their general-purpose character, are very suited
for research as considered above.

There will come a time that it is feasible to imple
ment, on an appropriate multicomputer, several large-
scale intelligent systems, large-scale AN Ns and com
plex simulation systems, that — if necessary con
currently operate and interact with each other in a tru
ly real-time mode. The obstacles and problems to sol
ve on the way to such advanced “coupled-systems en
vironment” will be numerous and so complex that to
day we only can start attempting to handle them. This
paper intends to stimulate thinking and discussion
about further research needed.

Acknowledgements

The author gratefully acknowledges that the NCu-
be/4+ parallel computer, that was used in some of
the projects described in this paper (see sections 4.4
and 4.5), has been donated by SHELL Netherlands to
support research in parallel Al. He also would prou
dly like to announce the availability of an NCube-2
system (the smallest model: 32 nodes with 4 Mbyte lo
cal memory each; see also sections 4.1a and 6) at
Delft University of Technology in the quite future;
this is financially made possible by the Dutch Loun-
dation KBS (Knowledge-based Systems).

Lurther, the author wants to thank Edward Lriet-
man and (particularly) professor Henk Koppelaar
(both from Delft University of Technology), and pro
fessor Ghislain Vansteenkiste (University of Ghent,
Belgium) as well, for the many stimulating discussions
concerned with some of the issues in this paper.

Literature

D. R. [. Ballard (1990): Conjoint computing: integrating numeric,
symbolic and neural computing. In: B. Zeigler, J. I, Rozenblit
(Eds.): Al, Simulation and Planning in High Autonomy Systems.
IEEE Comput, Soc, Press, Los Alamitos, Ca.; pp. 194 201.
B. Bergsten et al. (1988): An advanced database accellerator. IEEE
Micro, Vol. 8 No. 5. 47 63.
T. Beynon, N. Dodd (1987): The Implementation of Multi-Layer
Perceptrons on Transputer Networks. Proc. of the 7th Occam Users
Group.
J. P, Bigus, K. Goolsbey (1990): Integrating neural networks and

NNW 3/9I, 129-154

knowledge-based systems in a commercial environment. Proc. of
IJCNN-90 Washington I). C., Hillsdale, N. Y„ Lawrence Elbraum:
pp. ! 1-463 to 11-466.
D. Bounds (1989): Expert systems and connectionist models. In: R.
Pfeifer, Z. Schreter, E. Eogelman-Soulie, L. Steels (Eds.): Connecti-
onism in Perspective. Elsevier Science Publishers (North Holland),
Amsterdam; pp. 277 282.
J. Bourrely (1989): Parallelization of a neural learning algorithm on
a hypercube. In: F. André, J. P. Verjus (Eds.): Hypercube and Dis
tributed Computers. Elsevier Science Publishers (North-Holland),
Amsterdam.
W. J. H. J. Bronnenberg et al. (1987): DOOM: A decentralised ob
ject-oriented machine. IEEE Micro, Vol. 7 No. 5, 52 69.
B. G. Buchanan, E. H. Shortliffe (1984): Rule-based Expert Sy
stems: 1 he MYC’IN Experiments of the Stanford Heuristic Pro
gramming Project. Addison-Wesley, Reading, MA.
D. J. Burr (1987): Experiments with a connectionist text reader. In:
M. Caudill, C. Butler (Eds): Proc. of the 1st bit. Conf. on Neural
Networks, SOS Printing, San Diego, Ca: pp. 717 724.
D. Castillo, M. McRoberts, B. Sieck (1988): Embedded expert sys
tems improve model intelligence in simirl.it""i experiments. In. C,
C. Barnet. W. M. Holmes (Eds.): Proc. of the Summer Computer Si
mulation Conference (Seattle, Washington). Society for Computer
Simulation hit.. Sail Diego, Ca., pp. 591 597.
.1. S. Conery (1987): Parallel Execution of Logic Programs. Kluwer
Academic Publishers, Amsterdam.
Ci. W. C ottrell, P. Minim, I). Zipser (1987): Image compression by
backpropagation: an example of extensional programming. Advan
ces in Cognitive Science, Vol. 3; Ablex, Norwood, NJ.
J Dayhoff (1990): Neural Network Architectures / An Introducti
on. Van Nostrand Reinhold, New York.
G. 1. Doukidis, R. J. Paul (1985): Research into expert systems to
aid simulation model formulation. J. Op. Res. Soc. 36, 319 -325.
A. S. Elmaghraby, V. Jagannalhan (1985): An expert system for si-
mulationists. In: B, Birtwistle (Ed.): Al, Graphics and Simulation.
Society for Computer Simulation Int., San Diego, Ca.. pp.
106 109.
R. A. Eellheim (1986): A knowledge-based interface to process si
mulation, In: E. J. H Kerckhoffs, G. C. Vansteenkiste, B. P. Zeigler
(Eds.): Al Applied to Simulation. Society for Computer Simulation
hit., San Diego, Ca.; pp. 97—102.
P. A. I ishwick, R. B. Modjeski (Eds.), 1991: Knowledge-based Si
mulation / Methodology and Application. Springer Verlag, New
York.
M. .1. Elynn (1972): Some computer organisations and their effecti
veness. IEEE Trans, on Comp., Vol. 21, 948 960.
K. Eorbus (1984): Qualitative process theory. In: D. G. Bobrow
(Ed.): Qualitative Reasoning about Physical Systems. North-Hol-
land, Amsterdam; pp. 85 168,
M. S. Fox, N. Husain, M. McRoberts, Y. V. Reddy (1989): Know
ledge-based simulation: An artificial intelligence approach to sys
tem modelling and automating the simulation life cycle. In: L. E.
Widman, K. A. Loparo, N. R. Nielsen (Eds.): Artificial Intelligence,
Simulation and Modelling. Wiley; pp. 447 -486.
S. I. Gallant (1988); Connectionist expert systems. In: Communica
tions of the ACM, Vol. 31 No. 2.
A. Gupta (1987): Parallelism in Production Systems. Pitman Publis
hing, London,
P, Harmon, D. King (1985): Expert Systems — Artificial Intelligen
ce in Business. Wiley, New York.
F. Hayes-Roth, D. . Waterman, D. B. Lenat (1983); Building Expert
Systems. Addison-Wesley, Reading, MA.
J. A. Mendier (1989): Problem solving and reasoning: a connectio
nist perspective. In: R. Pfeifer, Z. Schreter, E. Eogelman-Soulie, L.
Steels (Eds.); Connectionism in Perspective. Elsevier Science Pub
lishers (North Holland), Amsterdam; pp. 229 -244.
W. D. Hillis (1985): The Connection Machine. MIT Press.
R. W, Hockney, C. R. Jesshope (1988): Parallel Computers 2 Ar
chitecture, Programming and Algorithms. Adam Hilger, Boston.
T. Johnson (1984): The Commercial Application of Expert Systems
Technology. Ovum Ltd., London.
W. J, Karpins (1976): The spectrum of mathematical modelling and
systems simulation. In: L, Dekker (Ed.); Simulation of Systems /

Kerckhoffs: Problem-Solving Paradigms 153

Proc, of 8th IMACS (formerly A1CA) Congress. North Holland,
Amsterdam; pp. 5 — 13.
E J. H. Kerckhoffs, H. Koppelaar, H. .1. van den Herik (1989); To
ward parallel intelligent simulation. In; L. E. Widman, K. A. Lopa-
ro, N. R. Nielsen (Eds.); Artifical Intelligence, Simulation and Mo
delling. Wiley, New York; pp. 207—230.
E. J. H. Kerckhoffs, G. C. Vansteenkiste (1990): Parallel processing
in biological systems. In: D. P. F. Moeller (Ed.): Advanced Simula
tion in Biomedicine. Springer-Verlag, New York; pp. 1—9.
E. J H. Kerckhoffs, G. C. Vansteenkiste, B. P. Zeigler (Eds.), 1986:
AI Applied to Simulation. Society for Computer Simulation Int.,
San Diego, CA.
E. J. H. Kerckhoffs, F. W. Wedman, E. E. Fl Frietman (1991): Spee
ding up backpropagation training on a hypercube computer. In: M.
Novák, F. Pelikán (Eds.): Neural Network Applications (IMACS
Int. Symp. NEURONET'90). Elsevier Science Publishers (North-
Holland), Amsterdam 1991.
G. A. Korn (1989): A new environment for interactive neural net
work experiments. Neural Networks, Vol. 2, 229—237.
J, S. Kowalik, C. T. Kitzmiller (Eds.), 1988: Coupling Symbolic and
Numerical Computing in Expert Systems, IF North-Holland, Am
sterdam.
R. R. Maijer, E. J. H. Kerckhoffs (1990): Towards the modelling of
knowledge-based control systems in DUTIES (a parallel environ
ment for coupled numeric/symbolic systems). In: G. C. Vansteenki
ste, E. J. H. Kerckhoffs, H. Muller (-Malek), F. Broeckx (Eds.):
Proc. of ESS90 (European Simulation Symposium on Intelligent
Process Control and Scheduling & Discrete Event Systems). Society
for Computer Simulation Int., San Diego, Ca; pp. 73 79.
.1. M. Mellichamp, A. F. Wahab (1987): An expert system for FMS
design. Simulation 48, 201 208.
G. V. Merkuryeva. Y, A. Merkuryev, H. T. Toivonen (1990): Know
ledge-based simulations systems A survey. Report 90 12. Abo
Academy, Department of Chemical Engineering, Process Control
Laboratory. Abo, Finland.
R. Muetzelfeldt, A. Bundy, M. Uschold, D. Robertson (1986): EC
An intelligent front-end for ecological modelling. In: E. .1. FI. Ker
ckhoffs, G. C, Vansteenkiste, B. P. Zeigler (Eds.): Al Applied to
Simulation. Society for Computer Simulation Int., San Diego, Ca.;
pp. 67 — 70.
F. Neelamkavil (1987): Computer Simulation and Modelling. Wi
ley, New York.
A. Newell, H. A. Simon (1972): Human Problem Solving. Prentice-
Hall.
N. Nielsen (1987): Applicability of AI techniques to simulation mo
dels. In: B. T. Fairchild (Ed.): Simulator IV. Society for Computer
Simulation Int., San Diego, Ca.; pp. 12! 122.
R. M. O'Keefe (1986): Simulation and expert systems — A taxono
my and some examples. Simulation 46, 10 —16.
J. M. Ortega (1988): Introduction to Parallel and Vector Solution of
Linear Systems. Plenum Press, New York.
Y. H Pao, D. J. Sobajic (1990): Nonlinear process control with neu
ral nets. Neurocomputing 2, 51—59.
R. Pellikaan, L. in 't Veld (1990): Neural Modelling for Budgetting.
MSc-thesis. Internal Report Delft University of Technology (Facul
ty of Technical Mathematics & Informatics), Delft, The Nether
lands.
A. Petrowski, L. Personnaz, G. Dreyfus, C. Girault (1989): Parallel
implementations of neural network simulations. In: F. André, J. P.
Verjus (Eds.): Hypercube and Distributed Computers. Elsevier Sci
ence Publishers (North-Holland), Amsterdam.
L. C. Rabelo, S. Alptekin (1989): Integrating scheduling and control
functions in Computer Integrated Manufacturing using artificial in
telligence. Computers and Industrial Engineering, Vol. 17 No. 1—4,
101 -106.
N. Roberts, D. F. Anderson, R. M, Deal, M. S. Caret, W. A. Shaffer
(1983): Introduction to Computer Simulation: The Systems Dyna
mics Approach. Addison-Wesley, Reading, MA.
D. E. Rumelhart, J. L. McClelland (1987): Parallel Distributed Pro
cessing. MIT Press, Cambridge, MA.

.1. Russel (1989): A knowledge-based assistant for a flight simulator
instructor. In: J. K. Clema (Ed.): Proc. of the 1989 Summer Compu
ter Simulation Conference (Austin, Texas). Society for Computer
Simulation Int., San Diego, Ca.; pp. 606 — 612.
U. Schendel (1984): Introduction to Numerical Methods for Paral
lel Computers. Halsted Press.
J. F, Schreinemakers, D. S. Touretzky (1990): Interfacing a neural
network with a rule-based reasoner for diagnosing Mastitis. Proc. of
IJCNN-90 Washinton D. C„ Hillsdale, N. Y, Lawrence Elbraum;
pp. 11-487 to 11-490.
T. J. Sejnowsky, C. R. Rosenberg (1987): Parallel networks that le
arn to pronounce English text. Complex Systems 3, 145-.168.
R. Serra (1989): Dynamical systems and expert systems. In: R. Pfei
fer, Z. Schreter, F. Fogelman-Soulie, L. Steels (Eds.): Connectio-
nism in Perspective. Elsevier Science Publishers (North Holland),
Amsterdam; pp. 265 275.
B. Soucek (1989): Neural and Concurrent Real-Time Systems / The
Sixth Generation. Wiley, New York.
.1. A. Spriet, G. C. Vansteenkiste (1982): Computer-aided Modelling
and Simulation. Academic Press, New York.
L. Steels (1989): Connectionist problem solving — an AI perspecti
ve. In: R. Pfeifer, Z. Schreter, F. Fogelman-Soulie, L, Steels (Eds,):
Connectionism in Perspective. Elsevier Science Publishers (North
Holland), Amsterdam; pp. 215 228.
P. Szolovits (1987): Expert systems tools and techniques: past, pre
sent and future. In: W. E. L. Crimson, R. S. Patil (Eds.): AI in the
1980s and Beyond / An MIT Survey. MIT Press, Cambridge, MA;
pp. 43 - 74,
S. L. Tanimoto (1987): The Elements of Artificial Intelligence (an
introduction using LISP). Computer Science Press, Rockville, Ma
ryland.
P, C. Treleaven (1989): Neurocomputers. Int. J. of Neural Compu
ting. Vol. I, 89/1, 4 31.
P. C. Treleaven (Ed.), 1990: Parallel Computers / Object-oriented,
Functional, Logic. Wiley, New York.
P. C. Treleaven et al. (1987): Computer Architectures for Artificial
Intelligence in Future Parallel Computers. Lecture notes in Compu
ter Science, Vol. 272, Springer-Verlag.
L. LJhr (1987): Multi-computer Architectures for Artificial Intelli
gence / Toward fast, robust, parallel systems, Wiley, New York,
L. A. A. Vercauteren, R, A. Vingerhoeds, M. Lee, L. Boulart (1989):
Pattern directed real-world interface. In: R. Pfeifer, Z. Schreter, F.
Fogelman-Soulie, L. Steels (Eds.): Connectionism in Perspective.
Elsevier Science Publishers (North Holland), Amsterdam; pp.
455—461.
L. K. Vermeersch, G. C. Vansteenkiste, E. J. H. Kerckhoffs (1990):
Introducing neural networks for feature extraction in system model
ling. In: B. Svrcek, J. McRae (Eds.): The Proceedings of the 1990
Summer Computer Simulation Conference. The Society for Com
puter Simulation Int., San Diego, Ca; pp. 776 780.
J. Walters, N. R. Nielsen (1988): Crafting Knowledge-based Sys
tems. Wilev. New York.
C. J. Wang, C. H. Wu. S. Si\asuiulaiam (1989): Neural Network Si
mulation on Shared-Memory Vector Multiprocessors, Proc. of Su-
percomputing (Reno, Nevada). ACM Press, New York.
P. D. Wasserman (1989): Neural Computing / Theory and Practice.
Van Nostrand Reinhold, New York.
I. Watson et al. (1987): Flagship computational models and machi
ne architecture. ICL Tech. Journal, Vol. 5, 555 — 574.
L. E. Widman, K, A. Loparo (1989): Artificial intelligence, simulati
on and modelling: A critical survey. In: L. E. Widman, K. A. Lopa
ro, N, R. Nielsen (Eds.): Artificial Intelligence, Simulation and Mo
delling. Wiley, New' York; pp. 1 44.
L. E. Widman, K. A. Loparo, N. R. Nielsen (Eds.), 1989: Artificial
Intelligence, Simulation and Modelling. Wiley, New York.
B. P. Zeigler (1976): Theory of Modelling and Simulation. Wiley,
New York.
B. P. Zeigler (1984): Multifacetted Modelling and Discrete Event
Simulation. Academic Press, New York.

Kerckhoffs: Problem-Solving Paradigms NNW 3/91, 129—154

INFORMATION STORAGE IN
NEUROCOMPUTING

V, Cimagalli, M. Baisi*), A. De Carolis**)

Abstract:
In this paper we introduce the concept of “ relational

informations” as a peculiar property of neurocompu
ters. In fact, due to the distributed way of storig and
processing information, the organized structure of
a neurocomputer adds significant relations to data fed
to it and this is the reason why it is able to generalize
from a limited number of training inputs. After having
summarized the most significant results related to our
problem, available in the literature, we suggest methods
for measuring the said relational information both in
a dynamic system as a chaotic map and in a neural net
work of any kind.

1. Introduction

Regardless of the particular kind of neural network
under consideration, we may look at it as to black box
with an input and an output. Its purpose is to process
the information contained in the input signal in order
to obtain some specific result as, e.g., to recognize pat
terns, to classify data, to detect moving objects, to sol
ve a problem of minimum, etc. This means that the net
maps the space of all the admissible inputs into the
space of its outputs according to some well defined
rule. The peculiar characteristic of neural networks is
that such a rule (i.e. the rule or the algorithm that al
lows the desired result to be obtained) does not need
to be explicitly formalized as in the case of AI. Never
theless such a rule exists and is an amount of informa
tion stored into the network. A deep understanding of
the mechanism by which such an information is loa
ded and stored in the network should be paramount
for using the best way each type of neural network,
for choosing the particular network most suitable for
solving a given problem and for devising new and mo
re powerful architectures.

Knowledge, a systematic comprehension of infor
mation processing by means of neural networks is still
an open problem far from being solved. In our opini
on this is due to the twofold way through which the

*) Prof. V. Cimagalli, Dr. M. Baisi Facolta’ d' Ingegneria — University of
Rome „La Sapienza”, via Eudossiana 18-00-184 Roma, Italy

**) Dr. A. De Carolls is now with Ericsson Sielte S.p.A.. via Campo Romano,
71-00173 Roma, Italy

NNW 3/91, 155-162

research in such a field has developed. On one hand
we note the works of neurophysiologists and physi
cists, the aim of which has been to develop models of
physical and chemical processes occurring in the lear
ning of living beings: they did not pay too much atten
tion to questions related to information or made a mi
sleading use of concepts proper to information theory.
On the other hand, engineers, who should have been
more familiar with information theory, generally have
preferred to overcome deep theoretical problems and
work hard to solve actual problems by means of heuri
stic methods.

Among the more significant problems related to the
study of the behavior of information in neural net
works, we may quote:

1. Is the classical definition of information, as sta
ted by Shannon in 1948 for the purpose of its use in
communication theory, still valid in our case or does it
need to be revisited? And the algorithmic theory of in
formation too, how much turns out to be useful in
a computing structure where no sequential algorithm
is present?

2. As the “content” of a message (i.e. of the input to
the neural network) and the “association” of the mea
nings of different inputs play an important role in
neurocomputing, how, where and in what quantity is
information stored in the network for accomplishing
semantic and relational tasks?

3. Independent of the fact that learning is previous
to, or simultaneous with the processing phase, do dif
ferent sets of inputs having the same amount of bits,
or the same set stored in different architectures, or in
the same architecture in different places with different
strategies, give rise to the same amount of stored in
formation?

4. If the answer to the last question is negative, (a) is
it convenient to speak of a “relation information” as
the information related to the structure of the mathe
matical relations and/or to the architecture of the net
work that process it and (b) is it possible to devise
some method for measuring it?

In part 2 of our paper we will briefly review the
main trends and the main results available in the lite
rature related to our previous questions. In part 3 we
will introduce the concept of relational information as
applied to a mathematical relationship and to the abi
lity of generalization of a neural network.

Cimagalli et al: Information Storage in Neurocomputing 155

2, Classical approaches to informational que
stion

2.1 Semantics in neurocomputing

A general neural network can be depicted as in
Fig. /.

input X = F(X, W\ t) IV = 11{X, W; t) -* output

hg. /

where .V is the vector of state, W is the vector defining
the dynamics (in the more current cases it is the vector
of weights) and Fand H are nonlinear functionals or
functions.

It would be advisable that a neural network be able
to perform the following tasks:

1. To recognize the inner coherency of its input da
ta;

2. To classify them by detecting some of their inva
riants (e.g. with respect to translation, rotation, added
noise, etc.) and taking into account its previous expe
rience.

3. To take some appropriate action in the case of
meaningless input data.

From the standpoint of information theory, such
a set of operations may be viewed as a twofold coding
function: a dynamic or static coding definition and an
encoding of the input signal. However, as the concept
of “meaning” is involved, the question arises as to the
quality and the amount of information that need to
have been stored into the network in order to render it
amble to distinguish between a “meaningful” and
“meaningless” input signal.

In the late fifties D. M. Mac Kay, in a series of bro
adcasting talks and papers, faced the problem of se
mantics in communication and in representation of
some physical or non-physical (mental or ideational)
aspects of experience. He said [1] that “information
may be defined in the most general sense as that which
ads to a representation" Hence a criterion for defining
false or true a set of input data is strictly related to the
diminution or to the increase of the extent of corre
spondence between this set and the original represen
ted by it. Applying this concept to neurocomputing,
we can deduce that: Lit is convenient to relate the
amount of information entering a network with the
dynamic operation of changing the state of it, and 2. it
is necessary to refer to an original. Such an original
may be a thing (e.g. a learned pattern in a usual neural
network) or a rule. This is well explained again by
Mac Kay [2] when he examines the sentence “This
message is meaningless” and writes that it means
“This message lacks a selective function . . . it has no
selective relationship to . . .” and adds that “now it is
possible for something to lack a selective function for
two reasons: (a) one or more of its component terms
may be undefined — may have no selective function

156 Cimagülli e(al: Information Storage in Neurocomputing

— so that the total selective operation is undefined;
(h) two or more of the component selective functions
may be incompatible, so that the total selective opera
tion cannot be completed.” Once again we are led
back to the problem of storing in the computing archi
tecture either definitions or rules forjudging of com
patibility.

More recently Haken [3] observed that it is possible
to attribute a meaning to a message only if the respon
se of the receiver is taken into account. Therefore he
deals with system interacting with surroundings, i.e.
with open systems from the point of view of thermo
dynamics, and models the receiver by the Langevin
equation. Under this hypothesis it is possible to judge
if a given message is useful or not; the usefulness co
inciding with the jump of the receiving system from
one attractor (fixed point, limit cycle or strange attrac
tor (fixed point, limit cycle or strange attractor) to
another. An input is useless if it leaves the system in
the previous state and therefore it is “meaningless”.

If, in addition, we attribute to the attractors a relati
ve weight 0 < p ' < 1, normalized in such a way that
!,/?' = 1, it is possible to classify messages according
to their utility, and hence according to their content of
“meaning”. Let M jk be the normalized (Lk M jk — 1)
probability for the attractor k reached after input / has
been received; we define as the relative usefulness p t
of the input / as the following:

v k P, = Xa
M,

I / M* Ë P* (!)

where /; is an arbitrary small quantity that prevents the
numerator and denominator from going to zero simul
taneously.

We note that such an approach (a) requires an a pri
ori classification of the attractors (i.e. it needs some in
formation related to the “meaning” of admissible in
puts to be stored into the receiver — in our case into
the neural network) and (h) gives a criterion for choo
sing the “most meaningful” messages. In a certain
sense we get an answer to question 3 of our Introduc
tion, as according to Haken’s classification not all the
sets of inputs having the same amount of bits are equ
ally useful and we may find the existence of some “re
lational information".

It should be pointed out explicitly that such a “rela
tional information” as introduced in question 4 of our
Introduction is different from Mac Kay’s “structural
information”. In fact the latter is defined as the basal
multiplicity o f distinguishable groups or clusters [1], whi
le our “relational information” stresses not a merely
dimensional property, but the proper choice among
equidimensional sets that are not equivalent because
of different relations between their elements. As a trivi
al example we may note that the set of the numbers 10
and 2 has different meanings (and the resulting num
ber needs a different number of bits to be represented)
if we choose one or another of the following expressi
ons :

NNW 3/91, 155— 162

10 + 2, log210, 210, 102. (2)

In Haken’s work the necessity of storing in the net
an a priori classification of the relative importance of
the attractors is still present. This renders the net scar
cely useful in dealing with time varying inputs, as the
structure of its state space is fixed in advance and mo
reover it needs a rigid classification of the things that
are meaningful. Such a way of operating corresponds
to verifying the meaning according to the rule (a) of
Mac Kay that we quoted above in this paragraph (i.e.
the selective function is based on definition of terms).
On the contrary it would seem of more general utility
and more similar to the behavior of living beings to
use the rule (b) of Mac Kay (i.e. to use logical rules for
judging of the inner coherency of the input).

Some efforts in this direction have been made by
our research group. We are pursuing research on a ar
chitecture with weight dynamics granting a conti
nuous redefinition of its state space [4] [5] and on an
architecture able to recognize moving objects [6],

2.2 Information and organization

Obviously the behavior of a neural network de
pends on its architecture and on the actual values of
its parameters, i.e. on the way its data is organized. It
is well known that information is stored in a distribu
ted fashion and therefore we may argue that the archi
tecture itself is able to store information in a more or
less efficient way.

Complex systems were considered by Atlan [7] who
studied a system composed by several subsystems
connected to each other by noisy communication
channels and deduced equations describing the infor
mation supplied to an observer as a function of time,
noise and interaction with environment. Although his
analysis is very clever, its hypothesis seems at present
to be too far from being immediately applicable to
neurocomputing.

Other authors studied problems specifically related
to neural networks, but the influence of organization
on information is considered from the point of view of
how dynamics evolves rather than from the point of
view of how information is stored. So Parisi [8] found
that asymmetry in the synaptic strengths may be cruci
al for the process of learning, while Tsuda et al. [9]
proposed a mechanism with positive and negative
feedback that gives rise to a type of chaos that can be
an effective gadget for memory traces.

If we take again into consideration the Langevin
equation in the case of a system made up of several
subsystems and limit ourselves to considering only de
terministic stationary solutions (i.e. fixed points), it is
possible to arrive at some interesting conclusions.
This has been done by Haken [10] and the results may
be summarized as follows; (a) the amplitudes of stable
modes (modes corresponding to eigenvalues A, < 0)
can be computed as a function of the amplitudes of

NNW 3/91, 155-162

the ¡stable modes (i.e. with A, < 0) and (b) as a conse
quence, it may happen that even important changes in
the macro-structure of the system require only a little
change of the amount of information necessary for
describing it and this corresponds to a strong com
pression of information. Unfortunately such intere
sting results have been obtained at the expense of
strong simplifying hypotheses, the most important be
ing linearization. Therefore the criticism expressed
with regard to the work of Atlan applies once again.

Nevertheless the quoted works may be considered
as the first useful stones for building up a systematic
theory of relational information.

2.3 Memory capacity of a neural network

As neural networks are mainly used as classifiers, it
is evident that one of the most important problems is
to know how many different patterns a given network
is able to recognize correctly. In the case where the
network acts as a dynamic system that evolves from
an initial point or state (the input pattern) to a stable
attractor (the corresponding reference pattern), a very
simple and intuitive formulation of the problem seems
to be that it consists in finding the number of attrac
tors, each attractor corresponding to a memorized pat
tern. Nevertheless such a problem is more subtle than
how it may appear at first glance. First of all, it is ob
vious that the capacity of a network depends on the
architecture of the network itself and on its size, but
there are two other important factors: the learning al
gorithm and an exact definition of what the words “to
recognize correctly” mean. Therefore, besides being
of great importance in the field of neurocomputing,
the estimate of the capacity of a neural network has
been a challenging topic in information theory. Despi
te this fact, some results have been obtained only in
very particular cases and a general theory is not yet
available.

Only the Hopfield network with one and three
layers has been investigated and some sufficient con
dition is known for cellular neural networks. Huh and
Dickinson [11], extending results obtained some years
earlier by McEliece et al. [12], computed values of ca
pacity for a Hopfield network with only one layer,
using the outer product algorithm for learning, under
different conditions of operation, which differ from
each other because of the use of the idea of probabili
ty in defining what we called “proper recognition”.
From there, in the asynchronous case three different
kinds of convergence follow which we summarize in
this way:

— convergence a: at every step the point in state
space representing the actual state of the network mo
ves along a straight line toward a fixed point;

— convergence h: movements of the state point oc
cur with the amount o f probability great hut less than
one toward a fixed point that ultimately is realched as
in case a ;

Cimagalli et al: Information Storage in Neurocomputing 157

— convergence c: with a great probability, the state
point reaches a new fixed point that is much nearer to
the correct point than the starting point was.

The said values of capacity C(n), where n is the
number of nodes of the network, are:

A) Convergence a is required for almost all the me
morized patterns:

where 0 < a < 1/2 is a parameter (called radius of
convergence of the associative memory) associated
with the dimension of the basin of attraction.

B) Convergence a is required for all the memorized
patterns:

the Hamming distance between the patterns to be sto
red as well as betveen them and the patterns to be re
cognized. Probability is not at all involved in the defi
nition of capacity. Their studies are still in progress,
as the said condition seems to be too restrictive and
far from the necessary one.

All of the studies noticed, focused on capacity, con
sidered only one aspect of information storage in neu
rocomputing, i.e. what is equivalent to memory size in
sequential machines. An attempt to encompass such
a limited point of view has been made by introducing
in some way the concept of probability, but the pro
blem of evaluating how much information, useful for
processing the incoming information, is stored both in
the memory and in the architecture o f the network, has
not yet been faced.

C(n) n
In (n) (4)

C) Convergence b is required for all the memorized
patterns:

C(/7),
n

4■In(n) (5)

D)C divergence b is required for almost all the me
morized patterns:

C(n)n = 2 ■ C(w),. (6)

E) Convergence c is required and an amount of er
ror of 10 4 is admitted:

= 0.0723 n (7)

In the case that learning is made by means of the
spectral algorithm, Venkatesh and Psaltis [13] found
that:

C(n), = n (8)

A greater value of capacity was found by Mitchin-
son and Durbin [14] in the case of a three layer Hop-
field network, with n input nodes, h hidden nodes and .v
output nodes (s < li < n). However it should be no
ted than in this case they assumed as capacity C the
number of input-output pairs that the network can
store while the error probability does not exceed 0.5.
Under these assumptions they arrived at the following
inequalities:

2// < C < nt • log(0 (9)

where t = 1 + h/s.
In a recent paper [15] Tan, Hao and Vandewalle

found a sufficient condition for k sub-patterns to be
stored in a cellular neural network using the Hebb ru
le. This rule is founded on some relations concerning

158 C'imagalli et al: Information Storage in Neurocomputing

3. The relational information

We think that a neurocomputer stores some data
but also, even more importantly, an algorithm for
using these data. Moreover the structure of the set of
stored data can itself contain more or less information
according to the task to be performed, even if the
amount of stored bits is invariant. Having such an
idea in mind, we started to investigate how to suggest
some methods for evaluating such particular informa
tion, hidden within the relations implied bv a formula
or by the architecture of a network.

In the present paper we limit our attention to neural
networks that act as dynamic system evolving to at
tractors that are fixed points only. This is due to the
fact that only this case was taken into account in the
current literature on the topic of our interest and we
summarized. However it is also well known that other
kinds of attractors can be used in neurocomputing
and in particular our research group is investigating
the use of chaotic dynamics as possible devices for
storing information [16].

For this reason we present now in the next sub-pa
ragraph an original study on the measure of informati
on stored in chaotic dynamics [17]. Such a research
also led to rather interesting results in the field of
communication as a means for reducing transmitted
information.

The second sub-paragraph will deal more directly
with neurocomputers and will report on research on
the ability of a neural network to acquire knowledge
by induction [18],

3.1 Information properties of chaotic dynamic

In this section we discuss how information is pro
duced, processed and stored by a chaotic dynamic sys
tem: we will show that such a system has a behavior
which is quite peculiar as compared both to ordinary
deterministic and to stochastic systems. A series of da
ta obtained from observations of the evolution of

NNW 3/91, 155-162

a chaotic system displays a hidden structure that can
be recognized and exploited.

The most striking feature of chaotic dynamics is
a strong local instability: orbits diverge locally expo
nentially (at least in one direction) and are eventually
kneaded. Supposing that we can divide the state space
into a finite partition (because of limits in the precisi
on of measuring or computing), it happens that the
points contained in one of the subsets spread over ma
ny subsets and eventually fill the whole attractor un
der the action of the dynamics. This menas that the
entropy of the set is varied, and information is not
conserved; as a consequence we lose ability to fore
cast the state into the future. This is explained in phy
sics by observing that the system is non-conservative,
and described by means of instability parameters such
as Lyapunov exponets. From a mathematical point of
view, topology and the theory of measure are applied,
and scaling parameters computed.

Both approaches to the problem are found to be in
sufficient in engineering because the dynamics is des
cribed globally, but no knowledge is available about
the semantics, that is how information flows through
and is processed by the system. K. Matsumoto and
!. Tsuda [19] dealt with the problem of tracking the in
formation about initial conditions, but in the quoted
paper they kept themselves on a qualitative level.

We claim that to understand the informational pro
perties of chaos a study is needed of the structure of
the data produced by the evolution of the system. The
key consideration for our reasoning is that chaotic dy
namics lives on the border between determinism and
change: even if the system is totally determined, the
knowledge of it does not allow for long-term predicti
on, so that the behavior appears eventually random,
and our inability to follow the orbits is inherent in the
structure of the system. This structure should be re
cognized and respected when attempting to measure
information.

Looking at a stream of data produced by a chaotic
system (we have studied maps on the unit interval that
are time-discrete), it is possible to extract from it an
approximate representation of their generation law.
However, even if we were able to reconstruct it exac
tly, as we have argued above, this is not enough to
predict future data. So if we want to compute the sa
me data by letting the reconstructed dynamics evolve,
we need additional information to keep the precision
of the computation to a given standard; for one-di
mensional systems the average information change
amonts to the Lyapunov exponent for each time step.
We divide in this way the stream of data considered
into two streams; the first, which we call “prediction
flow”, conveys information about the dynamics, e.g.
parameters of a reconstruction, the second, called
“unpredictable flow”, completes the information
about the actual data. We note here that the amount
of information stored in the prediction How is much
higher than one could expect by merely computing
the number of transmitted bits. This is due to the fact

that, as already stated, it conveys information about
the dynamics, or, in other words, “relational informa
tion”.

We have developed a model of a communication
system that implements this splitting of information
and tested it by computer simulation. As was conjec
tured, this system does information compression,
which is stronger when the system is less chaotic, This
is obtained by processing the data to extract a polyno
mial reconstruction of the chaotic function, using an
algorithm developed in our research group [2 1], and
transmitting the coefficients of the polynomial as pre
diction flow; the unpredictable flow is made of the
symbolic dynamics associated with the system. Opera
ting like that, the information How can be dramatical
ly reduced, because the amount of information requi
red for transmitting the prediction flow is almost ne
gligible even with a limited amount of data processed,
while the unpredictable flow conveys one symbol per
data (data are real numbers!).

The following computations will show how a stora
ge of information is produced by attaching to a set of
numbers the meaning of being coefficients of a poly
nomial approximating the dynamical function. Let
h (ri, N) be the number of bits per data needed to re
present a data How of length N within a mean square
error of rr, by applying the optimized chaotic coding
sketched above. Let nu (rr) and (rr) be the same
quantities in the case where we apply a traditional uni
form or statistically optimized quantization (we consi
der here also non-integer values of nu and /2opt, obtai
ned by reversing the formulas for a(n) that can be
found in the literature [2 2]).

We define “statistical information” as the diffe
rence

I , - n „(c T) - {(7) . (10)

This quantity is non-negative, and has an explicit ex
pression which does not depend on a, but just on the
shape of the distribution of the data. Statistical infor
mation measures the amount of information contai
ned in the statistical structure of the data.

Additionally, we denote the “deterministic informa
tion relative to the N data” as

/,/(<t, N) = nopt(a) - n,(<j, N) (11)

and the “absolute deterministic information of the sys
tem” (or just “deterministic information”)

¡A<T) - lim 7,/(rr, N). (1 2)
— * oo

Deterministic information measures the amount of in
formation contained in the deterministic structure of
the data. The behavior of / (/(<t) must obey the conditi
ons:

lim /,/ (rr) ~ + oo (14)
rr—»0

NNW 3/91, 155 — 162 Cimagalli et al: Information Storage in Neurocomputing 159

lim /</(£) = 0
CT—’ + CQ

(14) 3.2 Information involved in the generalization process
of a neural network

which correspond to the limit situations of exact or no
knowledge of the dynamics.

As an example we the case of a very simple chaotic
system described by the relation

xn 4 | = 0.95 sin (nxn) (15)
-x, e [0 , 1].

f lows(b it/da ta)

2 0
15

to

5

O
1 0 ~ 7 1 0 " 6 1 0 ' 5 1 0 " 4 1 0 3 1 0 2

mean square error

Fig. 2 Information flows as a function of the accepted error, for
function 0,95 sin(pi. x)

Figure 2 shows n f a), wOPr((T) and n f (r) on a bro
ad range of rr; is not shown as depending on N be
cause it settles on a value very close to l independet
of <7 already for N in the range of thousands, due to
the fact that the prediction flow is in this case very
low, so that the total flow is almost completely the
flow of symbols that are here binary.

It is apparent that I d has and exponetial behavior,
which is consistent with the conditions stated above.
It also evident how large the deterministic informati
on is, as compared to the total.

The definition of deterministic information can give
us a clearer view of how information is stored in a ma
thematical expression. At first consideration, we
should say that a known dynamic function stores infi
nite information and produces nothing neew (i.e. un
predictable) in its evolution. Actually, as in no practi
cal case may we suppose an exact knowledge or repre
sentation of the function, expecially when dealing
with chaos, deterministic information may be exploi
ted to measure the amount of information linked to
the approximate knowledge of a dynamic function, se
parating it from the information linked to the pseudo
random behavior peculiar of chaos.

The study of such quantities could provide valuable
hints for the design and operation of neural networks
exhibiting chaotic evolution.

160 Cimagalli et al: Information Storage in Neurocomputing

We consider below the deductive and inductive cha
racteristics of the neural processing of information
and give a measure of the generalization capability of
a neural network.

PROPOSITION 1 : A digital neural network is able
to implement any boolean logic function: for any given
algorithm there is an appropriate neural network that
implements it.

The dimension of the network (number of nodes
and number of synaptic connections) will depend on
the particular algorithm and on the chosen architectu
re, but the focal point is the capability of a neural net
work to implement a logical function anyway: a con-
nectionist system is a universal deductive automa
ton [23].

DEFINITION 1 : Generalization bv induction in the
neural information processing is the capability to learn
an algorithm without using the entire amount o f infor
mation about it.

If we select a subset of possible inputs to the neural
network (an appropriate training set) and, after the le
arning phase, the network is able to make an exact
mapping of the inputs into the outputs, according to
the algorithm, we can say that the network performs
a total generalization. On the contrary, if the number
of the correct outputs of the system is random we say
that the generalization process did not happen.

Now we consider a neural network with p n and nOM
binary inputs and outputs. Moreover we define an al
gorithm p as an operator such that for all 2"'" input bi
nary arrays the 2" output arrays are univocally defi
ned (Fig. 3)

x input output

Y= Pf x)
V X 6 XV ye T

Fig. 3. Pertaining to the definition o f “algorithm "

PROPOSITION 2: The amount of information neces
sary for a system with nm and wout binary inputs and out
puts to implement and algorithm F is expresed by

Aiet (P*) ~ ~p b i t (, 6)

where P is the probability that the network, untrained,
is able to respond correctly to all the inputs:

P = Pr(Y= F (x), Mx e X and Vye Y (untrained ne-
tvork)

Intuitively this probability P is smal and then the
quantity Ine[(F) will be a large amount of informati
on. To evaluate the said probability Pwe assume that:

NNW 3/91, 155-162

A) The nom events are statistically independent and
équiprobable, i.e.:

q, = Pr(yt = P {x) | Vxe X (untrained network)
(17)

q, — q V / = 1

B: In the situation of an untrained neural network,
synaptic connections have random values and theore-
fore

q = 0.5

C: The events “exact outputs ye Y of the untrained
network, according to the algorithm”, are statistically
independet.

Under hypotheses A and C we obtain the following
expression for the probability P:

As pointed out in the Introduction, in our case we
are not dealing with an amorphous amount of infor
mation, like that stored in the memory of a digital
computer or traveling in a communication channel.
Then it becomes evident that the organized structure
of the network plays an essential role in the total ba
lance of information. In the trivial example by (2) we
showed that different results are obtained if number 2

is next to the number 10 as an addend or as an expo
nent: the numbers are the same, but their relation is
different. Analogously we claim that the architecture
of the neurocomputer introduces relations between the
different items of information supplied to it and that
also this fact turns out to be an amount of informati
on. Moreover we are now able to quantify it and give
the following

DEFINITION 2: We call “relational information”
stored in a neurocomputer the following quantity:

T- Pr(\ y(l) = P \ a-!1))(, . . , |T ' 2.*= P’(\ 2 ’)} /
/ untr. net.) = (q")" (18)

Now, from (18), hypothesis B and Proposition 2, we
are able to calculate the following expression for the
information amount /ncl(P):

7net(0 = 2"in • nou{ bits (19)

This is the amount of information that should be
necessary to supply to the network in the case of using
for the learning all the possible inputs x e X.

On the contrary, if in the learning phase a set of
only m « l""' inputs were used, the amount of informa
tion supplied to the network should be:

7nel(m) = m . noul log2(//q) = m.noul bit (2 0)

Actually the true amount of information supplied to
the network is greater than the quantity computed by
(2 0), because it is assumed that the used set is an ap
propriate set, i.e. its elements are supposed to have
been chosen in such a way to put into evidence as
much as possible the rule to be learned by the net
work, So, e.g., if we have to implement an algorithm
for separating two clases of elements, one should not
choose a training set containing only elements of one
class. The evaluation of such a supplementary infor
mation /(is still a matter of investigation. Nevertheless
we may suppose that its relevance diminishes as m in
creases and we will neglect it in the following.

If the network is able to perform a complete genera
lization after having been trained by means of m in
puts, we may state that:

(a) the behavior of the network under consideration
is the same as that of a network having an amount of
information /uel (P*);

(b) the amount of information actually supplied to
the network is inel(m)+Ic.

A/nct(m) = /1U, (P ') ~ luc[(m) - l noul . (2 ""’ ~ m)
(21)

As an example we may consider the simple case of
classifying N elements in M classes. As

«in = [log2 N] and noM - f log , M j (22)

if we suppose that a complete generalization is obtai
ned training the network with only the most signifi
cant element of each class, the relational information
stored in the network is:

/„«(M) = [log2M] ■ (2 N- M) (23)

The amount of sucha relational information can be
not at all negligible. E.g. we consider the particular ca
se of the experimental results obtained by Paternello
and Carnevali [24]. They implemented the 8 -bit sum
by a network of 80 nodes and obtained a complete ge
neralization with a training set of m = 2 2 inputs out of
the 64,000 possible. Applying (21) we obtain:

AInel (224) = 8 . (2 16 - 224) - 522496 bits (24)

4. Conclusions

We have examined the problems connected with in
formation storage in neurocomputing putting into evi
dence (a) that many current ideas need to be revisited
and probed further and (b) that the architecture of the
neurocomputer is itself able to store information inde
pendently of the actual data fed to it. We have called
this type of information “relational information” and
have shown how it is possible to measure it by carry
ing out the difference between known quantities.

NNW3/91, 155-162 Cimagalli et al: Information Storage in Neurocomputing 161

References

[1] D . M . M a c K a y , “ T h e N o m e n c l a t u r e o f I n f o r m a t i o n
T h e o r y ” , Proc. of First London Symp. on Inf. Theory,
1 9 5 0 R e p r o d u c e d i n Proc. 3th Confort Cybernetics
(H . v o n F o e r s t e r , e d .) , J o s i a h M a c y J r . F o u n d a t i o n ,
N e w Y o r k , 1 9 5 1 .

[2] D . M . M a c K a y , “ T h e P l a c e o f ‘ M e a n i n g ’ in t h e T h e o r y

o f I n f o r m a t i o n " , Information Theory (E . C . C h e r r y , e d .) ,
B u t t e r w o r t h s , 2 15 - 2 5 5 . 1 9 5 6 ,

[3] FF H a k e n , “ I n f o r m a t i o n a n d S e l f - O r g a n i z a t i o n : a M a c

r o s c o p i c A p p r o a c h t o C o m p l e x S v s t e m s ” , Springer Ver-
fag, B e r l i n , H e i d e l b e r g , 19X 6.

[4] V . C i m a g a l l i , M . G i o n a , G . B a s t i , A . P e r r o n e , F . P a s e r o ,

“ A n A s y m m e t r i c S p i n - C l a s s M o d e l o f L o n g - T e r m M e

m o r y in a D y n a m i c N e t w o r k A r c h i t e c t u r e ” , Proc. IEEE-
INNS hit. Joint Conf on Neural Networks. W a s h i n g t o n

D . C , J a n . 15 1 9 , 1 9 9 0 .

[5] G . B a s t i . A . P e r r o n e , A . B a l l a r i n , V. C i m a g a l l i , G . M o r -

g a v i , “ S e c o n d - O r d e r S t a t i s t i c i n a N o n - S t a t i o n a r y N e u
r a l N e t w o r k ” , to be published.

[6] V . C i m a g a l l i , “ A N e u r a l N e t w o r k A r c h i t e c t u r e f o r D e
t e c t i n g M o v i n g O b j e c t s ” , i n Parallel Architecture and
Neural Networks (E . R . C a i a n i e l l o e d .) , W o r l d S c i e n t i f i c ,
S i n g a p o r e , 2 2 5 2 3 0 . 1 9 9 0

[/] A t l a n , “ R ô l e p o s i t i f d u B r u i t e n T h é o r i e d e l ’ i n f o r m a
l i o n A p p l i q u é e à u n e D é f i n i t i o n d e l ' O r g a n i s a t i o n B i o
l o g i q u e ” . Ann. Phis Biol, e Med I, p p . 15 3 3 , 1 9 7 0

[8] Cj . P a r i s i , “ A s y m m e t r i c N e u r a l N e t w o r k s a n d t h e P r o

c e s s o f L e a r n i n g ” , ./. Phys. A, p p . L .675 L 6 8 0 , 1 9 8 6 .
[9] I . T s u d a , E . K o e r n e r , I F S h i m i z u , “ M e m o r y D y n a m i c s

i n A s y n c h r o n o u s N e u r a l N e t w o r k s ” , Progr. of Th. Plus..
p p . 51 7 1 , 1 9 8 7 .

[1 0] H . H a k e n . “ I n f o r m a t i o n C o m p r e s s i o n in B i o l o g i c a l S y s
t e m s ” , Biol. Cybern., p p . I I 17. 1 9 8 7 .

[I I] A . K u h a n d B. \\ D i c k i n s o n , " I n l o r m a t i o n C a p a c i t y o f
A s s o c i a t i v e M e m o r i e s ” , IEEE Trans, on Inf. Theory,
p p . 5 9 - 6 8 , 1 9 8 9 .

[12] R , J . M c E l i e c e e t a l , “ T h e C a p a c i t y o f t h e H o p f i e l d A s

s o c i a t i v e M e m o r y ” , IEEE Trans, on Inf Theory,
p p . 4 6 1 - 8 2 , 1 9 8 7 .

[13] S. S . V e n k a t e s h a n d D . P s a l t i s , “ L i n e a r a n d L o g a r i t m i c

C a p a t i c i e s i n A s s o c i a t i v e N e u r a l N e t w o r k s ” , IEEE
Trans, on Inf. Theory, p p . 5 5 8 5 6 8 . 19 8 9 .

[14] G . J . M i t c h i n s o n a n d R . M . D u r b i n , “ B o u n d s o n t h e
L e a r n i n g C a p a c i t y o f S o m e M u l t i - L a y e r N e t w o r k s ” ,
Biol. Cybern., p p . 3 4 5 — 3 5 6 .

[15] S. I a n , J . H a o , J. V a n d e w a l l e , “ C e l l u l a r N e u r a l N e t

w o r k s a s a M o d e l o f A s s o c i a t i v e M e m o r i e s ” , Proc. Int.
Workshop on Cellular Neural Networks and their Applica
tions, B u d a p e s t , p p . 2 6 — 3 5 , 1 9 9 0 .

[16] G , B a s t i , A . P e r r o n e , V. C i m a g a l l i , M . G i o n a , E . P a s e r o ,

G . M o r g a v i , “ I n f o r m a t i o n a l v e r s u s B i f u r c a t i v e U s e o f
C h a o t i c D y n a m i c s i n N e u r a l N e t w o r k s ” , Proc. Int. Neu
ral Network Con/., P a r i s , p p , 9 4 1 9 4 4 , 1 9 9 0 .

[17] M . B a l s i , „ I n f o r m a t i o n a l P r o p e r t i e s o f C h a o t i c D y n a

m i c s ” , (i n i t a l i a n) , EE. Dr. Dissertation, U n i v . o f R o m a
“ L a S a p i e n z a ” , 1 9 9 1 .

[18] A . D e C a r o l i s , “ I n f o r m a t i o n in N e u r a l N e t w o r k s .
A C o n t r i b u t i o n t o a S y s t e m a t i c A p p r o a c h ” , (i n i t a l i a n) ,

EE. Dr. Dissertation, U n i v . o f R o m a “ la S a p i e n z a ” ,
1 9 9 0 .

[19] K . M a t s u m o t o , I. T s u d a : “ E x t e n d e d I n f o r m a t i o n in

O n e - D i m e n s i o n a l M a p s " P h v s i c a 2 6 D , 3 4 7 — 3 5 7 ,
1 9 8 7 .

[20] R. S h a w : “ S t r a n g e A t t r a c t o r s . C h a o t i c B e h a v i o r a n d I n

f o r m a t i o n F l o w ” Zeitschrift für Naturforschung 3 6 a ,
8 0 - I 12, 1 9 8 0 .

[21] M . G i o n a , F . L e n t i n i , V. C i m a g a l l i : „ F u n c t i o n a l R e c o n

s t r u c t i o n o f C h a o t i c T i m e S e r i e s ” — submitted to Phys.
Rev. A

[22] K . W . C a t t e r m o l e : “ P r i n c i p l e s o f P u l s e C o d i n g M o d u l a
t i o n ” — I l i f f e , L o n d o n (1 9 6 9) .

[23] M a c C ’u l l o c h a n d P i t t s , “ A L o g i c a l C a l c u l u s o f t h e I d e a s

I m m a n e n t in N e r v o u s A c t i v i t y ” , Bull. Math. Biophys.,
pp. 115 133, 1949.

[24] P a t a r n e l l o a n d C a r n e v a l i , “ L e a r n i n g N e t w o r k s o f N e u

r o n s w i t h B o o l e a n L o g i c ” , Europhys. Letters,
p p . 5 0 3 - 5 0 8 , 1 9 8 7 .

Literature Survey

I n t h i s s e c t i o n o f o u r J o u r n a l w e c o n t i n u e i n p r e s e n t i n g o f

a s u r v e y o n t h e s e l e c t i o n o f t h e l a s t r e c o r d s c o n c e r n i n g t h e
n e u r o s c i e n c e a n d t h e r e l a t e d f i e l d s w h i c h a p p e a r e d i n t h e

S c i e n t i f i c I n f o r m a t i o n S y s t e m o f t h e I n s t i t u t e o f C o m p u t e r

a n d I n f o r m a t i o n S c i e n c e o f t h e C z e c h o s l o v a k A c a d e m y o f

S c i e n c e s , P r a g u e .

W e s h e l l b e g r a t e f u l t o t h e r e a d e r s t o i n f o r m t h e E d i t o r s

o r t h e I n s t i t u t e a b o u t a n y p u b l i c a t i o n , w h i c h t h e y r e c o m

m e n d t o i n s e r t i n t h i s l i t e r a t u r e s u r v e y .

Hopfield J. J.: The Effectiveness of Analogue “ Neural Ne
twork” Hardware
N E T W O R K , V o l . I , 1 9 9 0 , N o . I, p p . 2 7 - 4 0

K e y w o r d s : m o d e l s o f n e t s ; t e c h n i c a l e l e c t r o n i c r e a l i z a

t i o n .

A b s t r a c t : O n e a l w a y s e n c o u n t e r s i m p r e c i s i o n in d e c i s i o n

m a k i n g . T h e f a c t s t h a t w e b a s e o u r d e c i s i o n s o n m a y b e f u z

z y . T h e r u l e s t h a t w e u s e t o d o l o g i c i n f e r e n c e a r e n o t p r e
c i s e . E v e n t h e w o r d s “ A N D ” a n d “ O R ” u s e d in d e s c r i b i n g

t h e r u l e s d o n o t h a v e p r e c i s e m e a n i n g . I n e x p e r t x v s t e m t h a t
a r e b u i l t t o h e l p i n m a k i n g d e c i s i o n s , v a r i o u s w a y s a r e used
t o r e f l e c t t h i s i m p r é c i s . A c o m m o n l y u s e d m e t h o d i s t h e c e r

t a i n t y f a c t o r f o r m a l i s m . T h i s h a s t h r e e d i s a d v a n t a g e s : 1 /
T h e c e r t a i n t y f a c t o r s o f t h e “ A N D ” a n d “ O R ” o p e r a t . a r e

t a k e n t o b e t h e m a x i m u m a n d m i n i m , o f t h e c e r t a i n t y f a c

t o r s o f p r e m i s e s r e s p e c t i v e l y . T h i s m e a n s t h a t t h a t s o m e i n

f o r m a l . i s c o m p l e t e l y i g n o r e d i n t h e p r o c e s s . 2 / T h e u n c e r

t a i n t i e s i n t h e f a c t s , r u l e s a n d l o g i c a l o p e r a t . a r e n o t t r e a t e d

in a u n i f i e d w a y . I n t h i s p a p e r , w e d e f i n e a n e w l o g i c t h a t

w e i g h s a l l a v a i l a b l e i n f o r m a t i o n a n d i m p l e m e n t i t u s i n g a n

e m u l a t e d n e u r a l n e t w o r k s . T h i s n o t o n l y r e m o v e s t h e d i f f i
c u l t i e s s t a t e d a b o v e , b u t a l s o a l l o w s t h e r e s u l t i n g e x p e r t s y s
t e m t o b e a b l e t o l e a r n t h r o u g h e x a m p l e s .

Hsu L.-S,, Teh, H.-FL, Chan S.-C’., Loe K. F.: Imprecise Rea
soning Using Neural Networks
I E E E , 1 9 9 0 , p p . 3 6 3 - 3 6 8

K e y w o r d s : n e u r a l n e t w o r k ; e x p e r t s y s t e m ; c e r t a i n t y f a c

t o r .

Huang J. N„ V lont/os J. A,, Kung S. Y.: A systolic neural ne
twork architecture for hidden Markov’s models
I E E E T r a n s a c t i o n s o n A c o u s t i c s , S p e e c h a n d S i g n a l P r o

c e s s i n g , V o l . 3 2 , 1 9 9 0 , N o . 12 , p p . 1 9 6 7 - 1 9 7 9
K e y w o r d s : m o d e l s o f n e t s .

162 Cimagalli et al: Information Storage in Neurocomputing NNW 3/91, 155-162

BINARY NEURAL NET: A LOGICAL NETWORK
MODELING SOME FEATURES OF NEURAL NETS

XI. Jifina *)

Summary
The paper deals with possibility of using the principle

of ordinary digital logical elements for design of a ino
de! of neural net. The two-layer structure of AND and
OR logical gates similar to minimal disjoint form is in
troduced. Active as well as adaptive dynamics is descri
bed and it is shown that the net can serve as adaptive
classifier, decoder and it can recognize „blurred“ pat
terns, but it is not noise resistant.

1. Introduction

When classifying the neural nets two kinds of nets
are usually considered [1]:

the „continuous“ or „analog“ nets. In these nets
the input and output signals may be of arbitrary value
from some interval of real numbers. The weights of sy
napses are in essence arbitrary real numbers,

1». „binary“ nets having the input and output sig
nals of two values only, preferably 0 and 1, or 1 and
+ 1. The weights may be, as in the preceding case, in
fact arbitrary real numbers, The function of the neu
ron in the net of this kind is based in evaluation whe
ther the weighted sum of input signals is greater than
some threshold, or not. According to this the output
becomes in one of two possible states [5].

In this contribution a special case of binary neural
net is introduced. Not only inputs and outputs, but al
so the weights may be in two or three states only. The
weights have values — 1, 0 or I, the inputs have values
0 or 1. Two possibilities in setting the threshold are
used. In the first case the threshold is set so low, that
a single positive or inverted negative input signal is
sufficient to overcome it. Than the overall function of
neuron is logical sum of direct (the weight + 1) or in
verted (the weight —1) inputs. In the second case the
threshold is set so high, that all positive and inverted
negative inputs are necessary to overcome it. Thus lo
gical product of direct or inverted inputs is accomplis
hed. This kind of network represents a simplest purely
digital kind of neural net. It is interesting from the po
int of view of realization by digital technology.

The neuron with binary inputs and outputs is in no
relation to standard logical networks. It may be mode
led as an analog resistive network, where the conduc
tances of resistors represent the synaptic weights [3].

*) Ing. Marcel Jifina, DrSc., Institute of Computer and Information Science.
Prague. Czechoslovakia.

The neuron is then a threshold element and generates
the threshold function

v,

/(.v , y„) = 1 when X (2r, - 1).y, > ,9,
/ i

0 (or I) otherwise.

In this formula .v,....... v„ are the inputs, v,, , , , vn are
the corresponding weights and .9 is a threshold.

Let a parallel /i-bit input signal, a pattern, be given.
To detect it a single /7-inputs logical AND gate is suf
ficient. The Ls in the pattern are directly connected to
the inputs of the AND gate, the O’s in the pattern are
connected via inverters. If only (/? 1) inputs AND
gate is used then one of signal bits (the / th) remains
unconnected. The gate then detects two signals — pat
terns as equivalent, just those having / th input 0
or 1. From lessening of number of bits connected to
the AND gate follows a broader class of signals detec
ted as equivalent.

2. Theory of AND-OR neural net

2.1. Synapses of the AND-OR neuron

Definition 1. The pattern (or n inputs pattern) is
a vector of dimension //, having elements 0 or 1.

Definition 2. If the net generates some output com
bination in response to a given pattern, it generates
a feature of the pattern. The disjunction (or logical
sum) of all undistinguishable patterns which generate
the same feature form the maximal pattern My of this
feature. The conjunction (or logical product) of all un
distinguishable patterns which generate the same fea
ture form the minimal pattern m v of this feature.

Definition 3. The information is fed to the neuron
by synapse. Each neuron has arbitrary but fixed num
ber of synapses. Each synapse is any time in one of
three states;

1. direct (noninverting),
2 . inverting,
3. disconnected (abolished, dead).
We denote the direct and inverting synapses as acti

ve.

Definition 4. The stimulus of the synapse is a binary
signal given by one element (bit) of the pattern.

NNW3/91, 163—170 Binary Neural Net

To the direct synapse corresponds the weight w =
+ 1, to the inverting synapse the weight w = — 1. (Mo
re exactly: the inverting synapse for stimulus equal to
1 gives signal 0 to neuron’s body (soma), for stimulus
0 it transfers signal 1.) The disconnected synapse cor
responds to the weight 0. The disconnected synapse
transfers no signal, but it doesn’t matter to the functi
on, The neuron with disconnected synapse behaves as
the neuron having one synapse less. For simplification
of formal descriptions the states of synapses are deno
ted simply by weights 1, 0 , —1.

2.2. AND-OR neural net

The AND neuron as well as OR neuron are arran
ged as usual neurons are. We make difference bet
ween the stimulus and the input to the body of neu
ron :

Definition 5. The stimulus of the neuron or of the
net is one pattern, whose individual elements form (as
binary signals) the stimuli of individual synapses.

In the net one element of the pattern is an input of
several synapses belonging to different neurons.

Definition 6. The input to the body of neuron is a bi
nary signal coming from the output of active synapse
(direct or inverting) to the body of neuron.

Definition 7. The AND neuron generates the feature
just when all inputs to the body of neuron from active
synapses are equal to 1.

Let us denote stimuli of direct synapses by xh . . . jem
and stimuli of inverting synapses by yh . . . y,. Then the
AND neuron generates the logical function as follows

F= XiX, — VA.Vi.V2 • • • .Vi; (l)

The body of the neuron then generates the logical
product.

Definition 8 . The OR neuron generates the feature
just when at least one input to the body of neuron
from active synapses is equal to 1 .

Using the same notation as above, the OR neuron
generates the logical function

G - X,+ x2+ . . . + xk + _y, + y2 + . . . V|. (2)

Definition 9. AND-OR neural net is a two-layer net
with hidden layer formed by AND neurons and out
put layer formed by OR neurons.

Usually we shall consider AND-OR neural net with
simple OR neurons (i. e. neurons which have synaptic
weights 0 or 1 only) in the output layer. Formally, i. e.
without considering the kind of the neurons and kind
of synapses, the structure of the AND-OR net is the
same as of two layer perceptron.

The net of n neurons in hidden layer can be learned
n different patterns in the sense of metrics according
to next chapter.

Let two features P,, P2 be given. Let maximal and

minimal patterns Mu M2, mu m2 correspond to these
features. If for some pattern v it holds

O’ c (M, n Af2)) A ((mt U mi) C V), (3)

then the net generates the feature P(v) = P} (J P2. It
can be useful property (the net generates more featu
res than it was learned and therefore it distinguishes
more classes of patterns, than it was learned). It may
be an unacceptable property as well — to the pattern
v’the feature P, corresponds correctly, and P2 is a sur
plus. In this second case the condition

M, n n Of U m,) = 0 Ahj = 1, 2 , . . . « ,

where n is number of neurons in hidden layer, is the
condition for good behavior. The output will never be
a conjunction of features to which the net was lear
ned.

2.3. Metrics of the AND-OR net
Let the i-th neuron generate a feature for r patterns

v,|,. .. vir Then the state of the neuron i for some pat
tern 0) is

S'(v) = |vc U
or

L(V) = (v c Mi) A (rn, c v), (4a)

where v is the stimulus, M, is the maximal pattern and
tn, is the minimal pattern.

If the P-th output neuron is a simple OR neuron,
then its state is

r,

Sk(v) = U «V st(v), (5)
i = 1

where wkj is the weight (0 or 1) of i-th synapse and .v, is
the state of z'-th neuron of the hidden layer. The AND-
OR net generates then the feature

P(v) = (Sj(v), S2(v),.. . S M) ,

where for Sk(N), P = 1 ,2 , . . . n it holds (5) and for
Sj(N) it holds (4).

Next let us consider a nontrivial net, i. e, the net,
where for each neuron in hidden layer there exists at
least one pattern, for which it generates the feature.
Let us choose in (5) such a numbering of neurons in
hidden layer (for each output neuron different), that
for first neurons the weights wkj are equal to 1 and
the others are zero. Then

S*(v) = U Si(v) (6)
i = 1and then

V;, A U A-c (4)
j - 1

164 Binary Neural Net NNW 3/91, 163—170

Sdv) = U t(c c .•)].
i = 1

Nonempty feature P(ij is generated, when
il

P = U Sk(v) = 1, i.e
A = I

r n i (A)
U U M,)A(m , c r)j = 1, (7)A = I i = 1 (A)

where the symbol (A) denotes the numbering valid for
A-th output neuron. It is easily seen that generally no
thing guaranties the fulfillment of the eq. (7). Then it
can exist a pattern v„ giving the empty feature, i. e. the
outputs of all output neurons are zero.

The metrics in the space of patterns generated by
AND-OR net is then

0 when P{ i'() — P{ ly),
/

/X b , Vj) =

1 otherwise.

from it follows, that p(i'()„ v'0/) 0 for all patterns u(1
for which the net generates the empty feature. The
condition for distinguishing of the patterns r, a r, is
clearly

P (vi i Vj) = 1 ,

In practice it means, that the pattern v, by at least one
stimulus (bit) does not go in the M„ or that in the i';
does not go the mr M, and m, are the maximal and mi
nimal patterns for the feature f\ v').

2.4, Adaptive dynamics of AND or OR neuron

Each synapse may be in one of three states. The
adaptive dynamics of AND-OR net is given by the
conditions under which the states of individual synap
ses are changed. It may depend on initial states of the
synapses and on the sequence the states can follow
each other. Beside this, it is also important, how the
active dynamics of individual neurons is controlled in
the whole net.

From this point of view in the ideal net the active
dynamics of each neuron follows from states of sy
napses, stimuli of the synapses, the demand to the sta
te of the neuron, and globally given (to all neurons)
commands for learning, initializing etc. The realizati
on of such a net is in principle simplest, because only
the neurons directly connected each to other are influ
enced. For hardware realization it is more complica
ted, when the learning is influenced by momentarily
valid state of other neurons in the net. It means to bu
ild more connections than it is given by basic inter
connection between layers.

From the point of view of active dynamics influen

ced by the hardware realization we then consider
three kinds of nets:

1. The nets with fixed weights. In AND-OR net it
means fixed connected logical network,

2 . externally learned nets, where the weights (states)
of synapses are controlled by external signals accor
ding to algorithm residing outside the net. For AND-
OR net it means to set externally each synapse into
one of three states. The memorizing of the state can be
made in the net as well as outside of it. The reading of
just valid state of neurons for informing the adaptive
algorithm is not excluded.

3. The learning (self learning) nets, which have bu
ild in means for changing the weights like inherent
component of the synapses or neurons. We can distin
guish two main kinds:

a) The control from outside is limited to the change
adaptive dynamics active dynamics and setting the
net into the initial state,

b) the control from outside influences in addition to
ad a) the individual layers, or individual neurons,
even individual synapses. Note, that by deepening of
the control and lessening the independence of indivi
dual neurons we can get an externally controlled net.

In this part we will concentrate to the nets of the se
cond and third kind. Several kinds of self learning
AND-OR nets will be designed and their behavior wi
ll be shown, including a net without additional relati
ons among neurons, but using randomly generated
initial states of synapses.

2.4.1. The control of the learning process of
one synapse

Let us suppose, that each synapse is controllable by
two signals. One of these two signals U controls, whe
ther the synapse learns or not the signal „learning“.
By the other signal N it is possible to set the synapse
into an initial state, independently on the preceding
state signal „initialize“. The signals U and N are
usually common to all synapses of the neuron. These
signals are two extra inputs of the neuron.

A realization is possible having three controlling
signals as follows:

initializing A,
primary learning P (as separate signal),
additional learning U (in preceding case only

„learning“).
Note, here we distinguish two kinds of learning.

The primary learning is the first learning of the neu
ron since it was set to the initial state. The additional
learning means, that the neuron is relearned to other
pattern usually without forgetting the pattern it
„knows“ already. The additional learning arises when
there is no neuron in the initial state or in other spe
cial circumstances.

Let W = (w,. us, . . . u’„) be the vector of synaptic
weights of a neuron. Each weight wit i = 1, 2 , . . . n
has one of values 1,-1 or 0. Let the formula

NNYV3/9I, 163-170 Binary Neural Net

Pi = Wj * x„

where x, is a stimulus of a synapse (two-valued logical
variable) and p, is the input to neuron’s body, have the
meaning given by a table:

X i = 0 1

1 0 1
Wj — — 1 1 0

0 # #

In the table # denotes such an input to neuron’s bo
dy, that it does not influence its function (disconnec
ted synapse). In the case of AND neuron it is I, in the
case of OR neuron it is 0. It is appropriate to introdu
ce also the notation

P - \Y* x,

where P = (/>,, p2, . . . p„) is the vector of inputs to body
of the neuron.

From the point of view of adaptive dynamics we
shall consider two kinds of learning:

A) primary learning, i. e. such a learning, that the
synapses is set to one of two active states, direct or in
verting. The primary learning arises as the first lear
ning after the initializing signal N,

B) additional learning, i. e. the learning, when either
a/ the state of synapse is the same as the requested

state, or the synapse is in the disconnected state. In
this case the state of the synapse is not changed, or

b/ the state of synapse is opposed to the requested
state. Then the synapse changes its state to a discon
nected state.

The manner of control of the learning may be then
as follows:

a) the primary learning of a neuron may arise only
once and it is its first learning after the initial state.
Any other learning is an additional learning,

b) the primary learning may arise under defined
condition not only as the first learning after the initial
state.

2.4.2. Adaptive dynamics of the AND neuron

Let to the synapses of the AND neuron considered
be applied the pattern. For this pattern the neuron ge
nerates a feature.

Definition 10. Primary learning: Each synapse is set
to direct state, if its stimulus i is equal to 1. The synap
se is set to inverting state, if its stimulus is equal to 0 .

It is possible to write the primary learning in form:

w, - 2x, — 1,

where the multiplication and subtraction are operati
ons of real number arithmetics. We write also

W = l x — 1.

Definition 11. The additional learning: To the neu-
ron is applied a new pattern. Each synapse, which is
in direct state and its stimulus is 0 , or which is in in
verting state and its stimulus is 1 is set to disconnected
state. Otherwise nothing is changed.

The additional learning is possible to write in form

w. “ (2x, - 1 + w,) / 2 ,

where w, denotes the preceding state of the synapse
and w‘, its new state. We write also

W - (2.v - 1 + W)/2 .

2.4.3. Adaptive dynamics of a single layer of
AND neurons

Let us consider the net according to chap. 2.2.
When learning we apply a pattern to the inputs of this
net. A feature requested P is applied to the output.
The individual neurons can be divided according to
this feature P to those, which should generate the fea
ture (and therefore they should have the output equal
to 1, i. e. pj = I), and the others, which should have the
output 0. The neurons of the second group mentioned
need not any learning. The synapses of the neurons of
the first group have to be set in a proper way. If con
trolling the i-th neuron by two signals N, and U, only,
the signals N, may be common to all neurons and sy
napses. The net then has a single initializing signal N.
The signals of learning U, must be conditioned by the
value of Pi. If the control signal of learning for the net
is U, then U, = U.pj.

In the system of two control signals the primary le
arning is the first learning following the initializing
signal. Due to this fact the primary learning arise for
neuron having /?,, = 1 only. The index 1 denotes the le
arning to the feature. If learning the another pattern
with another feature, the primary learning arises for
the neurons having pa = 1 and if it was p,, = 0. For
neurons having pi2 = 1 and pn = 1 the additional lear
ning arises. The neurons having pn = 0 and also pn = 0
remain in the initial state. For these neurons the pri
mary learning may arise later.

3. Adaptive dynamics of the AND-OR net

First, we introduce an important notion.
Definition 12. Let the output of the hidden layer

neuron be connected to active synapses of simple out
put neurons. Let all these output neurons should ge
nerate a feature (i. e. their outputs should be 1). Then
this hidden neuron has uniform demand to the output.

3.1. The simplest model

Let us consider an AND-OR net, where the control
signals of the hidden layer are common. The hidden

1 6 6 Binary Neural Net NNW 3/91, 163—170

layer is then controlled by the signals N„ U„ or P,,
Ur Similarly, the output layer is controlled by signals
N„ f/„ or t/„ Px,

During learning a pattern .r is applied to the inputs
and feature requested p to the output. It is sufficient
to take into our consideration the fact of undistingui-
sability of the neurons in the hidden layer as well as in
the output layer (and impossibility to control them in
dividually). From it follows impossibility to state,
which neuron of the hidden layer should generate the
feature and which not. It is only possible to learn all
neurons the same or nothing. From it an important
conclusion follows, that it is necessary to „choose“
a neuron and only this neuron is learned. The main
problem of the adaptive dynamics of the AND-OR
net becomes a selection of the neuron to be learned, i.
e. establishment of the rules for this selection and al
gorithmic and hardware realization of these rules.

3.2. AND-OR net with random initial states of synap
ses

In the same way as in the preceding chapter we as
sume, that all neurons in the hidden layer are of the
same kind and similarly connected. The same is true
for output layer. In the same way as in chap. 2,4.3 the
signals N, let be common. The net has then a single
initializing signal N. The learning signals (7, must be
conditioned by the value of the feature to be genera
ted by the i-th neuron. Then if the command signal of
learning of the hidden layer is U„ it is Uf = U,. pr The
control signals for output layer are common and the
output layer is controlled by signals N and Uy The sig
nals Ps and Py we do not consider because it will be
seen, that the primary learning does not happen for all
neurons at the same time.

The adaptive dynamics algorithm:
Initial state: In the beginning the states of synapses

of hidden layer neurons are random: disconnected, di
rect or inverting. The neuron of the output layer has
the synapses in disconnected state. (We proceed from
the fact the synapses of the hidden layer are already
set in some random way).

1) Apply a pattern to the inputs of the net. The acti
ve dynamics of the hidden layer takes place. The sta
tes of hidden layer neurons are set.

2) Learning of the output layer: If the output neu
ron should generate a feature (its output should be 1)
and its synapse is connected to the hidden layer neu
ron generating a feature, the synapse is set to the di
rect state (+ 1).

3) Learning of hidden neurons — there are two pos
sibilities:

3a) If the neuron generates a feature, then the pri
mary learning arises.

3b) If the neuron does not generate a feature (its

output is 0) and it has the uniform demand to the out
put, it is additionally learned.

4) end.

For output layer there is no difference between pri
mary learning and the additional learning. The lear
ning begins from the state of all synapses disconnec
ted. If any synapse becomes direct, it remains in such
a state forever. It results in following behavior of the
net: If for the same pattern a feature is given and later
an another one, the net then generates a feature which
is the disjunction of both of these features.

If the /-th hidden neuron was learned different pat
terns r i, . . . yin it generates then a feature to each pat
tern for which the formula (4) or (4a) holds. If this
neuron is learned some pattern for which (4) or (4a)
holds again, a primary learning arises. Since then the
neuron „knows“ the latter learned pattern only. Then
if a neuron is learned something it „knows“, it forgets
all other what it was learned formerly.

The same way behaves the net: When it is learned
a double pattern + feature it „knows“ already, it for
gets all other patterns corresponding to the same fea
ture.

The primary learning is necessary, because the addi
tional learning only disconnects the synapses to which
contradictory requests are applied. On the other hand
there is no mechanism for preventing to the accidental
repeating of primary learning. It is possible to include
this mechanism by modification of steps 3a) and 3b)
so, that a condition the neuron was never primarily le
arned, is added. It means to check this fact, and it is
a little complication.

3.3. AND-OR net with controlled order

We proceed from the net according to the chap. 3.1.
The same way as in chap. 3.2 the net has a single initi
alizing signal N.

The learning control signals of individual synapses
in the output layer are conditioned by their order. In
the hidden layer the learning control signals are con
ditioned by the order of neurons, which were not yet
primarily learned.

Algorithm of adaptive dynamics:
Initial state: The synapses of all neurons are in dis

connected state.
1) Apply a pattern to the inputs of the net. The acti

ve dynamics of the hidden layer takes place, the states
of hidden layer neurons are set.

2) Learning of the output layer: If the output neu
ron generates a feature, then it is found the first sy
napse connected to a hidden neuron which should ge
nerate the feature. This synapse is set to the direct
state (+ 1).

3) The learning of hidden neurons:
3a) The First hidden neuron which was never lear-

NNW 3/91, 163-170 Binary Neural Net

ned since initialization is found, Then primary lear
ning of this neuron takes place.

3b) Otherwise (i. e. all hidden neurons was already
learned) and the neuron does not generate the feature
and it has the uniform demand to the output, it is ad
ditionally learned.

4) End.

As the initial state of synapses of hidden layer is
a disconnected state, all hidden neurons generate the
feature (output signal is i).

The output layer is additionally learned the same
way as according to the algorithm in chap. 3.2.

The hidden layer is primarily learned only once. It
is additionally learned any pattern, for which the cor
responding feature is already known. Additional lear
ning arises also if the feature applied includes as
a subset any feature already known. Otherwise the fe
ature is not known and the output layer learns no
thing. It is possible to condition the learning of the
output layer by the fact whether in the hidden layer
arises a primary learning or not. Then it is possible to
modify the algorithm as follows:

Algorithm of adaptive dynamics:
Initial state: The synapses of all neurons are in the

disconnected state.
1) Apply a pattern to inputs of the net. The active

dynamics of the hidden layer takes place, the states of
hidden layer neurons are set.

2) It is looked for the first never learned hidden
neuron. When it is found, its number is K and go to 3),
otherwise go to 5).

3) Learning of the output layer: If the output neu
ron generates a feature, then its synapse No. K is set
to the direct state (+ 1).

4) The K-th hidden neuron is primarily learned.
End.

5) All hidden neurons having the uniform demand
to the output, are additionally learned.

6) End.

There is impossible additionally learn the output
layer, but otherwise the behavior of the net is the same
as in the preceding case. In this algorithm a very sim
ple deterministic condition for learning is used.

3.4. A N D -O R net — m odel „find the first, which . . . “

The condition for searching the neuron which
should be learned can be substituted by another con
dition, which uses no exactly given order. It is looked
for the first neuron (in any order) of the hidden layer
generating the feature. The first algorithm in the pre
ceding chapter is changed so, that the step 3a) is a lit
tle modified as follows:

3a) find the first neuron of the hidden layer, which

generates the feature. Then the primary learning ari
ses.

In the same way the step 2) of the second algorithm
from preceding chapter is changed:

2) Find the first neuron of the hidden layer, which
generates the feature. If it is found, its number is N
and go to 3), otherwise go to 5).

In contradiction to similarity of algorithms from
this and the preceding chapter, the behavior of them
differs heavily. It is due to the fact, that if the initial
state of synapses of hidden neurons are disconnected
(0), all hidden neurons generate the feature. Than all
neurons of the output layer are primarily learned to
the first pattern. During next learning only additional
learning of output layer arises (the hidden layer learns
in a proper way), To eliminate this fact, it is necessary
to learn the net to pairs empty pattern — real feature
at first. Then after excerpting of all hidden neurons to
learn the net again with nonempty patterns. The order
of learning is not essential.

4, Example of an AND-OR net and its
function

We choose the net for transformation of different
types of characters to reference characters. The cha
racters are formed in a grid of 8 x8 pixels, bits. The
AND-OR net has 64 inputs, three hidden neurons and
64 output neurons. The net generates to the different
forms of letters A, R, C the features (characters) E, F,
G respectively. The net uses the algorithm from chap.
3.2.

In Figs, / 4 in the left upper corner there is the
character applied, or the feature (character) as the re
sponse of the net. In the lower half in the left, there
are the states of synapses of three hidden neurons. To
it correspond in the right hand side three arrays of 8 x8

points. The first array represents the synapses of the
64 output neurons connected to the first hidden neu
ron. The same for second and for the third set of sy
napses. The denotes a disconnected synapse,
the direct synapse, and the inverting synapse.

In Fig. 1 there is shown the state after learning the
first pattern and the corresponding feature. The se
cond hidden neuron and the synapses from it to the
output neurons was learned. For the first and the third
hidden neuron there is seen an initial state. In Fig. 2
the state after learning of all hidden neurons is shown.
In Fig. 3 there is shown a state after additional lear
ning of bold characters A, B, C. Now the thin letters
A, B, C represent the minimal patterns and the bold
ones the maximal patterns. These are samples of nor
mal behavior when learning. The net in active state
then gives the the feature (output) in form which it
was learned for any form of letter A, B, or C which in
clude the corresponding minimal pattern and is inclu
ded in the corresponding maximal pattern. Now, let
the net be learned the bold „A“ again with the prescri-

Binary Neural Net NNW 3/91, 163—170

Fig. !. The state after learning the first pattern and corresponding
feature. Itt the first and the second hidden layer neuron the initial slate
o f the net is seen.

-— - - --A-*----*----- *•*******---- -*-*----- *-*——**

: : : : : : : : : : : * * * * : : : :
................... *

. . * * * , .
: : * * * * ;

• * •

* « • * • • • *
* *

Fig. 2. The state after the primary learning of all hidden layer neu
rons.

-•— **—— -----— *--- - — -— * * * —— * - - * —- -----* - * - -- ̂ -t----- A. - —-* — *a«* JL. a™» 4<.X X —- *****■— K----** * —* ■"* *■*■ **** ■—■ *----- *— ---*---- *---**——* — —- - - - * * ----- — *----- * - ---*--- *---*** —

! ; i * * * * \ 1 11 * * * *

! ! * I * * I * • * ■ i l l ' *t C • ** • • : : : * * * :**■ ■ t y * * *"X• m • • • •• • * 1 4 ,* • •, , , « « # # : : : * * * * :

Fig. 3. The state after additional learning o f .,bold" characters A, B.
C. Now the ..thin" letters A. B. C represent the minimal patterns, the
hold ones the maximal patterns.

- * - -
7' —•— . *■ ******

* . * ■* . *•*— . *•

---- * * * ,-—* , - *
- - * . - *
----------------* * * .---* , -*
----------------* . - *

----• * * * .

* ' ’ * * ‘ ' *
: : : : : : * * * * ;

¥
• • • ” • • * •

: : : * * * * :
; : * : * * : : : : : * * * : : : : : * * * : :ic• * m * ■V'* * *• • • v * • a • • *Jb
■ ■ * ^ • • : : : * * * * : ¥

* * • • • •

Fig. 4. The state after repeated learning o f the pattern hold A with
assigned feature E. The primary learning took place not of the second,
hut also o f the third hidden neuron and ,.B " is completely forgotten.

----* * * *-----— * *-- * * -
—* * * * * * -
— * * — —■** —
- * * - - * * -
— * * ---- * * —

--* * * * —
— * * ” — * * - - —* * * * * * —
- * * ---- * * -**---* * —- * * - - * * -

: : : * * * *: ’] ’ i]
*. . * * *. i » ” • » * •*: : * : * * ; : : : : * * * : : : : : * * * : :
4» Jf

: : : * * : : : : : J *** ; * ’ * * * * i

NNW 3/91, 163— 170 Binary Neural Net 169

bed feature ,,E“, In Fig. 4 there is seen that the lear
ning has arisen not only for the second neuron, but
also for the third hidden neuron. Both of these neu
rons „know“ the bold „A“ only. For the third neuron
it happened, because the feature ,,F“ is a part of the
feature ,,E“. The response of the net for thin „A“ is
empty feature now. The net is able to learn it additio
nally again, but ,,B“ is forgotten forever. It is impossi
ble to reach the state according to Fig. 3 again.

6. Conclusions

It is easily seen, that the binary neuron in the active
dynamics is a combinatorial logical network only. In
the adaptive dynamics the memories of synaptic states
are put into the effect. The net of binary neurons in
more complicated adaptive state is in the end a finite
automaton only. Despite of this an AND-OR net
shows a nontrivial behavior.

The class of tasks processible by the AND-OR net
is derived in essence from the classification to n + 1

classes, if it has been given n classes. For this it would
suffice a single layer net. The second, output layer al
lows to get the response in a requested form. The
AND-OR net can serve as an adaptive classifier, deco
der, error correcting network and it can recognize
„blurred“ characters. The behavior of control structu
res according to chap. 4 was tested just for simple pat
tern recognition. From Chaps. 3.5 and 3.6 it is seen
that the net is good for recognition or regeneration of
„blurred“ patterns, but not for patterns attacked by
noise.

The possibilities of realization by VLSI technology,
especially CMOS, are easily seen. A little problem re
mains, how complicated the net is in fact. Let us con
sider a system for regeneration of up to 128 kinds of
„blurred“ patterns in an array of 8 x8 pixels. The
AND-OR net has 64 inputs, 128 hidden neurons with

8292 synapses and 64 output neurons with 8292 sy
napses. Let approximately 1/3 of synapses of hidden
neurons be disconnected, 1/3 inverting and 1/3 di
rect. For output neurons let us suppose 1/2 discon
nected and 1 / 2 direct synapses.

The fixed learned net then represents 128 approx.
45 input AND logical gates, 64 approx. 35 input OR
gates and approx. 2800 (1/3 of 8292) inverters. This is
complicity of order of 10 0 0 0 transistors.

The fully adaptive net with minimal external con
trol is approx. 50 times more complicated. It is neces
sary to build all synapses, not only the inverting ones,
and the synapses of the output layer. In all ol the sy
napses of hidden layer neurons must be a three state
memory, in all of the synapses of output layer neurons
must be two-state (one bit) memory.

The speed is rather high. The fixed net represents at
most three logical steps in series. The fully adaptive
net represents approx, ten times more logical steps in
series, but in form of internal gates. The learning of
this net needs two clock intervals needed for setting of
the internal memories for each pattern. Using minimal
and maximal patterns for additional learning ot the
net it is necessary to apply two times more patterns
then there are features.

References

[1] Lippmann R.P.: An Introduction to Computing with Neural
Nets. IEEE ASSP Magazine April 1987, pp. 4 — 22.

[2] Rung S.Y. Hwang J.N.: Parallel Architectures for Artificial
Neural Nets. Proc. Conf. San Diego 1988, pp. 11-165 II-172.

[3] US patents No. 4802103, 4773024, 4737929, 4752906, 4660166.
[4] Foo, S. Y. — Anderson, L. R. — Takefuji, Y.: Analog Compo

nents for the VLSI of Neural Networks. Circuits and Devices
July 1990, pp. 18 — 26.

[5] Yanai, H. - Sawada, Y.: Associative Memory Network Compo
sed of Neurons with Hysteretic Property. Neural Networks Vol.
3, 1990, pp. 223 228.

Literature Surwey
Heileman G. L„ Papadourakis G. M., Georgiopoulos M.:
A Neural Net Associative Memory for Real-Time Applica
tions
N e u r a l C o m p u t a t i o n , V o l , 2 , 1 9 9 0 , N o . 1, p p . 1 0 7 — 115

A b s t r a c t : A p a r a l l e l h a r d w a r e i m p l e m e n t a t i o n o f t h e a s s o

c i a t i v e m e m o r y n e u r a l n e t w o r k i n t r o d u c e d b y H o p f i e l d is

d e s c i b e d . T h e d e s i g n u t i l i z e s t h e G e o m e t r i c A r i t h m e t i c P a
r a l l e l P r o c e s s o r (G A P P) , a c o m m e r c i a l l y a v a i l a b l e s i n g l e

c h i p V L S I g e n e r a l - p u r p o s e a r r a y p r o c e s s o r c o n s i s t i n g o f 7 2

p r o c e s s i n g e l e m e n t s . T h e a b i l i t y t o c a s c a d e t h e s e c h i p s a l

l o w s l a r g e a r r a y s o f p r o c e s s o r s t o b e e a s i l y c o n s t r u c t e d a n d
u s e d t o i m p l e m e n t t h e H o p f i e l d n e t w o r k . T h e m e m o r y r e

q u i r e m e n t s a n d p r o c e s s i n g t i m e o f s u c h a r r a y s a r e a n a l y z e d

b a s e d o n t h e n u m b e r o f n o d e s i n t h e n e t w o r k a n d t h e n u m

b e r o f e x e m p l a r p a t t e r n s . C o m p a r e d w i t h o t h e r d i g i t a l

i m p l e m e n t a t i o n s , t h i s d e s i g n y i e l d s s i g n i f i c a n t i m p r o v e
m e n t s i n r u n t i m e p e r f o r m a n c e a n d o f f e r s t h e c a p a b i l i t y o f

u s i n g l a r g e n e u r a l n e t w o r k a s s o c i a t i v e m e m o r i e s in r e a l

t i m e a p p l i c a t i o n s .

Newquist H. P. I.: The AI Eighties, (developments in artificial
intelligence between 1975 and 1989) (In practice) (column)
A I - E x p e r t , V o l . 5 , 1 9 9 0 , N o . 1, p p - 6 1 — 6 6

K e y w o r d s : a r t i f i c i a l i n t e l l i g e n c e ; n e w t e c h n i q u e ; r e v i e w

o f p a s t y e a r ; n e u r a l n e t w o r k s .
A b s t r a c t : A r e v i e w o f d e v e l o p m e n t s i n a r t i f i c i a l i n t e l l i

g e n c e t h a t t o o k p l a c e d u r i n g t h e y e a r s 1 9 7 5 — 1 9 8 9 i s p r e

s e n t e d . A l C o r p w a s f o u n d e d i n 1 9 7 5 a n d d e v e l o p e d o n e o f

t h e f i r s t n a t u r a l - l a n g u a g e p r o d u c t s ; N e s t o r I n c w a s f o r m e d

t o c r e a t e n e u r a l - n e t w o r k a p p l i c a t i o n s . C o m p a g n i e s f o u n d e d

in 1 9 7 9 i n c l u d e d A d v a n c e d I n f o r m a t i o n a n d D e c i s i o n S y s

t e m s a n d C o g n i t i v e S y s t e m s . S p e e c h - r e c o g n i t i o n a n d k n o w

l e d g e - b a s e d s y s t e m s b e g a n t o b e e x p l o r e d i n t h e e a r l y 1 9 8 0 s .
A C T L t d i n t r o d u c e d a p o r t a b l e v o i c e - r e c o g n i t i o n s y s t e m i n

1 9 8 4 . E x c a l i b u r a n n o u n c e d i t s S a v v y R e t r i e v e r q u e r y s y s t e m

i n 1 9 8 5 . B o r l a n d I n t e r n a t i o n a l l e g e t i m i z e d t h e P R O L O G

l a n g u a g e w i t h i t s i n t r o d u c t i o n o f T u r b o P r o l o g i n 1 9 8 6 . T h e

J a p a n e s e e n t e r e d t h e A l f i e l d i n t h e m i t - 1 9 8 0 s . A r t i f i c i a l I n

t e l l i g e n c e w e n t t h r o u g h a s l u m p i n 1 9 8 7 ; S y m b o l i c s l a i d o f f

1 6 0 e m p l o y e e s . A p p l e a n d T e x a s I n s t r u m e n t s i n t r o d u c e d

a M a c w i t h a L I S P c o p r o c e s s o r i n 1 9 8 8 .

170 Binary Neural Net NNW3/91, 163-170

KNOWLEDGE PROCESSING BY NEURAL
NETWORKS

(j. Vítková, J. Míček*)

Abstract:
The paper outlines the basic properties of a neural

network associative memory extrapolation model and
describes the main abilities of fuzzy cognitive maps.
A revised equation for associative memory model per
formance is proposed. Modeling the logical function
„and“ for inferring knowledge by a neural network is
discussed. The results of an investigation of an associa
tive memory extrapolation based knowledge system used
for diagnostics are presented. Outlined is the frame of
the QUEST system for knowledge processing. The sy
stem functions and its other facilities are also presented.

Keywords:
Neural network. Associative memory models. Catego

ry formation. Single layer auto-associative memory. As
sociative memory extrapolation model. Nonprocedural
knowledge processing. Unsupervised learning.

1. Introduction

In the past four years, neural network models were
used to build knowledge based systems [1,2,4,5].
Traditional knowledge-based systems face the pro
blems connected with effective knowledge acquisition
and representation, storage of experts’ knowledge,
and appropriate knowledge — handling facilities.
Knowledge acquisition, i.e. moving domain knowled
ge into a software system by whatever means, extends
over the complete lifetime of a knowledge-based sy
stem. Continuous expansion and modification of a sy
stem’s knowledge base is driven by two factors: chan
ging domain knowledge, and broadening the scope of
application. The iterative and uncertain nature of kno
wledge only complicates the situation. Knowledge re
presentation involves a study of how we can represent
particular semantic notions such as time, causality, be
liefs, intentions, and data consistency [13].

Neural networks offer one of many possibilities for
coping with these problems and for confronting diffi
culties related to implementation and maintenance of
knowledge-based systems. An inference mechanism in
neural networks provides necessary knowledge-han
dling facilities. Adaptive or learning mechanisms in
neural networks help to solve the knowledge acquisiti
on problem and at the same time enables a knowledge

*) Ing. Galina Vítková. CSc.. Dr. Jiří Míček.
Institute of Computer and Information Science of tlíc C/celioslovak
Academy of Sciences. Prague

base to improve throughout the whole of its lifetime.
The advantages of a neural network approach to

knowledge base construction over other existing ap
proaches are as follows:

the knowledge base response time is independent
of the number of knowledge base components,
which enables its real-time behavior [5,7|,
the approach enables the gaining of knowledge by
learning using measured data or data acquired in
other ways even should the data be incomplete and
inaccurate or inconsistent and noisy [1,2,5,12],
the approach provides a possibility of combining
learned knowledge and the knowledge of individu
al experts into representative knowledge bases [5,7].
Using the main properties of the neural network as

sociative memory model [3,9,10,11,20] and fuzzy cog
nitive maps for representation of expert knowledge
[5-8,21] the QUEST system was developed at the Insti
tute of Computer Sciences of the Czechoslovak Aca
demy of Sciences [15,17]. Its inference mechanism
provides necessary knowledge-handling facilities . Its
learning mechanism helps to solve a knowledge acqui
sition problem. The system consists of three basic
parts: the first one checks the consistency of related
concepts introduced by different experts, the second
part enables the maintenance of a knowledge base,
and the third one processes queries to a knowledge
base. The QUEST knowledge base is represented by
a weights matrix of an associative memory model. The
system supports the creation of a knowledge base i) by
experts, ii) by learning, and iii) by a composition of
existing knowledge bases. As learning algorithms, the
Hebbian law [9] and the pseudo-Hebbian law [9,11]
are used. The system is able to process matrices of we
ights which contain both positive and negative values.
An input vector (a query) is considered to involve only
zeros and ones.

Below, after introducing the basic theoretical back
ground, we present our approach to using a neural
network associative memory model for knowledge
processing.

2. Theoretical background

2.1. Memory extrapolation network

A neural Hopfield-like network capable of restoring
continuous level library vectors from memory is intro
duced in [11]. The interconnections in this network are

N N W 3 /9 1 , 1 7 1 - 1 8 3 Vítková: Knowledge Processing by Neural Networks

determined analogously to the Hopfield model, i.e.
they are formed by a set of library or training vectors.
The network can operate synchronously as well as
asynchronously and is fault tolerant. It differs from
the Hopfield model in that the initially known neural
states are imposed on the network’s last iteration. The
nodes with the known states act as the network stimuli
and the remaining nodes behave as the response. An
analogy to human memory is our ability to recall com
plete information given only a portion of it.

Consider a neural network consisting of L nodes.
The interconnection strength between the y-th and i-th
node is denoted wjr It is assumed moreover that the
network is symmetric (i.e. w;/ = wy). The state of activi
ty of the y-th mode is a function of the sum of its in
puts (without loss of generality, we assume that thres
hold Vj ~ 0), i.e.

£ (0 = ¿>*(0 0), 0)

where c(0 is the vector of L input sums at time /, W is
the matrix of interconnection synaptic weights, x{i) is
the vector of the L neural states at time t. Let S denote
the node operator that determines the next set of sta
tes from the input sum:

x{t+ 1) = S f t t) . (2)

Substituting Eq.(l) into Eq.(2) gives the state iterati
on equation :

x(t+ 1) = SWx(t). (3)

Now consider a set / of A continuous level linearly
independent training vectors of length
L > A, / = [f„ | 1 < n < A] and the corresponding
matrix F = [/,' :/’,]. Using training vectors, the
following algorithm referred to as the pseudo-Hebbi-
an learning law is used to compute W:

W = F (E II) 1 F1. (4)

Let us say more about creating the matrix of inter
connections W [9,11], Consider an auxiliary vector:

z = x(t + 1) - Wx(t).

Then the pseudo-Hebbian learning law is expressed
by the equation:

W - W+ z . z7 / \ z \ , (5)
W= F. F , = (FT. F) 1 f , (6)

F is a s o - c a l l e d p s e u d o - i n v e r s i o n o f a matrix F.

Given a portion of one of the vectors which belongs
to a certain object described by matrix F, a memory
extrapolation network will reconstruct the remainder
of that vector. Let us divide all L nodes into two sets :
one, in which states are known, and the remainder, in

which states are unknown. Without loss of generality,
assume that states through the first P < L nodes are
known for a given application. Sometimes these nodes
are called a key. It means that for 1 < k < Pthe node
state is kept without change. The P known nodes (or
key) thus act as the input or the stimulus to the net
work and the states of the remaining Q= L - P nodes
represent the output or the response.

In summary the algorithm describing the process is:
(1) Initialize all unknown states by setting to zero.

The state of the remaining nodes are equated to
the known portion of the input vector.

(2) Multiply the state vector by W.
(3) Replace states of the first P nodes with their

known (input) values.
(4) Go to step 2 and repeat the whole process until the

state of the Q nodes does not change.

In this case, an active process (or recall) may be des
cribed as follows:

*(0) = m ,

* (1) = w m , *(2) = K (*(!)),
x(3) = Wx(2), x(4) - ----

w here K is such a function that
* • • • s r 9/’ /.......... b i) =

(b i * ■ *, r i , / >).

Thus in general, the dynamics of the iteration pro
cess is given by the following equations:

x(2t + 1) = Wxilt) / - 0,1,. . .
x(2t) = K(x(2t + 1)) / = 1,2 ,. . .

Generally, a memory extrapolation network doesn’t
give the exact correct answer; it only gets iteratively
closer and closer to the answer. Now let us make some
short notes about convergence properties of the me
mory extrapolation network and the effects of the in
put uncertainty on the network’s performance.

The problem is whether a net iteration
x(t + 1) = 51Tx(/) will converge. A sufficient conditi
on for unique convergence is that P > A and the ma
trix Fr (/[/.: . . . : / \ P) is full-rank (the proof is given
in [II]). If P< A there exists a continuum of soluti
ons.

2.2. Fuzzy cognitive maps

Uncertain causal knowledge can be stored in fuzzy
cognitive maps (FCM) [6 -8]. A FCM is a fuzzy signed
digraph with feedback which represents uncertain
causal relationships. A simple FCM has a causal edge
in [1,0,1], i.e. shows a maximal degree of causality. In

Vítková: Knowledge Processing by Neural Networks NNW 3/91, 171 — 1 S3

Fig. 1. The simple FCM expressing the 1st expert's opinion (FC'MI)

general FCM causal edge weights are numbers in
[-1, 1], allowing one to express different degrees of cau
sality. An example of a simple FCM is depicted in the
graph below (see Fig. 1).

This non-fuzzy signed digraph with feedback is
equivalent to the connection matrix in Fig. 2.

In the matrix, the i-th row expresses the connection
strength of the edges undirected out from C,, and the
i-th column describes the connection strength of the
edges wu directed in towards C, (w,7 > I means a posi
tive causal relationship between C and Cp wu < I me
ans negative causality).

Simple FCM are easier to get from experts. They
are usually more reliable because as a rule experts are
more likely to agree on causal signs than on causal va
lues. The simple FCM matrices drawn by individual
experts can be combined into a non-simple FCM that
represents causal relationships by a more representati
ve scale. No restrictions on the number of experts or
the number of concepts exist. The more experts, the
more reliable the combined FCM; moreover each ex

pert can be assigned a credibility weight of his opini
on in [0,1]. Combined weighted FCMs reflect the dif
ferent level of experts’ knowledge. Figures 2, 4, 5 illu
strate a combination of two experts’ opinions into one
representative matrix.

An FCM matrix representation enables an FCM to
be viewed as a feedback associative memory model
that allows causal inferences to be processed in
a feedback associative memory fashion. Similarly to
a neural network, each causal node C, is considered to
be a nonlinear function which transforms the paths
weighted activation into an output signal. Again simi
larly to neural network models, this function is in ge
neral a bounded monotone increasing transformation,
such as the sigmoid or the S — shape function. The
simplest nonlinear operation is thresholding, which in
the case of a synchronous state-transition looks like:

C,(t+ i) = { 1 if C(i) W > 0 ,
0 otherwise

where C(t) = (C,(/), . . . , CN (t)) is the state vector of

NNW3/91, 171-183 Vítková: Knowledge Processing by Neural Networks

C l C2 C3 C4 C5 C6 C7 C8 C9

C l 0 1 1 0 0 0 0 0 0
C2 0 0 0 - 1 1 1 1 1 0
C3 - 1 0 0 1 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 0
C5 0 0 0 * 1 0 0 0 . 0 0
C6 0 “ 1 0 0 0 0 0 0 0
C7 0 - 1 0 0 0 0 0 0 0
C8 1 - 1 0 0 0 0 0 0 1
C9 0 - 1 0 0 0 0 0 0 0

Fig. 2. The connection matrix o f FCM1

a causal activation at discrete time / (compare with the
state vector of a neuron), and W is the /-th column of
the FCM connection matrix W.

Causal flow in an FCM is easily maintained with
a vector- matrix operation and thresholding. In gene
ral it is described by the expression C(t + 1) =
T[C(t) W] where T is the vector threshold operation.
For simple FCMs and most nonlinear FCMs, the cau
sal flow will quickly stabilize to a limit cycle. In the
case of simple FCMs, convergence is always achieved
because thresholding is a deterministic operation, and
every FCM converges after at most 2" iterations [5],
But complex (non-simple) FCMs with time-varying
edges can resonate on chaotic attractors.

The resonant limit cycle of an FCM is a hidden pat
tern in the causal edges W. The hidden patterns in an
expert’s FCM correspond to the expert’s answers to
What-if questions. As with an expert’s answer, the re
sonant hidden pattern can be tested against the availa
ble facts and the appropriate FCM can be changed
accordingly as needed.

Consider, with respect to the matrix in Fig. 5, the in
put vector V = (1 0 0 0 0 0 0 1 0 0 0 0 0 0 0). It is equi
valent to the question „What happens if electric po
wer production increases and reconstruction of power
stations is realized“. The inferring iteration process is
described by sequences of states as follows:

The limit cycle, which indicates the end of iterations,
is: C3 C4 C9 Cl2.

It means that in this case living comfort will impro
ve, the state of inhabitants’ health will not worsen ,
and costs for higher quality fuel will increase.

3. Development of a memory extrapolation
model

As was mentioned, we have used the concept of an
FCM (section 2.2) and the memory extrapolation mo
del of a neural network (section 2 .1) as the theoretical
background for our approach to neural networks’ ap
plication in the development of knowledge systems.
Below we present and argue our contribution to this
topic concerning /) modification of the equation for
associative memory model performance (or recall)
and for performing the logical function „and“ by as
sociative memory; ii) examination and analysis of
neural network (more exactly its memory extrapolati
on model) behavior used as a diagnostic system.

3.1. Associative memory model performance

Consider without loss of generality a neural net-

V

V I W =
(1 0 0

(1 0 1

(1 0 1

(0 - 1 1

(1 0 1

(0 1

(1 0 1

0 0

0 0

0 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0

0

174 Vítková: Knowledge Processing by Neural Networks

0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 1 1 0 0 1 0 0

0 0 1 0 -1 1 0 0

0 1 1 0 0 1 0 0

0 0 1 0 ..1 1 0 0

0 1 1 0 0 1 0 0

0)
0)
0)
0)
0)
0)
0)

NNW3/91, 171-183

Cl C2 C8 CIO Cll Cl 2 Cl 3 C14 Cl 5

Cl 0 1 0 0 1 1 0 0 0
C2 0 0 0 0 0 1 0 0 0
C8 1 -1 0 0 -1 0 -1 -1 0
CIO 1 0 0 0 0 1 0 0 0
Cll 0 0 0 0 0 0 0 0 0
Cl 2 0 . 0 0 0 1 0 0 0 0
CIS -1 -1 -1 0 -1 . 0 0 - 1 0
C 14 1 -1 0 0 -1 0 0 0 0
Cl 5 ~ 1 0 0 -1 -1 0 0 0 0

Fig. 4. The connection matrix o f FMC2

work consisting of 6 nodes and its synaptic weights
matrix. (See F/g. 6, 7, 8.)

Consider a binary input vector .v and transform it
into bipartite form x according to the recommenda
tion in [2 0], i.e.: 2x 1

(1 0 0 0 1 0) = = > (1 - 1 - 1 - 1 1 - 1).

Now if we use for performance evaluations the equati
on

Xt = S x i w a ~ c j ,

(where xr xf denote a state o f the i-th and ;-th neurons,
Wy is a synaptic strength (weight) connecting neuron i
and /, Vj is a ithreshold, S(x) = 1 if jc > 0 , and
S(x) = 0 if x = < 0) we get the result vector (0 1 0 0 0
1). Testing this result against the evidence, we found
that it is not adequate to the reality in some cases. Ba-

NNW3/91, 171-183 Vítková: Knowledge Processing by Neural Networks 175

Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO Cll Cl 2 Cl 3 C14 Cl

Cl 0 2 1 0 0 0 0 0 0 0 1 1 0 0 0
C 2 0 0 0 -1 1 1 1 1 0 0 0 1 0 0 0
C 3 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C6 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
C l 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0
C 8 1 -2 0 0 0 0 0 0 1 0 -1 0 0 0 0
C 9 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
CIO 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Cll 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 12 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
Cl 3 -1 -1 0 0 0 0 0 ”1 0 0 -1 0 0 “1 0
Cl 4 1 “1 0 0 0 0 0 0 0 0 "1 0 0 0 0
Cl 5 -1 0 0 0 0 0 0 0 0 „1 “1 0 0 0 0

Fig. 5. The combined matrix representing the opinion o f both experts

Fig. 6. Illustrations o f thresholding role (thresholds are here depicted as H)

seel on our experience with psychological questionnai
res processing, and taking into consideration the fact
that the thresholds magnitudes may be only positive
numbers we proposed thresholding once more imme
diately after multiplying x/ , wtj. In this case the perfor
mance equation is:

Xij = SxjWij - U j ■

Using this equation, the result is quite distinct from
the first one, i.e. the output vector equals (0 1 1 0 1 1).
This result is the same as in the case of the conventi-

176 Vitkova: Knowledge Processing by Neural Networks NNW 3/91, 171-183

I n p u t

v e c t o r I W e i g h t s m a t r i x W I x W

1 0 0 1 o o M
>

0 0 1 0 0 1

" 1 0 0 - 1 0 1 0 0 1 0 - 1 1

- 1 0 -- 1 0 1 “ 1 0 0 1 0 - 1 1 0

- 1 1 1 0 o 0 1 h-L - 1 - 1 0 0 0 1

1 - 1 1 - 1 o o o - I 1 - 1 0 0 0

*"1 0 - 1 1

oorH

0 1 - 1 - 1 0 0

S t a t e o f i n d i v i d u a l n o d e s - 2 2 0 - 2 0 3

t h r e s h o l d $.
l

1 1 0 1 0 2

s u m X
*

1

x . w . . - d ,
J ID i

- 3 1 0 — 3 0 1

o u t p u t : s u m s ■ (X x
i

: . w . . - 0 . I
J ID l J

0 1 0 0 0 1

Fig. 7. Recall performance with single thnl'sholding

I n p u t

v e c t o r I
W e i g h t s m a t r i x W S (I x W)

1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 - 1 0 1 - 1 0 0 1 0 0 1

- 1 0 - 1 0 i M
‘

O II 0 1 0 0 1 0

- 1 1 1 0 0 0 - 1 0 0 0 0 0 1

I - 1 1 - 1 0 0 0 0 1 0 0 0 0

- 1 0 - 1 1 1 0 0 0 1 0 0 0 0

S t a t e o f i n d i v i d u a l n o d e s 0 3 2 0 1 3

t h r e s h o l d s 1 1 0 1 0 2

s u m X
•

1

S X . W . . - Û .
3 ID i

- 1 2 2 - 1 1 1

o u t p u t ; s u m s f Z
1 j

S x . w . . - û .
3 ID i J 0 1 1 0 1 1

Fig. 8. Recall performance with double thresholding

onal evaluation of the questionnaire. In Fig. 7, 8 an at- processing deals with the necessity of tapturing the si-
tempt to illustrate this phenomena is depicted. multaneous influence of some concepts on others.

The next improvement which we have made in This function, similar to the logical „and“, can be rea-
using neural network inference ability for knowledge lized by creating new auxiliary nodes in the neural

NNW3/91, 171-183 Vitkova: Knowledge Processing by Neural Networks 177

C l

e
i

C6

r/e 9. Realization of “and" function with the help of thresholds

network graph representation. Thresholds of constant
(for individual nodes) value are connected to the auxi
liary nodes. In the case where weights magnitudes
equal 1, the threshold value is given by the equation:
Vi = m - 1, where m is a ¡number of active nodes di
rected to the node /. Then new nodes are activated where
only if all links directed to the z'-th node are activated
(see Fig. 9).

In general it is possible with the help of thresholds xr W\ ~
to regulate the strength of the mutual interconnection
between nodes which are here considered as concepts.

#(0 - 6 * (0 + & (0 ,
çr(t) = A>1T| + xQW3 ,
sy(0 = XpW, + Xq W4 ,

A2 (t) tV, 2 T . . . + Xp(1) W, p

A', (t) Wp , + . . . + X P | (t) Wp p |

3.2. Memory extrapolation networks as a diagnostic
system

Consider again a neural network which consists of
/ nodes where every node is connected to another no
de. A state of P nodes is known, while a state of the re
maining Q - L — P nodes is unknown. If the same P
nodes are always used as input (this usually happens
in diagnostic systems), the number of interconnections
can be reduced. The state of these P nodes is not de
pendent on their input V Thus the interconnections to
these nodes can be excluded and the network can be
reconfigured to Q < L nodes.

Assume again that the first P elements of a query
vector is our input. Using equation (!) we can write
for sums of inputs to the individual nodes (i.e. for an
internal potential of proper neurons):

U t) = *2 (0 H'|2 + A(0 W,3 + . . . + XL(t) W'i 1 ,

£>(0 = -C (0 W21 + A(0 + - • • + */(0 h2, /,,

U t) = X, (t) Wp, ! + x2{t) Wp 2 f . . . + XL(t) Wp , ,
*r lit) - A, (/) Wp. h 2 + X, (1) Wp, , 2 + . . . + X, (t) Wp, 1. /.,

A/t /) A t /) It/ 1 + A. ; (/) W, 2 + . . . ' A 1 l i t) W p 1 1 .

Since the state of P neurons does not change during
network recall, it’s useful to partition the above equa
tions into parts as follows:

Ay IT *
A, (t) W p , + X p i t) Wp , p p

x i (0 W p , + . . . + Ap { t) w , p ,

A p l \ \

X p i 1 (t) W p / > ,] + . . • • + X L (t) W p i

A pi 1 (0 W p P. 1 + . ■ ■ + X l (t) W p ,

X p \ 2 (t) Wp, i p. 2 + • • • + x, it) Wp

X p ■ 1 (0 Wp p.+1 + .. • + xL lit) Wp

It means that matrix IT is partitioned in such a way:

Now we see that it is not necessary to care about the
state of Pnodes because it remains the same. Thus Wu
IT, have no contribution to the final result. Setting
xQ(t+ 1) = «*Q(t) the informational part of the equati
on is given by:

xQ{t+ 1) = xP(t) W3 T xQ(t) W4.

178 Vítková: Knowledge Processing by Neural Networks NNW 3/91, 171 —183

Since .*,,(0 Wy has a constant value during recall, the
proper weight matrix is W4.

In the case where no positive or negative intercon
nections exist between individual Q nodes, a matrix
WA contains only zeros. This means that in this case
a neural network functions as a diagnostic system
which evaluates queries immediately without iterati
ons.

4. The QUEST system and its functions

The QUEST system has been developed using the
theoretical background which was discussed in the
previous sections. Corresponding to the two main
working modes of neural networks (i.e. recall and le
arning), QUEST consists of two main parts:

i) creation and maintenance of knowledge bases;
ii) query processing.
Further QUEST has a third part which is designed

to check knowledge base consistency in a sense that
the same concepts have the same meaning. The
QUEST functions are depicted in Fig. 10.

A knowledge base created with the help of QUEST
begins with the definition of so called concepts which
can by introduced by different experts (for theoretical
background see section 2.2). After checking the consi
stency of concepts main and users concept files are
stored in the system. Now it is possible to define the
interconnections between concepts and create in this
way a weight matrix, i.e. our knowledge base. It is
supposed that interconnections may be defined by an
expert or by learning using appropriate training files
or by a combination of existing knowledge bases sto
red in the system. This enables us to develop and ex
tend knowledge bases throughout the lifetime of a sy
stem.

The system supports learning according to:
a) the Hebbian rule

W’,;/(/+■ 1) = U•,,(/) + Y.< 1 ' I) V (/ ' 1) ,

b) and the pseudo-Hebbian rule

Wij(t + 1) = w’„■(/) + z,(0 z; (0 / Vz,(/)-,(/), where

Q U E S T
INPUTS:

Fig. 10. The functional layout o f QUEST

NNW3/91, 171-183 Vítková: Knowledge Processing by Neural Networks

1

6

7

10

12

16
17
19

21

22

23

34

40
41

46

51

54

56
60

61

67

46 9

51 $

quantity of nuclear activity In the
generator {1 nsIde/outs}de limits)
amount of moisture in the hermetic
amount of moisture in the machine-room
level of the steam-generator PG1
amount of active power produced by
value of pressure on a deml-water
value of pressure on a delivery of ENC
value of pressure in the hermetic space
value of average pressure in the hermetic space

high

hermei Îc

space

space

of

the
pump

generator
de 11 very

- value of pressure v 10
- value of oil pressure ! n the

generator PG1
- status of the va 1 ve PS-A
- status of the valve for the generator TGI
- status of the va I ve for the generator TG2

pressure valve.

temperature In the hermetic space
state of regulating valve for generator TG2
steam coming out
difference between values of pressure In the hermetic space
D 1 agnos 1 s: "One of the valves PS-A Is not closed,
constant", followed by the list of Instructions
what to do,
Diagnosis: "One of valves of PS-A Is not closed,
decreasing" with the appropriate Instructions what to do,
Diagnosis: "The pipeline of feeder water Is
front of the swing" - check valve of PCI.

of a steam-

steam-generator

TGI

of the steam-

pressure Is
recommend 1ng

pressure Is

ruptured In

Fig. IF The FCM o f alarm handling

Vítková: Knowledge Processing by Neural Networks NNW 3/91, 171-18.3

1 . . 46 , . . 54 56 ■ ■ • 60 61 . , 67 60k 61k . . . 67k

1 0 0 0 0 0 0 0 0 0 1

6 0 0 1 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1
12

*
0 0 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 1 1 1
17 0 0 0 0 0 0 0 0 0 1
19 0 0 0 1 0 0 0 0 1 0
21 0 0 0 1 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 1 0
2 3 0 0 0 0 0 0 0 0 0 1

3 4 0 0 0 0 0 0 0 1 1 0

40 0 0 0 0 0 0 0 0 0 1
41 0 0 0 0 0 0 0 0 0 1

46
•

0 0 1 0 0 0 0 0 0 0

•
54 0 0 0 0 0 0 0 0 0 1

56 0 0 0 0 0 0 0 1 0 0

*
60 0 0 0 0 0 0 0 0 0 0

61 0 0 0 0 0 0 0 1 0 0

67 0 0 0 0 0 0 0 0 0 0

6 0k 0 0 0 0 1 0 0 0 0 0

61k 0 0 0 0 0 1 0 0 0 0

67k 0 0 0 0 0 0 1 0 0 0

Th re s h o ld s 0 0 0 0 0 0 0 —3 “ 3 - 8

Fig. 12. The connection matrix o f alarm handling

z , (t) X (/ + 1) H'„(0 . X,(l + 1) . in the learning algorithms used
x (t + 1) is replaced by 2x (t + 1) —

in QUEST,
- 1.

the

With respect to the fact that a vector-stimulus ob
tains only zeros and ones (binary form) whereas a we
ight matrix contains in general numbers from <-l, 1>

The system is able to process matrices of weights
which contain both positive and negative values of
weights. The ability of an associative memory model

NNW 3/91, 171 — 183 Vítková: Knowledge Processing by Neural Networks

to reconstruct an entire vector from a partial input is
used here for inference. An input vector (a query to
a knowledge base) is considered to contain only zeros
and ones.

During recall, the system synchronously updates
elements of a network with the equation:

X,(t + I) = sixS»',y(2*,(0- 1)- U/j.

The end of the iteration process is detected by a mi
nimum of the so-called harmonian function which is
calculated according to the equation:

n n
H(.v(, . . . , x„) = X Z xn(2x> “ 1) (2x/ “ 0 •

/ = i ' = i

5. Application

Neural network based knowledge systems may be
especially useful in real-time control and information
systems. Alarm handling in power stations and the
diagnosis of the emergency states is an example of
a task that must be solved as fast as possible. In mo
dern energy control centers, a large amount of detai
led information is measured and displayed. Especially
in the case of severe faults in the power system, the
operator is flooded with a shower of messages, so that
it is often a problem to determine which are the really
important messages and to decide on the quickest way
to return to a normal situation. We have chosen this
area of application for testing our approach with the
help of QUEST before all because we had an opportu
nity to deal with the set of experimental and real data
due the courtesy of our colleagues from respective re
search institutes [2 2].

Let us examine in more detail how a diagnostic sy
stem based on an associative memory model (see sec
tion 3.2) can help in this case. Assume that fifty one
primary indicators are placed in the steam generator
environment for monitoring its auxiliary equipment,
e. g. temperature and pressure of oil or water, switch
gear status, vents status, etc. [22]. Using these indica
tors (numbered from 1 to 51) and knowing their influ
ence on the state of a steam-generator, the correspon
ding FCM is drawn (see Fig. 11). In this FCM the
concepts (or nodes) numbered 1 to 51 are always in
put nodes. The nodes numbered 52 to 67 are always
output. The nodes with the letter ,,k“ in their number
are auxiliary and by using them, we are able to ex
press the fact that only the conjunction of certain con
cepts can influence another concept(s).

Now consider for example that indicators 16 (pres
sure in the demi-water pump delivery dangerously in
creased), 19 (pressure in the hermetic space also dan
gerously increased), 22 (pressure in lO dangerously
increased too), and 34 (the valve PS A is not closed)
are activated. In that case, we have the input (query)

vector in which the input nodes 16, 19, 22, 34 are equ
al to 1 while all others are equal to 0. After inference
process is finished the value of the output node 61 will
be equal to 1. If any of the nodes 16, 19, 22, 34 is not
activated, node 61 remains equal to 0. Notice node 56,
which may be activated in case of an active state at
node 19 or node 21 or both 19 and 21. This means that
for node 56 to contribute to the activation of the node
60, it is enough for either node 19 or node 21 to be ac
tive. We have tested this example for whole alarm
handling for steam generator according to [2 2] and the
results tallied with expected ones.

Needless to say, such partial knowledge bases mo
nitoring different equipment in a power station can be
gradually developed. After testing they can be combi
ned (step by step too) into one representative kno
wledge base for alarm handling in the whole power
station.

6. Conclusion

The first experience gained during the building and
testing of the QUEST system showed that an associa
tive memory model of neural networks offers a power
ful tool for inference in knowledge processing; mean
while the learning abilities provided by QUEST based
on this model did not appear as successful. Therefore
the system now supports adaptive inference in the
sense of expert knowledge and the combination of we
ight matrices.

Needless to say, the problem of conditional proba
bilities expressed by real numbers in a weight matrix
was not addressed nov solved The problem is especi
ally important in the case of a combination of such
matrices. Nonetheless, by building QUEST we have
developed assumptions for the serious testing of kno
wledge processing by neural networks in real conditi
ons.

Referencies

[1] Bradshaw G., Fozzard R., Ceci L.: A connectionist expert sy
stem that actually works. 1989, pp. 248-255.

[2] Cruz. C.A., Hanson W.A., and Tam J. Y.: Knowledge proces
sing through flow-of-activation. In: Proc. IEEE 2nd Int. Conf.
on Neural Networks, San Diego, 1987, pp. 11/343-350.

[3] Husek D.: HORNET 2X5. Experimental model of Hopfield
like neural network. Technical report No. V-418, the Institute
of Computer Science of the Czechoslovak Academy of Scien
ces, 1989.

[4] Irani I.A., Slagle J.R., Long J.M., Maths J.P. and the Posch
group: Formulating an approach to develop a system for the
temporal analysis of clinical trial data — The Posch AI Project.
In: Proc. of the 2nd Int.Conference on Statistics and AI, Flori
da, 1989, pp.24-1 to 24-9.

[5] Kosko B,: Adaptive reference in fuzzy knowledge networks.
In: Proc. IEEE 1st Int. Conference on Neural Networks, Die
go, 1987, pp. 11/168-261.

[6] Kosko B.: Fuzzy cognitive maps. Int. J. Man-Machine Studies,
1986, vol. 24, pp. 65-75.

Vítková: Knowledge Processing by Neural Networks NNW3/91, 171-183

[7] Kosko B.: Fuzzy knowledge combination, Int, Journal on Intel
ligent Systems, San Diego, 1986, vol. 1, pp. 293-320

[8] Kosko B.: Feedback stability and unsupervised learning. In:
Proc, IEEE 2nd Int. Conference on Neural Networks, San Die
go, 1988, pp. 1/141-152.

[9] Kufudaki ()., Horejs J.: Computers and brain (in Czech). In:
Proc. Conference SOFSEM'88, Tatras Czechoslovakia, Dec,
1988, pp. 119-156 .

[10] Lippman R.P.: An introduction to computing with neural nets.
IEEE ASSP Magazine, 1987, pp. 4-22.

[11] Marks R.S.: Class of continuous level associative memory neu
ral nets. Applied optics, May 1987, vol.26, pp.2005-2010.

[12] Saito K., Nakano R.: Medical diagnostic expert system based
on PDP model. In: Proc. IEEE 2nd Int. Conference on Neural
Networks, San Diego, 1988, pp.1/255-262.

[13] Schoen E., Smith R. G., Buchanan B..G.: Design of knowled
ge-based systems with knowledge-based assistant. IEEE Trans
actions on Software Engineering, vol. 14, No. 12, 1988, pp.
1771-1781.

[14] Vitkova G., Hûsek D.: Integration of knowledge bases and da
tabases (in Russian). In: Proc. Conference KNVVT on Perso
nal Computers, Budapest, May 1986, Tanulmanyok 193/1986,
pp. 39 - 52.

[15] Vitkova G., Micek J.: Evaluation of binary input vectors by
help of neural network inference mechanism (in Czech). Tech
nical report No.V-416, the Institute of Computer Science of
Czechoslovak Academy of Sciences, Prague, 1989.

[16] Vítková G.: Problems related to integration of knowledge bases
and databases (in Russian). In: Proc. WG-25 KNVVT on Pro
blems and Tools of Information Systems Integration , INFOR
MA Sofia. Bulgaria, 1989. pp. 69-82..

[17] Vítková G.. Míček .1.. lanson N,: Neural networks and know
ledge processing (in Russian). Technical report No.V-438,
the Institute of Computer Science of Czechoslovak Academy
of Sciences, Prague, 1989.

[18] Vítková G., Micek J.: The neural network based system for
knowledge processing. In: Proc. Int. Symposium on Neural
Networks and Neural Computing NEURON FT ’90, Prague,
September 1990, pp.345-347.

[19] Vítková G.: Neural networks associative memory models for
knowledge base building (in Russian). In: Proc. WG 25
KNVVT on Problems and Tools of Information Systems Inte
gration, Breitenbrunner, Germany, May 1990, (to appear).

[20] Weisbuch G., I)' Uumieres D. Determining the dynamic lan
dscape of Hopfield networks. NATO ASI Series, vol. F30’ Dis
ordered Systems and Biological Organization, Springer Verlag,
Berlin, Heidelberg, 1986. pp. 187-191.

[21] Zhang W. R.. Chen S.S.: A logical architecture for cognitive
maps. In. Proc. IEEE 2nd Int. Conference on Neural Network,
San Diego. 1988. pp. 1/231-238.

[22] Trojánek 7... Using the methods of artificial intelligence for
electrical power systems control (in Czech). Technical report
No. DU II1-8-4/03, the Faculty of Electrical Engineering of
Technical University in Prague, September 1990.

Literature Surwey

Caudill M.: Using Neural Nets: Fuzzy Decisions (fuzzy log
ic) (part 2) (includes related article on air conditioner con
trolled by fuzzy logic)
A l - E x p e r t , V o l . 5 , 1 9 9 0 , N o . 4 , p p . 5 9 — 6 3

K e y w o r d s : f u z z y s e t s ; l o g i c a l o r g a n i z a t i o n ; s e t o r i e n t e d
l a n g u a g e s ; a r t i f i c i a l i n t e l l i g e n c e ; n e u r a l n e t w o r k s ; I o n a
C o l l e g e .

A b s t r a c t : T h e u s e o f f u z z y l o g i c a n d d e c i s i o n t o o l s in n e u

r a l n e t w o r k s a n d e x p e r t s y s t e m s i s d i s c u s s e d . F u z z y s e t t h e
o r y i s d e s i g n e d t o m i m i c h u m a n t h o u g h t a n d s o l v e p r o b l e m s

i n w h i c h m e m b e r s h i p in a s e t is a c o n t i n u o u s “ g r a y ” s c a l e
r a t h e r t h a n a d e f i n e d b o u n d a r y . A f u z z y s e t l e t s a n o b j e c t

h a v e “ p a r t i a l ” m e m b e r s h i p , a s s i g n i n g it a m e m b e r s h i p v a l u e

b e t w e e n 0 a n d 1. F u z z y l o g i c d e a l s p r o p e r l y w i t h t h e c o m b i

n a t i o n s o f v a g u e o r u n c e r t a i n f a c t o r s f o u n d i n m a n y e x p e r t
s y s t e m a p p l i c a t i o n s . T h e Y a g e r d e c i s i o n m a k i n g p r o c e d u r e ,

p u b l i s h e d b y R o n a l d R . Y a g e r o f I o n a C o l l e g e , u s e s f u z z y
s e t s t o d e c i d e b e t w e e n s e v e r a l p o s s i b i l i t i e s . I t u s e s s i m p l e
s u b t r a c t i o n a n d “ m i n ” a n d “ m a x ” f u n c t i o n s t o p r o v i d e e f

f e c t i v e , e l e g a n t s o l u t i o n s .

Cosset J. C., Roy J.: Forecasting Country Risk Ratings using
a Neural Network
IEEE, 1990, pp. 327-334

A b s t r a c t : T h i s r e s e a r c h e x a m i n e s t h e p e r f o r m a n c e o f
a n e u r a l n e t w o r k a t p r e d i c t i n g I n s t i t u t i o n a l I n v e s t o r ' s c o u n

t r y r i s k r a t i n g s u s i n g e i g h t e c o n o m i c i n d i c a t o r s . T h e n e t
w o r k is t r a i n e d o n t h e p e r i o d 1 9 8 3 1 9 8 5 w i t h t h e b a c k p r o p -

a g a t i o n o f e r r o r a l g o r i t h m . I t is t h e n t e s t e d o n d a t a f o r 1 9 8 6

a n d i t s r e s u l t s a r e c o m p a r e d w i t h a l o g i s t i c r e g r e s s i o n m o
d e l . T h e e v i d e n c e c o n f i r m s t h e p o t e n t i a l o f t h e m e t h o d f o r
e c o n o m i c a p p l i c a t i o n s .

Dabrowski L., Pacut A.: A diffusion model of a neuron and its
identification
S y s t . A n a l . M o d e l . S i m u l . , V o l . 7 , 1 9 9 0 , N o . 2 , p p . 1 3 9 - 1 4 4

A b s t r a c t : I n t h e p a p e r a n e l e c t r i c a l a c t i v i t y o f a n e u r o n is

c o n s i d e d . T h e c e l l is v i e w e d a s a n i m p u l s e r e c e i v e r a n d
t r a n s m i t t e r . T h e m e c h a n i s m o f c o n v e r t i n g i n p u t i m p u l s e

t r a i n s i n t o o u t p u t t r a i n s i s i n h e r e n t l y c o n n e c t e w i t h a d i s
c r e t e b e h a v i o r o f t h e i n p u t a n d o u t p u t s i g n a l s . A n a p p r o a c h

p r o p o s e d h e r e i s t o a n a l y z e t h e p o i n t - b e h a v i o r o f a c e l l b y
m e a n s o f s t o c h a s t i c p o i n t p r o c e s s e s . A n a l g o r i t h m a p p l i e d
h e r e h a s a m u l t i l a y e r s t r u c t u r e .

Gallant S. I.: A Connectionist Learning Algorithm with Prov
able Generalization and Scaling Bounds
N e u r a l N e t w o r k s , V o l . 3 , 1 9 9 0 , N o . 2 , p p . 1 9 1 — 201

K e y w o r d s : c o n n e c t i o n i s t ; n e u r a l n e t w o r k ; c o m p u t a t i o n

a l l e a r n i n g t h e o r y ; p e r c e p t r o n .
A b s t r a c t : A c o n n e c t i o n i s t l e a r n i n g a l g o r i t h m , t h e

b o u n d e d , r a n d o m i z e d , d i s t r i b u t e d (B R D) a l g o r i t h m , i s p r e

s e n t e d a n d f o r m a l l y a n a l y z e d w i t h i n t h e f r a m e w o r k o f c o m

p u t a t i o n a l l e a r n i n g t h e o r y .

Goodhill G, J,, Willshaw D. J.: Application of the elastic net
algorithm to the formation of ocular dominance stripes,
N E T W O R K , V o l . I , 1 9 9 0 , N o . 1, p p . 41 5 9

K e y w o r d s : m o d e l s o f n e t s .

Kahlert C. L., Chua L. ().: A Generalized Canonical Piece-
wise-Linear Representation
I E E E T r a n s a c t i o n o n C i r c u i t s a n d S y s t e m s , V o l . 3 7 , 1 9 9 0 ,
N o . 3 , p p . 3 7 3 - 3 8 2

Lang K, J,, Waibel A, FL, Hinton E, G.: A Time-Delay Neu
ral Network Architecture for Isolated Word Recognition
N e u r a l N e t w o r k s , V o l . 3 , 1 9 9 0 , N o . 1, p p . 2 3 — 4 3

K e y w o r d s : c o n s t r a i n e d l i n k s ; m u l t i r e s o l u t i o n l e a r n i n g ;

m u l t i s p e a k e r s p e e c h r e c o g n i t i o n .

NNW 3/91, 171-183 Vítková: Knowledge Processing by Neural Networks

A b s t r a c t : A t r a n s l a t i o n - i n v a r i a n t b a c k - p r o p a g a t i o n n e t

w o r k is d e s c r i b e d t h a t p e r f o r m s b e t t e r t h a n a s o p h i s t i c a t e d
c o n t i n u o u s a c o u s t i c p a r a m e t e r h i d d e n M a r k o v m o d e l o n

a n o i s y , 1 0 0 - s p e a k e r c o n f u s a b l e v o c a b u l a r y i s o l a t e d w o r d
r e c o g n i t i o n t a s k .

Marose R. A.: A Financial Neural-Network Application.
(ADAM Hybrid Neural Network Used at Chase Manhattan
Bank).
A I - E x p e r t , V o l . 5 , 1 9 9 0 , N o . 5 , p p . 5 0 - 5 3

K e y w o r d s : a r t i f i c i a l i n t e l l i g e n c e ; n e u r a l n e t w o r k s ; b a n k

i n g ; f i n a n c i a l s o f t w a r e ; c u s t o m s o f t w a r e ; p a t t e r n r e c o g n i
t i o n .

A b s t r a c t : C h a s e M a n h a t t a n B a n k u s e s a s t a t i s t i c a l b a s e d

h y b r i d n e u r a l n e t w o r k a p p l i c a t i o n b a s e d o n t h e A D A M p a t

t e r n a n a l y s e t o o l d e v e l o p e d b y I n d u c t i v e I n f e r e n c e I n c . T h e

n e u r a l n e t w o r k is d e s i g n e d t o r e d u c e l o s s e s o n l o a n s m a d e

t o c o r p o r a t i o n s b y p e r f o r m i n g t h r e e - y e a r f o r e c a s t s i n d i c a t
i n g l i k e l y f u t u r e r i s k c l a s s i f i c a t i o n s . I n p u t t o A D A M i n

c l u d e s e a c h f i r m ’s h i s t o r i c a l f i n a n c i a l s t a t e m e n t d a t a a n d

i n d u s t r y n o r m s c a l c u l a t e d u s i n g s i m i l a r d a t a f r o m c o m p a
n i e s in s p e c i f i c i n d u s t r i e s . T h e P u b l i c L o a n C o m p a n y

(P C L M) e x p e r t s y s t e m m o d e l p r e d i c t s t h e l i k e l i h o o d o f

a p u b l i c c o m p a n y e a r n i n g a „ g o o d “ , „ c r i t i c i z e d “ , o r

„ c h a r g e d - o f f " r a t i n g t h r e e y e a r s in a d v a n c e b a s e d o n h i s t o r

i c a l d a t a .

Marrian C. R. K„ Mack I. A., Banks C., Peckerar M. C.:
Electronic “ Neural“ net algorithm for maximum entropy so
lutions to Hi-posed problems — Part 1!, : multiply connected
electronic circuit implementation
I E E E T r a n s a c t i o n s o n C i r c u i t s a n d S y s t e m s , V o l . 3 7 , 1 9 9 0 ,
N o . 1, p p . 1 1 0 113

K e y w o r d s : t e c h n i c a l e l e c t r o n i c r e a l i z a t i o n .

Marshall J. A.: Self-Organizing Neural Networks for Percep
tion of V isual Motion
N e u r a l N e t w o r k s , V o l . 3 , 1 9 9 0 , N o , 1, p p . 4 5 — 7 4

K e y w o r d s : h y p e r c o m p l e x c e l l s ; c o o p e r a t i v e c o m p e t i t i v e

l e a r n i n g ; a p e r t u r e p r o b l e m ; i n t r i n s i c c o n n e c t i o n s .

A b s t r a c t : A n e w a p p r o a c h t o t h e a p e r t u r e p r o b l e m is p r e
s e n t e d , u s i n g a n a d a p t i v e n e u r a l n e t w o r k m o d e l .

Myers W,: Artificial Neural Networks are Coming (An inter
view with Caltech’s John Hopfield)
I E E E — E x p e r t , V o l . 5 , 1 9 9 0 , N o . 2 , p p . 3 — 6

K e y w o r d s : n e u r a l n e t w o r k s ; I E E E ; e x p e r t s y s t e m s .

A b s t r a c t : J o h n J . H o p f i e l d , p r o f e s s o r o f c h e m i s t r y a n d
b i o l o g y a t C a l i f o r n i a I n s t i t u t e o f T e c h n o l o g y a n d m e m b e r

o f t h e N a t i o n a l A c a d e m y o f S c i e n c e s , d i s c u s s e d t h e n e u r a l
n e t w o r k f i e l d : h o w a r t i f i c i a l n e u r o n n e t w o r k s f o l l o w t h e b i o

l o g i c a l s t r u c t u r e ; h o w n e u r o b i o l o g y c a n b e h e l p f u l i n d e v e

l o p i n g n e u r a l n e t w o r k s ; c o m m o n p r i n c i p l e s o f n e u r a l n e t

w o r k m o d e l s ; h o w c o m p u t a t i o n r e l a t e s t o h i e r a r c h y ; h o w

d i g i t a l c o m p u t e r s r e l a t e t o n e u r a l n e t w o r k s ; t h e a p p l i c a t i o n

o f o p t i c a l t e c h n o l o g y t o n e u r a l n e t w o r k s ; e x i s t i n g s y s t e m s
b a s e d o n n e u r a l n e t w o r k s ; a n d f u t u r e a p p l i c a t i o n s o f n e u r a l
n e t w o r k s .

Nadal J. P,, Toulouse G.: Information storage in sparsely
coded memory nets
N E T W O R K , V o l . I , 1 9 9 0 , N o . 1, p p . 6 1 — 7 4

K e y w o r d s : m o d e l s o f n e t s .

Newquist H. P. I.: Neural Networks that Work
A I - E x p e r t , V o l . 5 , 1 9 9 0 , N o . 5 , p p . 6 7 — 6 9

K e y w o r d s : a r t i f i c i a l i n t e l l i g e n c e ; n e u r a l n e t w o r k s ; p r o b
l e m s o l v i n g ; e x p e r t s y s t e m s ; s o f t w a r e d e s i g n .

A b s t r a c t : n e u r a l n e t w o r k s a r e n o t yet. r e a d y f o r t h e m a s s

m a r k e t , b u t s o m e e x c e l l e n t w o r k i n g s y s t e m s a r e n o w i n u s e .

D e f e n s e c o n t r a c t o r R a y t h e o n I n c . u s e s N e u r a l W a r e ’s N e u

r a l W o r k s d e v e l o p m e n t t o o l t o c r e a t e a n t i s u b m a r i n e w a r f a r e

a p p l i c a t i o n s , p e r f o r m i n g f e a t u r e a n a l y s i s o n d a t a c o l l e c t e d

f r o m s o n a r s i g n a l s . S A I C o f S a n D i e g o , C A d e v e l o p e d t h e
S N O O P E b o m b d e t e c t o r , w h i c h h a s b e e n d e p l o y e d a t s e v e r

a l a i r p o r t s a n d c a n d e t e r m i n e c h e m i c a l c o n f i g u r a t i o n s f r o m

c e r t a i n m a t e r i a l s . M e d i c a l a p p l i c a t i o n s i n c l u d e a p r o g r a m
d e v e l o p e d b y t h e U n i v e r s i t y o f P i t t s b u r g h t o a s s i s t i n d i a g

n o s i n g e y e d i s o r d e r s .

Orfanidis S. J.: Gram-Schmidt Neural Nets
N e u r a l C o m p u t a t i o n , V o l . 2, 1 9 9 0 , N o . 1, p p , 1 1 6 — 1 26

A b s t r a c t : A n e w t y p e o f f e e d f o r w a r d m u l t i l a y e r n e u r a l
n e t is p r o p o s e d t h a t e x h i b i t s f a s t c o n v e r g e n c e p r o p e r t i e s . It

i n d e f i n e d b y i n s e r t i n g a f a s t a d a p t i v e G r a m - S c h m i d t p r e
p r o c e s s o r a t e a c h l a y e r , f o l l o w e d b y a c o n v e n t i o n a l l i n e a r
c o m b i n e - s i g m o i d p a r t w h i c h is a d a p t e d b y a f a s t v e r s i o n o f

t h e b a c k p r o p a g a t i o n r u l e . T h e r e s u l t i n g n e t w o r k s t r u c t u r e is
t h e m u l t i l a y e r g e n e r a l i z a t i o n o f t h e g r a d i e n t a d a p t i v e l a t t i c e
f i l t e r a n d t h e G r a m - S c h m i d t a d a p t i v e a r r a y .

Peterson C„ Rcdíield S„ Keeler J. I)., Hartmen E . : An Op
toelectronic Architecture for Multilayer Learning in a Single
Photorefractive Crystal
N e u r a l C o m p u t a t i o n , V o l . 2 , 1 9 9 0 , N o . 1, p p . 2 5 — 3 4

K e y w o r d s : o p t o e l e c t r o n i c ; a r c h i t e c t u r e ; l e a r n i n g .

A b s t r a c t : S i m p l e v e r s a t i l e a r c h i t e c t u r e f o r i m p l e m e n t i n g
s u p e r v i s e d n e u r a l n e t w o r k m o d e l s o p t i c a l l y w i t h p h o t o r e

f r a c t i v e t e c h n o l o g y is p r o p o s e d : a w i d e r a n g e o f s u p e r v i s e d
l e a r n i n g a l g o r i t h m s c a n b e i m p l e m e n t e d i n c l u d i n g m e a n -

f i e l d - t h e o r y , b a c k p r o p a g a t i o n , a n d K a n e r v a - s t v l e n e t w o r k s .
I t i s b a s e d o n a s i n g l e c r y s t a l w i t h s p a t i a l m u l t i p l e x i n g r a t h

e r t h a n t h e m o r e c o m m o n l y u s e d a n g u l a r m u l t i p l e x i n g . It

h a n d l e s h i d d e n u n i t s a n d p l a c e s n o r e s t r i c t i o n s o n c o n n e c

t i v i t y . A s s o c i a t e d w i t h s p a t i a l m u l t i p l e x i n g a r e c e r t a i n p h y s i

c a l p h e n o m e n a , r e s c a t t e r i n g a n d b e a m d e p l e t i o n , w h i c h

t e n d t o d e g r a d e t h e m a t r i x m u l t i p l i c a t i o n s . D e t a i l e d s i m u l a

t i o n s i n c l u d i n g b e a m a b s o r p t i o n a n d g r a t i n g d e c a y s h o w
t h a t t h e s u p e r v i s e d l e a r n i n g a l g o r i t h m s (s l i g h t l y m o d i f i e d)

c o m p e n s a t e f o r t h e s e d e g r a t i o n s .

Rao A., Walker M. R., Clark L. T„ Akers L. A., Grondin R.
O.: VLSI Implementation of N e u r a l Classifiers
N e u r a l C o m p u t a i o n , V o l . 2, 1 9 9 0 , N o . 1, p p . 3 5 — 4 3

K e y w o r d s : a s s o c i a t i v e m e m o r y ; i m p l e m e n t a t i o n .

A b s t r a c t : T h e e m b e d d i n g o f n e u r a l n e t w o r k s in r e a l - t i m e
s y s t e m s p e r f o r m i n g c l a s s i f i c a t i o n a n d c l u s t e r i n g t a s k s r e

q u i r e s t h a t m o d e l s b e i m p l e m e n t e d i n h a r d w a r e . A f l e x i b l e ,

p i p e l i n e d a s s o c i a t i v e m e m o r y c a p a b l e o f o p e r a t i n g i n r e a l
t i m e is p r o p o s e d a s a h a r d w a r e s u b s t r a t e f o r t h e e m u l a t i o n

o f n e u r a l f i x e d - r a d i u s c l u s t e r i n g a n d b i n a r y c l a s s i f i c a t i o n
s c h e m e s .

Rodriguez-Vazquez A., Dominguez-Castro R„ Rueda A,, Hu
ertas Y. I ., Sanchez-Sinencio E.: Nonlinear Switched-Capaci-
tor “ Neural“ Networks for Optimization Problems
I E E E T r a n s a c t i o n s o n C i r c u i t s a n d S y s t e m s , V o l . 3 7 , 1 9 9 0 ,
N o . 3 , p p . 3 8 4 — 3 9 8

K e y w o r d s : t e c h n i c a l e l e c t r o n i c r e a l i z a t i o n .

184 literature NNW3/9I, 184

TUTORIAL

A VIEW ON NEURAL NETWORKS
PARADIGM DEVELOPMENT

(Part 3)

J. Hořejš*)

Here we continue in the tutorial paper concerning the
neural network paradigm, which first part was published
in the Neural Network Word. No. 1, 1991.

6. Back-propagation |a famous learning algo
rithm]

Our task now is to apply and illustrate general dis
cussion of adaptation from section 3 for the case of
complete multilayered nets. We will introduce the so
called back-propagation algorithm (BP), one of the
most used and most promising adaptation algorithm
invented and elaborated by Rumelhart, Hinton, Willi
ams and others from the PDP [Parallel Distributed
Processing] group, like McClelland and Sejnowski not
many years ago (although Werbos claims he covered
the main ideas in his thesis in time of second generati
on NNs). Let a CMN homogeneous net N with sigmo
id nonlinearity S from (7) be given (one input layer,
one output layer and several hidden layers).

Suppose we have a training set 7’, [\j, y'] e Land we
would like to establish all the many weights [in a m-k-
l-n net there are k.(m + 1) + l.(k + 1) + n,(l + 1) we
ights including thresholds] so that the net would
implement the mapping (p^ such that </?w(xj) a y whe
re the sign a stands for „approximately equal“. The
error is caused (inevitably) whenever some compo
nents of y ; should be 0 or 1 like in classification pro
blems (because of asymptotic behavior of S) or becau
se the convergence of adaptation process is not ideal
(the error function does not reach zero, convergence is
too slow). This again may be due to unprecise arit
hmetic and/or numerical solution or due to the fact
that the whole problem is too difficult for the chosen
net (too small or too great number of hidden layers
and/or hidden neurons, unlucky initial weights etc) or
for the BP as such (not a rare case, sometimes avoided
by some modifications of BP, preprocessing etc).

In many cases we also use a slightly ditferent termi
nology, speaking about (input and output) patterns in
stead simply of vectors, borrowing this term irom arti
ficial intelligence theory or even cognitive and brain
science.

We shall now the assume there is a teacher, who
knows exact outputs, so that we can immediately cal-

*) Prof. Dr. Jiří Hořejš. CSc.. Department oí Computer Science. Charles Uni
versity. 118 00 Prague I. Malostranské nám. 25. Czechoslovakia

culate the error as it appears in the output layer. What
makes the trouble is to see how any one of the particu
lar connection weight (somewhere in the deeper parts
of the net) contributes to bad performance of N,
whom to blame or praise (credit assignment problem).

We know similar problems from the daily life. It is
not difficult for headquarters to recognize that some
thing is getting wrong and it is even not so difficult to
accuse the hierarchy just below. The real problem is to
find exactly who and to what extent in the whole com
pany is responsible for undesirable results and how
anyone should change to minimize the overall dysfun
ction. A right way out might be that on every level the
accused leader tries to improve something in his own
work and passes a memorandum to his men in such
a way that everybody knows what to do to diminish
the total error. Things are complicated in CM Ns by
the fact that everybody may have more chiefs and eve
ry chief is responsible for the whole collective in the
level just beneath him.

Yet this metaphor can be adopted in BP, each up
per layer successively informing the members (we
ights) of immediately lower layer how much and in
which direction they should change. Fortunately
enough, everyone is characterized by the only number

its weight and is expected to change it slowly. Unli
ke the activity spreading, which goes bottom up, the
error warnings proceed from top down hence the
term (error) back-propagation.

The main trick how to diminish the error function
has been shown already on Fig. 9. Choosing any parti
cular weight w [which represents just one coordinate
value of the vector w in the manv-dimensional space
of weights], we shall try to change vr so that E w dimi
nishes (ever-present parameter w in E will be in the
next often omitted). We simply calculate the slope of
the curve [in this coordinate], which is given by the de
rivative dE/dw and because of its hill climbing orienta
tion (if positive), we move w slightly in the opposite
direction, the more, the bigger is its responsibility, i.e.
the bigger is the derivative. Thus we obtain the formu
la for the update of w

Aw - i] ■ dEI dw for some //, 0 < ?/ < 1 (17’)
W"** = H’"kl + Alt’

However, the considered w runs along one coordi
nate only. As Ew is a composite function, we have to
replace dE/dw by the partial derivative SE/fw. Thus
(17’) changes to

Aw = - i] • r'EI rw for some ?/, 0 < ?/ < 1 (17)

The main task is now to compute these values rE / iw
for any w in the CMN. To do that we use a picture of
a pertinent fragment of a CMN, see Fig. 18. Here two
adjacent layers are taken into account and w, x, ^re
present weights, activities of stimuli along the connec
tions and net incomes, respectively. All used values
are scalars and subscripts/superscripts do here denote

NNW3/91, 185-192 Hořejš: Neural Networks Paradigms Development

only that we deal with the lower/upper layer of the
two. The dotted arrows indicate that there are other
connections in the net, which do not enter directly in
to the calculations while the horizontal dashed line is
used to distinguish two cases: the neuron A can he an
output one, in which case the picture above the das
hed line is empty; otherwise it is an input or hidden
neuron.

The weight we focus now on is w, and we first try to
establish BE/Bw, when a selected one member of the
training set T[l] is examined and the error for this case
corresponding the inner sum in (6) should be diminis
hed. We take the following formula for BE/Bw, and
thus for the simple adaptive action:

BE/Bwj = BE/Bx . dx/dg , B^/Bw, (18)

[For further purposes, let us denote 5, = BEX
Bx. dx/d<g speaking about error for neuron A]

This awfully looking formula only expresses the ru
le for derivation of composite functions [the chain ru
le] and because all involved functions have nice for
mal properties (being linear sums and differentiable
S), you can remember the mnemonic rule about dea
ling with fractions and see in this way why the left-
hand side of (18) equals to the right-hand side. Note
only that, while x - S(B) so that dx/dgm x, (I - x) as
was stated in (8). Also Bg/Bw, brings no troubles; as
£ = A WjXj is a linear function of w’„ Bg/Bw, = x r [See
(1 lab)]. If there is some problem, it is in computing of
BE/Bx. When A is an output neuron, xis what we for
merly denoted as y ' for some i, j and according to the
definition (6) or its inner sum when y-th member of the
training set is submitted, we easily calculate (perhaps
up to a multiplicative constant)

(19) which is the difference between expected and ac
tual value of neuron /(l < i < n) for the pattern j. If,
on the other hand, the considered neuron Bis somew
here inside the net, we calculate BE/Bx as the sum

BE/Bx = S BE/Bx' . dx'/dg‘ . Bg'/Bx (20)

where the sum is taken over all neurons in the upper
layer, summing thus all error driven changes for
which upper layer neurons are responsible. It is again
easy to see that dx ' 'dc' x' . (l - x') and that Bg'/
Bx = wu' (g= wu'x + . . . [sum of contributions along
the dotted lines, where x does not occur]). What re
mains is to establish BE/Bx ' for all / (for all neurons in
the upper layer, the number of which has not been de
noted).

But even this last step is not too difficult to solve;
actually it has already been solved! Provided that we
started the whole process from the topmost (output)
layer, for which it was solved by (19), we can now as
sume in this top-down (recursive) computation that
actually we at the present state already know the valu
es of BE/Bx1 and can substitute them into (20). This
completes the formal derivations behind the BP,

Sometimes the successive changes of w " w(t) [so
that Aw= w(t + 1) - M /)] can lead to faster and
smoother convergence if we add the ,,momentum“
term and replace (17) by

w(t + l) = w(t) - ? 7 • BE I Bw + a • (w(t) - w(t — 1)) for
a, 0 < a < 1, (2 1)

so that the difference Aw in one step is smoothed by
the same difference one step before.

In section 8 we give a general account on possible
applications of BP driven CMN adaptation. Because
some readers may wish to try small experiments along
that line and because it is not so trivial to pass from
the theoretical description to the development of
a practical numerical algorithm, we present first
a summary of the BP algorithm and in sect. 7 A the co
re of corresponding program in Pascal. That section
can be omitted without any consequence for further
reading; it was however postponed after sect. 7, be
cause there are further needed concepts introduced.

Summary of the basic BP algorithm.

0. Initialize weights wO (including thresholds) to
small random numbers and the parameters //, or (say //
about 0,3, a about 0.7).

1.1 or a chosen pair of patterns [x, y] e / compute
y = y?w0(x), so that the difference between expected
and actual value y — y should be for next weight vec
tor w! [and then generally and recursively, the vector
w,] possibly diminished. To do so:

2. For a weight w,, leading from some neuron j to
a neuron i set

BE! Bx = y \ - y\ (19)

186 Horejs: Neural Networks Paradigms Development

where 5, is the error for i and x, is either output from j
or /-th coordinate of the input vector \, and A is com
puted as follows:
5, = v, • (1 - y,) ■ (y, - v,) if the neuron i is an output
one

5, = Xj • (1 - x,) ■ V<jL ■ Wki otherwise;

the sum is taken over all neurons in the layer immedi
ately above neuron i. In this way you obtain w,H from
w,.

If you like, you can introduce A =
= - // ■ 5,x; 4 a ■ A ' , where A' is the difference bet
ween two successive previous values of wy (according
to (2 1).

3. Choose another pair from T and repeat 2 until
you exhaust T according to a chosen training strategy.

4. Repeat from 2 until for all pairs [x', v'] € 7, f/Xx1) is
sufficiently close to y', i.e. E„ is small enough.

7. Comments and analogies on BP |a continua
tion!

Note that during the calculation of new weights we
need to know what are the values of x, g, etc. These
were of course computed during the predecessing acti
ve mode. In the described case thus both modes ol
work are interleaved: for an input vector from T, the
active mode is performed, followed by the adaptation
mode, i.e. by the calculations of dE/dw for each we
ight and consequent modification of w.

As already mentioned, it is also possible to use in
homogeneous CMN with nonlinear transfer functions
S h where A depends on particular neurons. Moreover,
it can change during the adaptation and the change
can be aimed to further accelerate and/or enable the
convergence process seeking the best suitable w*, for
which Ew* would reach a low acceptable value. Our
experience [Pelikan used it many times] with this mo
dification is generally good. It starts from formal deri
vation of dE/dk by only a slightly more difficult calcu
lations than those above. Then you extract from this
derivation the adaptation process for A, interleaving
(for the still fixed neuron, for which w and A are consi
dered) adaptation of w with adaptation of A. The re
sulting modification of BP may be called GABP [Gain
Adapting BP]. Details will appear in an independent
contribution in this journal.

Most implementations of BP allow to require that
few of the weights remain fixed during the adaptati
on; for these we simply set Aw = 0. In this way we can
apply BP also to not complete multilayered nets (fi
xing some weights to 0). Also you can prescribe some
constrains on the weight vectors (e.g. requiring that se
lected weights assume always equal values). Because
in such (relatively rare) cases the high connectivity is
as a rule preserved, or the constrains are not formally
too strong, we shall not treat them separately.

Note that there are some formal similarities bet
ween active and adaptive dynamics (you always com
pute sums of certain contributions passed to adjacent
layer). For an original treatment of BP see Hecht-Ni-
elsen monograph mentioned in the introduction.

The above derivations concern adaptation of every
weight, but for one training pair only. We can howe
ver use also cumulative errors cither for observing the
adaptation process or for accumulating errors in seve
ral active passes before we start adaptation, not to
overload the program with many recomputations of
w's, which are rather time-consuming. For example,
sometimes we may be interested in responses of only
some of the output neurons, the others belonging to
a don't care area. Often we are interested in the layer
error, summing up the (squared) differences between
expected (desired) and actual outputs over all neurons
in the output top layer, but for one training pair from
T only.

However the most useful form of cumulative error
is the global error, summing up errors for all output
neurons and all the pairs from T actually used in trai
ning. This may incorporate either one input pair from
T just once [following thus directly (6)] or other trai
ning strategies as well. A usual training strategy repe
ats every training pair from T several times (for some
number of iterations) and only then goes to another
pair; only after exhausting the whole set T we start
another cycle of repeating T. It is also recomended to
compute and display the plain (nonsquared) differen
ce between the actual and expected value for the
worst case output neuron / pattern pair, for example
each iteration, or perhaps cycle if the computation is
quick enough.

In some strategies, random decisions are involved,
assuming that after a specified epoch every training
pair will get the same chance for its intervention (the
random generator should uniformly cover the set 7).
The results of adaptation convergence may look diffe
rent for different strategies then.

The various error measures do not always preserve
the nice theoretical property that the error function
steadily diminishes. First, numerical approximations
may cause e.g. that with too big value of i) from (17)
or (21) BP skips over some minimum. Second, due to
the fact that we at the same time try to adapt the con
sidered weight w as to diminish the overall error for
all output neuron/pattern pairs, the adaptation pro
cess may happen to „prefer“ some particular pairs di
minishing their errors, while others, less aggressive,
pay for n m such a way that the global error (or other
error measures) increases.

Giving up the cases when E„ starts to persistently
climb up or to oscillate, we often meet the curve of
Fig. 19, giving the dependency of global error on time
(as the adaptation process proceeds). For many cases,
in which we are not satisfied with the shape of global
error curve, some remedies are known one of which is
the increase of the number of hidden neurons, giving
thus the net more “degrees of freedom".

NNW3/91, 185-192 Horejs: Neural Networks Paradigms Development

I

The frequent behavior of Ew from Fig. 19, far from
being the only possible, admits again a human-orien
ted metaphor.

When we meet a task to solve, we first start with
a more less arbitrary weight vector wO, far from a rea
sonable one. From the very beginning we are over
whelmed by complexity of the task and the error in
creases (A). Then we start to look around to under
stand better our task and try to see some promising
ways out. We wander over the landscape which looks
flat (B,B’) until we get some idea which deserves fur
ther attention and elaboration; this enables us to quic
kly proceed and improve the idea (C,C).

Concerning dependency of the error function on
the choice of the training strategy, there is again an
analogy: if you have to read a textbook consisting of p
chapters, you may prefer to read every chapter r times
and only then proceed to the next one. Or you prefer
to read the whole book from the beginning to the very
end and repeat the complete reading p . r times. In
both cases you read the same number of pages, but
(depending on your memorizing and generalization
abilities) the result of understanding may be some
what different. You may also occasionally return to
the most difficult parts (pages, chapters) as you feel
appropriate. Similar choices of the training strategy
project in the adaptation of a NN.

The problems of generalization has already been
discussed; for simple functions it reminds the mathe
matical questions of interpolation (by polynomials,
Taylor or Fourier series etc). NNs mappings are speci
fic in this respect in that they handle multivariable
mappings, coordinates of input/output vectors may
have different meanings and actually (though not for
mally) be of different types. Moreover, CM Ns compo
se rather wild mixture of linear and nonlinear map
pings, and — above all — BP finds these mixtures in
the process of adaptation automatically, according to
the task given and training strategy chosen. No won
der that NNs often provide better interpolation / ge
neralization solutions than known tools with a structu
re fixed before. And no wonder they find many appli
cations, provided that hidden neurons choice, initial
weight setting, training strategy and the parameters 77,
a and perhaps A, k are well chosen. [To find appropri
ate values of the parameters reminds tuning a Tv set
with several potentiometers.]

7A. A Pascal program for BP.

The program below follows the algorithm, notation
and terminology from above sections as closely as
possible. All neurons are however denoted by * [with
appropriate indices], input and expected output valu
es of patterns from T are generally read out from the
file ’PATTERNS’, their coordinates forming vectors
InPatt and OutPatt, respectively. The file starts by the
indication of number of patterns (number of members
in 7) NoinT. The training pairs are successively copi
ed into pattern — independent vectors Input and Out
Expect, respectively. Notice that the sigmoid has been
replaced out of the interval [-30,30] by constants, be
cause the differences are then so small, that an under
flow could occur.

The procedure InitNetwork chooses initial weights
and all parameters referred to (77 — eta, a alpha:
the momentum term is included, while adaptation of
GABP is not) are as recommended above in the Sum
mary and number of iterations Iters and cycles Cycles
arbitrarily as 15 and 40, respectively. In this way the
adaptation process is limited by exhausting the speci
fied number of cycles no matter what the global error
is at the end. More experienced programmers can ea
sily adapt this criterion, stopping the learning only af
ter this error is less then some constant, e say.

In form of “comments” (between [and]) it
also creates the file for solving a specific problem:
in this case the CMN 4-2-4 is taught on identity
of 4-dimensional input vectors-patterns (yJ ~ x 1) for
a set of T, consisting of 5 pairs (although 11 out of 16
possible pairs could be principally possible to trans
mit over the net, the training time would be much lar
ger to achieve approximately the same accuracy). No
te the structure of the file ’PATTERNS’, so that you
can taylor it for another tasks. Appropriate informati
on is included in “true” comments {!...!}, while your
choices depend on manipulating with „program”
comments j 1 . . . 1} and]2 . . . 2], which you can remo
ve or retain according to your wish (by a Pascal editor,
which is then followed by compilation and run).

Two possibilities are offered to you; if you let the
program as it is, fixed (although initially random) we
ights are introduced and the behavior of the network
is fully deterministic to give you the possibility to re
peat the same experiment many times. If you prefer to
try your luck (with the random choice of weights eve
ry next run), just cross out the first pair of program
parenthesis. Omitting the second pair of program pa
renthesis you should create your own file of PAT
TERNS. Modifying other information in the procedu
re InitNetwork, you can solve any problem you wish;
section 8 will give you some suggestions.

Summarizing, removing strings [2 and 2], you have
your program ready to solve the identity problem with
fixed weights; to pass to another task, you let the pro
gram parenthesis as they are and (a) modify the only
task dependent procedure InitNetwork (parameters
and the number of iterations and cycles and perhaps

Horejs: Neural Networks Paradigms Development NNW3/91, 185-192

the topology of the net), (b) create your own file ’PAT
TERNS’ and let the rest of program untouched as far
as you will stay within the ranges of constant definiti
ons and fixed initial weights.

If you first try the built-in example, you will first
see on the screen the copy of the training set, then you
will be continually informed about progress in the
processing. Allow about 4 minutes computation [on
an IBM PC AT without numeric coprocessor] before
you can check the results (the set T as well as all
checks should remain within the screen). [Also, note
that after the first run the file PATTERNS has been
created and you can avoid creating it again and again
restoring the parenthesizes ¡2 . . . 2], saving thus ano
ther minute]. Observe good memorizing, but poor ge
neralization ability (only 5 out of possible 16 members
of 7 were used!). If you need more accuracy and/or
add some other patterns, the number of cycles will ha
ve to be larger and the time would considerably incre
ase.
program BackPropagation;

const MaxLayer = 5 ; { max. number of la y e r s >
MaxNeuron = 15; { max. number of neurons in one la y e r }
MaxPattern = 50; { max. number of p a t te r n s >

type Layers = 0 , . MaxLayer; t a v a i l a b l e la y e r s >
Neurons = 1. .MaxNeuron; { a v a i l a b l e neurons >
NeurThrs = 0 . .MaxNeuron; { neurons i n c l u d i n g th r e s h o ld s source }
P a tte rn s = 1 . .M axP attern ; { usab le p a t t e r n s }
Weights = a r ra y [L a y e r s ,N e u r T h r s ,N e u r o n s] of r e a l ;

{ W e i g h t s l i , j , k] : >
{ i f j>0 . . . weight from neuron j in la y e r i to >
{ neuron k in la y e r i+1)
{ i f j=0 ___ t h r e s h o ld of neuron k in la y e r i+1 }

v a r w, wold : W eights; { v a lu e s of w eights in time t and t - 1)
x : a r r a y [L a y e r s ,N e u r T h r s] of r e a l ;

{ x [i , j] : }
{ i f j*0 . . . output v a lu e of neuron j in la y e r i >
{ i f j=0 . . . va lu e -1 used as a t h r e s h o ld source >

D e lta : a r r a y [L a y e rs ,N e u ro n s] of r e a l ;
{ D e l t a [i , j] = see remark a f t e r E q . (1 8) , co n ce rn in g now neuron j in la y e r i >

NoofL : L a y e r s ; { la y e r s = 0 [b o t t o m] . .NoofL [to p] >
NoofN : a r r a y [La y e rs] of Neurons; { number of neurons in each la y e r }
NoinT : P a tte r n s ; { number of le a r n in g p a t te r n s }
I n P a t t , O u tP a tt : a r r a y [P a tt e rn s ,N e u ro n s] of r e a l ;

{ a l l in p u t and expected output p a t t e r n s from T >
I n p u t , OutExpect : a r r a y [Neurons] of r e a l ;

{ in p u t and expected o u tp u t p a t t e r n f o r one chosen p a i r from T >
e t a , alpha : r e a l ; { parameters of the a l g o r i t h m - see E q , (2 1) >
I t e r s : i n t e g e r ; { number of i t e r a t i o n s >
C ycles : i n t e g e r ; { number of c y c le s >

f u n c t io n S (K s i : r e a L) : r e a l ; { neuron s igm oid t r a n s f e r f u n c t io n >
const lambda = 1 ; < s igm oid g a in >

RB = 30; { where to e x t r a p o la t e the s igm oid by a con stant)
va r inp : r e a l ;
be gin inp := la m b d a * K si ;

i f inp>30 then S;=1
e ls e i f inp < -3 0 then S:=0

e l s e S := 1 / (1 + e x p (- i n p)) ;
end;

procedure S ta te ; { new s t a t e of the network >
va r Layer : L a y e rs ;

j : N e u rTh rs ;
k : Neurons;
Ksi : r e a l ; { neuron p o t e n t i a l >

be gin f o r j := 1 to NoofN[0] do
xtO , j] : = I n p u t t j] ; { se t bottom la y e r in p u ts >

f o r Layer:= 1 to NoofL do
f o r k; = 1 to Noo fNlLayer] do

b e g in K s i := Q ;
f o r j : = 0 to N o o f N [L a y e r -1] do

K s i : =Ksi + w [L a y e r - 1 , j , k] * x [L a y e r - 1 , j] ; { neuron p o t e n t i a l }
x [L a y e r , k] : = S (K s i) { neuron o u tp u t }

end
end; { x [N o o f L ,k] i s an a c t u a l output of the network >

procedure ChangeWeights (L a y e r :L a y e r s) ; { new w eights f o r one la y e r >
v a r j : N eu rTh rs ;

k : Neurons;
saveW : r e a l ;

be gin f o r k : - 1 to Noo fN[Layer+1] do
f o r j : = 0 to NoofNlLayer] do

be gin s a v e W : = w [L a y e r , j , k] ;
w [L a y e r , j , k] : = w [L a y e r , j , k] -

e t a * D e l t a [L a y e r + 1 , k] * x [L a y e r , j] +
a l p h a * (w [L a y e r , j , k] - W o l d [L a y e r , j , k]) ;

W o ld lL a y e r , j , k] : = saveW;
end;

end;

procedure MakeOelta (L a y e r :L a y e r s) ; { new D e l t a ' s f o r one la y e r }
var j , k ; Neurons;

CunulEr : r e a l ; { c u m u la t ive e r r o r over neurons in a la y e r }
begin f o r j : = 1 to NoofNELayer] do

begin i f Layer=NoofL < top la y e r }
then C u m u l E r := x [N o o f L , j] - O u t E x p e c t [j]
e lse b e g in C u m u lE r :“ 0 ; (c a l c u l a t e from p r e v io u s la y e r }

for k:*1 to N o o fN [Lay er+1] do
C u m u lE r := C u n u lE r + D e lta [L a y e r + 1 , k] * w [L a y e r , j , k] ;

end;
D e l t a [L a y e r , j] : = x [L a y e r , j] * (1 - x [L a y e r , j]) * C u m u t E r

end
end;

procedure NewWeights; { network new w eights >
var Lay er : L a y e rs ;
be gin f o r L a y e r := N o o fL -1 downto 0 do

be gin M a keO e lta (La ye r+ 1) ; { set up D e l t a ' s in upper la y e r >
C h a n g e W e ig h ts (L a ye r) ; { c a l c u l a t e w eights i n t h i s la y e r }

end
end;

f u n c t io n G l o b a l E r r o r ; r e a l ; { g lo b a l e r r o r over a l l la y e r s of the network >
v a r p a t t : P a t t e r n s ;

j : Neurons;
E r ; r e a l ;

be gin E r : = 0 ;
fo r p a t t := 1 to NoinT do

be gin f o r j := 1 to NoofN[0] do I n p u t [j] : = I n P a t t [p a t t , j] ;
fo r j := 1 to NoofN[N oofL] do O u t E x p e c t [j] : = 0 u t P a t t [p a t t , j] ;
S t a t e ;
f o r j := 1 to NoofN[N oofL] do

E r ; - E r + S q r (x [N o o f L , j] - O u t E x p e c t [j]) ;
end;

G l o b a l E r r o r : = E r ;
end;

procedure T r a i n i n g ; C p r o v id e s [e a r n in g of the p a t te r n s >
va r p a t t : P a t t e r n s ;

j : Neurons;
E r r o r : r e a l ; C c u m u la t ive e r r o r f o r one i t e r a t i o n }
i t e r , c y c l e : i n t e g e r ;

begi n
w r i t e l n ; C format f o r p r i n t e d in fo r m a t io n >
w r i t e l n (' I t e r a t i o n L a y e r E r r o r P a t t e r n C y c le G l o b a l E r r o r ') ;
f o r c y e le := 1 to C yc le s do

b e g in w r i t e (c h r (1 3) , c y c l e : 3 8 , G l o b a l E r r o r : 1 4 : 5) ; < p r i n t s of va lue s >
f o r p a t t := 1 to NoinT do

b e g in w r i t e (c h r (1 3) , p a t t : 2 9) ;
f o r j := 1 to NoofN[0] do I n p u t [j] : = I n P a t t [p a t t , j] ;
fo r j :=1 to NoofN[NoofL] do O u tE x p e c t [j] : = 0 u t P a t t [p a t t , j] ;
f o r i t e r : = 1 to I t e r s do

be g in S t a t e ;
E r r o r : = 0 ;
fo r j := 1 to NoofN [NoofL] do

E r r o r : = E r r o r + S q r (x [N o o f L , j] - O u t E x p e c t [j]) ;
NewWeights;
wri t e (c h r (1 3) , i t e r : 5 , E r r o r : 1 6 : 5) ;

end;
end;

end;
w r i t e l n (e h r (1 3) , G l o b a l E r r o r : 52:5 >;

end;

procedure T e s t i n g ; { you can t r y how w e ll the network i s le a rn e d , >
f s p e c i f y i n g on the request one or more in p u t v e c t o r s >

var i : Neurons;
c : c h a r ;

be gin w r i t e l n ;
repeat w r i t e f ' E n t e r network in p u ts (' .N o o fN [0] , ' v a l u e s) : ') ;

f o r i := 1 to NoofN[0] do r e a d < I n p u t [i]) ;
r e a d In ;
S t a t e ;
w r i t e (' O u t p u t of the network i s ' , ' : ' : 9) ;

f o r i :* 1 to NoofNINoofL] do w r i t e < x [N o o f L , i] : 5 : 2) ;
w r i t e (' More t e s t i n g [y / n] ? ') ;
r e a d (c) ;

u n t i l (c = ' N ') o r (c = ’ n ') ;
wri t e l n ;

end;

procedure In i t N e t w o r k ; { ! ! network parameters i n i t i a l i z a t i o n r o u t i n e >
var i : L a y e r s ; < t h i s is the o n ly ta sk dependent procedure ! ! >

j : N e u rT h r s ;
k ; Neurons;
f : t e x t ;

be gin N o o fL := 2 ; { t h e program w i l l deal w it h the 4 - 2 - 4 network >
NoofN [0] := 4 ; NoofN [1] := 2 ; N o o f N [2] := 4 ;
RandSeed: + 3456;

{ ! remove the f o l l o w i n g b ra c k e ts numbered 1 i f you want to s t a r t always !>
{ ! w it h new random w e ig h ts ; i f you wish to repeat y o u r experim ents !>
{ ! always w ith the same i n i t i a l i z a t i o n of w e ig h ts , l e t them be th e re !>

<1 Randomize; 1 }
f o r i : = 0 to NoofL-1 do

f o r j : = 0 t o N o o f N [i] do
fo r k:=1 to N o o fN [i+ 1] do

w t i , j , k] := 6 * (Random-0 . 5)/ 1 0 ;
Wold:=w;
e t a : = Q ,3 ; a lp h a := 0 . 7 ; { c h o ic e of le a r n in g parameters >

. I t e r s : - 15; C y c l e s : - 4 0 ; { choice of number of i t e r a t i o n s and c y c le s >

{ ! remove b ra ck e ts 2 i f you do not want to c r e a te y our own f i l e of p a t t e r n s)
{ ! a c c o rd in g to s i m i l a r te m p la te . A f t e r removing the b ra c k e ts 2 , you w i l l !)
{ ! teach the net on i d e n t i t y of v e r t i c e s of 4 -d im e n sio n a l cube as l i s t e d ; !>
{ ! note th a t the f i l e s t a r t s w ith the number of t r a i n i n g p a i r s . !)

NNW 3/91, 185-192 Horejs: Neural Networks Paradigms Development 189

{ copy p a t t e r n s i n t o f i l e PATTERNS >
{ 2 a s s i g n (f , ' P A T T E R N S ') ;

r e w r i t e (f) ;
wri t e l n (f , 5) ;
wri t e l n (f , ' 1 1 0 0 1 1 0 O ') ;
w r i t e l n (f , ' Q 0 1 1 0 0 1 1 ') ;
wri t e l n (f , ' 1 0 1 0 1 0 1 O ') ;
w r i t e l n (f , ' 0 1 0 1 0 1 0 1 ') ;
w r i t e l n (f , ' 0 0 0 0 0 0 0 0 ') ;
c l o s e t f) ; 2>

end;

p ro ce d u re I n i t P a t t e r n s ; { le a r n in g p a t te r n s i n i t r o u t i n e >
v a r p a t t : P a t t e r n s ;

j : Neurons -
f : t e x t ;

b e g in a s s i g n (f , 'P A T T E R N S ') ; r e s e t (f) ; { us ing your own f i l e of t r a i n i n g s e t)
r e a d (f , N o i n T) ; w r i t e l n ; { number of p a t te r n s >
f o r p a t t := 1 to NoinT do

be g in f o r j := 1 to N oo fN [0] do
b e g in r e a d t f , I n P a t t [p a t t , j]) ; { read in p u ts from PATTERNS)

w r i t e (! n P a t t [p a t t , j] : 5 : 2) { and p r i n t them on screen >
end;

w r i t e (' ') ;
f o r j : - 1 to NoofN [NoofLI do

b e g in r e a d (f , O u t P a t t [p a t t , j]) ; (read o u tp u ts from PATTERNS)
w r i t e t O u t P e t t [p a t t , j] : 5 : 2 K and p r i n t them on screen >

end;
r e a d l n (f) ; w r i t e l n ;

end;
c l o s e (f)

end;

p ro ced ure I n i t l m p l ; C im plem entation i n i t r o u t i n e)
v a r Lay er : L ay ers ;
b e g in f o r L a y e r := 0 to NoofL-1 do

x [L a y e r , 0] : = - 1 ; L used as a th r e s h o ld source f o r next la y e r }
end;

b e g in L main program }
I n i t N e t w o r k ; I n i t l m p l ; I n i t P a t t e r n s ;
T r a i n i n g ;
T e s t i n g ;

end. { main program >

[The program was written by P. Bozovsky]

8, BP and multilayered nets in action.

It is estimated that 95% of NN applications relies
on back-propagation (BP) paradigm. He, who tried to
simulate an IQ test, when you have to find (on the ba
se of a few examples) the „natural“ continuation of
a given sequence of patterns, he surely admits that the
generalization abilities of BP are somehow myste
rious.

We will now present some ideas, how CMN under
BP adaptive training could be used. They will be more
schematic than elaborate, although some experience
in applications will be noticed [those denoted by an
asterisk * have been tried or developed in the „Czech
Neurogroup“ and will not be included in the biblio
graphy; interested people can ask the author]. To be
frank, almost all these applications concern ,,NN in
small“, with relatively small number of neurons and
not too large amount of data. The usual complexity
barrier known from other areas applies here as well.
Also, some general remarks will extend discussions of
preceding sections.

In the following figures, abbreviated forms from
Fig. 12b will be first used and no concrete dimensions
of the layers given. Vectors from the input space are
denoted by oblongs. A piece of information will some
times be specified by a curve [when we have in mind
real valued coordinates and the input dimension requ
ires an appropriate number of input coordinates to co
ver a possibly continuous input function with good
approximation], by some 0 ’s and l ’s [indicating binary
inputs] or simply by an identifier not speaking about

0 1

a)

y \/v w /w w
b)

BP F W CTc)
Fig. 20a, h, c

its form. Cf. Fig. 20abc. The problem of suitable co
ding of input data will be mentioned in further secti
ons.

a) Classification / recognition.

Fig. 21 symbolizes the situation where members [x
y '] of T are submitted (according to a training strate
gy) to the input layer and the teacher classifies the in
puts into two categories (y' = 0 or 1).

A simple example of concrete 6-2-1 net has been al
ready presented, namely in Fig. 6. It should only be
added that the weights shown in Fig. 6 were really ob
tained* (up to a multiplicative constant and approxi
mate character of the numbers) by a BP training con
sisting of several hundreds repetitions of all training
pairs of form [symmetric vector, 1], [nonsymmetric
vector, ()]. Because the whole set T was exhausted, no
test set is significant (provided the net was well adap
ted, as was indeed the case).

190 Horejs: Neural Networks Paradigms Development NNW 3/91, 185—192

There is however a good reason to think about this
simple example a bit: there are many sets of weights
which will perform the classifying task as well due
to many symmetries involved in any CMN (renumbe
ring of hidden neurons for example, multiplying the
weights — and in case of sigmoid transfer function lo
wering the gain A etc), there are always many solutions
to the given task, once there is at least one. The whole
error landscape function reflects this fact (perhaps
you may imagine it as a disk in which valleys and
other objects are positioned symmetrically round
a center and to any satisfactory place you may find
many others which are as low as the first one). This
ambiguity is generally an intrinsic property of NNs.

Another net we used* was a 40-17-1 net; the inputs
were derived from EEG curves so that a window of 40
positions moved along the curve, multiplying thus the
number of training pairs without requiring too much
empirical data. The question was to classify the EEG
signals into two categories: those in which a specific
rr-rhythm was present and the rest. For 40 members of
T (not too much!), the result was impressing. For 50
questions from an independent Q (taken again from
reality, so that T and Q were „similar“ and no really
artificial question was posed — no artifact was pre
sented to be recognized), the net answered correctly.
There was the only case of disagreement between an
expert doctor and the net, in a not quite typical case;
after a more detailed analysis however it turned out,
that the net generalized properly and finally got the
doctor's approval.

A more general system for signal analysis NESP*
(NEuronal Signal processing) has been developed by
Honing and Pelikan.

Surprisingly enough, NNs found a broad field of
applications in (theoretical) chemistry, e.g. in helping
to suggest a theory for the relation between the sequ
ence of amino acids in the protein and the spatial ar
rangement of its polypeptide chain in the native state.
Blazek, Pancoska, and Keiderling* used a 5-8-180 net
to generate spectral curves from rentgenostrucural da
ta and an „inverse“ net 180-8-5 to obtain rentgeno-
structural data from spectral curves. The results were
reported remarkable, hardly to reach by other me
thods.

Gorman and Sejnowski used 60-*-2 net (for * up to
24) for classification sonar echo signals to determine
whether the signal came from a rock or a cylindrical
object. Preprocessing (computing a spectral envelope)
was needed; as in many similar cases.

Burr constructed a NN for handwritten character
recognition as well as for spoken numeral recognition.

Kufudaki* applied neural nets to study neural pro
cesses in the real brain, namely to classicifation of ti
me series of latent periods in conditioning and „lear
ning curves” ; a 20—12—2 net was used to solve a pro
blem in which all tools of traditional analysis failed.

Charvat* et al used back-propagation in some sta
ges of processing visual information mapping given
areas of the Earth, taken from planes and satelites.

Jirsik, Kasik* et al used several NNs including BP
to edge detection under changing light intensities.

Vingralek* used a modified BP in a metod of dithe
ring grey images.

b) Prediction / control

Fig. 22 symbolizes a situation, in which a certain
portion of history of some events (x'j has its continua
tion (c') registered; for members of T this continuation
was known and these c'N were duplicated as answers
to be learned. The training set thus consisted of mem
bers [x'c', c']. The net was thus learned to make pre
dictions.

Fig. 22

A concrete example was to forecast a temperature
in some given system and various training data diffe
red by the exact place where thermometers were set.
Again, it worked with about 80% reliability. Success
ful experiments with weather forecast were reported
even in simpler second generation models.

An often cited example (not yet tried under situati
on in this country) is to predict behavior of a customer
applying for a credit. The training set Tis formed on
the basis of long term history of the particular bank,
which stores in its database characteristics of previous
experience in the form: pertinent data about a custo
mer [amount required, income history, frequency of
job changes, minimal and maximal profit from the lo
ans etc] — decision to grant the money or to reject the

NNW3/91, 185—192 Horejs: Neural Networks Paradigms Development

applicant and/or to predict his/hers next fiscal beha
vior, In this way the net, which abstracts from such
objectively hard to estimate input data as the smile of
an applicant, tries to do more competent prediction of
his/hers further market success.

Although economic laws are here not vet quite cle
ar, we are* trying to simulate a simple market and the
predictive capabilities on a 6-5-3-1 net, which are at
least amusing; it is unbelievable how many rules is the
net able to notice and extract from 12 simple exam
ples similarly as an IQ test asks. We created 30 trai
ning examples of the form [Company (2 possibilities),
Customer (4), Product (4), Price (1 real number)],[Ex
pected success (1 real number, probability of selling P
made by Co to the Cu at price P)]. increase of price
generally diminishes the success, but differently
for different products; e.g. in lower price categories,
Customer A prefers Company i, is somehow richer
(can afford more expensive goods) etc. These and
other “laws” are deducible from the examples ex
plicitly, but the net (in the role of an advisor) estima
tes the success of business transaction even in cases
which bear no direct relationship to the examples; so
metimes you have to note less apparent dependencies
to explain the „decision“ of the net.

A specific example of prediction is that of time seri
es. Weigend, Rumelhart and Huberman applied
a 12-8-1 net on a (theoretically infinite) sequence of
numbers . . . , x T , 2, x T , ,, x T. v h where the
twelfth inputs from the past were trained to predict
next member of the sequence until they came to the
possibility to predict x T. The empirical material was
drawn out of historically long observations of occur
rences of sunspots. BP has therefore the ability to dis
cover well-hidden forms of regularities over a great
period of time. Again, attempts to predict workers
productivity etc. has been applied.

Recall Fig. 11 as an example of control.

successful in a development of a net, which well im
plements to transmit a subset J of the input space,
especially if there are enough regularities (inner laws)
that govern membership to such a subset J. Even in
such cases like natural language, radio or Tv signal
transmission. If the net happens to find out these re
gularities and is successfully trained, then the m-di-
mensional information can pass through less-dimensi
onal bottleneck of the narrow hidden layer. Fig. 23b
then shows how the situation can be utilized: Split the
well learnt net into two parts preserving the weights of
original net and let the lower part play the role of
a transmitter, the upper part the role of a receiver,
which can be in space far away; and connect the hid
den layer neurons (two in Fig.23b) by lines which
identify the states of corresponding neurons. The ori
ginal input information can then be transmitted to
a distant place using less „wires“ (here F) than will be
necessary to connect all the m input/output neurons
directly.

c) Data compression.

Fig. 23a shows a net m-k-m (generally there can be
other hidden layers involved), where k < m. It is trai
ned to realize an identity mapping (y' = x'). We alrea
dy know from sect.5 that not all identity mappings are
realizable by such a net (cf. Fig. 17 and its explanati
on). This however does not prevent us to try and to be

“) b)
Fig.23ab identita

Cottrell, Munro and Zipser used a 64-16-64 net to
image compression in which the squares of 8x8 pixels
were approximated by squares of 4 x 4 pixels, not loo
sing too much visual information.

(Continuation)

Literature Survey

Sait« T,: An Approach Toward Higher Dimensional Hystere
sis Chaos
I E E E T r a n s a c t i o n s o n C i r c u i t a n d S y s t e m s , V o l . 3 7 , 1 9 9 0 ,

N o . 3 , p p . 3 9 9 — 4 0 9

Simic P, D,: Statistical Mechanics as the underlying theory of
„elastic“ and „neural“ optimisations
N E T W O R K , V o l . 1, 1 9 9 0 , N o . 1, p p . 8 9 - 1 0 3

K e y w o r d s : a p p l i c a t i o n .

192 Horejs: Neural Networks Paradigms Development

Specht D. F.: Probabilistic Neural Networks
N e u r a l N e t w o r k s , V o l . 3 , 1 9 9 0 , N o . 1, p p . 1 0 9 — 118

K e y w o r d s : p r o b a b i l i t y d e n s i t y f u n c t i o n ; p a r a l l e l p r o c e s
s o r ; p a t t e r n r e c o g n i t i o n ; p a r z e n w i n d o w ; b a y e s s t r a t e g y ; a s
s o c i a t i v e m e m o r y .

A b s t r a c t : B y r e p l a c i n g t h e s i g m o i d a c t i v a t i o n f u n c t i o n o f
t e n u s e d i n n e u r a l n e t w o r k s w i t h a n e x p o n e n t i a l f u n c t i o n ,

a p r o b a b i l i s t i c n e u r a l n e t w o r k (P N N) t h a t c a n c o m p u t e

n o n l i n e a r d e c i s i o n b o u n d a r i e s w h i c h a p p r o a c h t h e B a y e s

o p t i m a l i s f o r m e d . A l t e r n a t e a c t i v a t i o n f u n c t i o n s h a v i n g s i
m i l a r p r o p e r t i e s a r e a l s o d i s c u s s e d .

NNW 3/91, 185—192

Instructions to authors

1. Manuscript
Three copies of the manuscript should be submitted to the Editor-in-Chief

2. Copyright
Original papers (not published or not simultaneously submitted to another journal) will be reviewed. Copyright for published papers will
be vested in the publisher.

3. Language
Manuscripts must be submitted in English

4. Text
Text (articles, notes, questions or replies) double space on one side of the sheet only, with a margin of at least 5 cm, (2") on the left. Any
sheet must contain part or all of one article only. Good office duplication copies are acceptable. Titles of chapters and paragraphs should
appear clcarh distinguished from the text.
C omplete text record on 5 I 4” floppv discs is required.

5. Equations
Mathematical equations inserted in the text must be clearly formulated in such a manner that there can be no possible doubt about
meaning of the symbols employed.

6. Figures
The figures, if any, must be drawn on separate sheets. They must be clearly numbered and their position in the text marked. They are to be
drawn in Indian ink on white paper or tracing peper, bearing in mind that they will be reduced to a width of either 7,5 or 15 (3 or 6“) for
printing. After settling down, the norm til lines ought to haw a minimum thickness of 0,1 mm and maximum of 0,3 mm while lines for which
emphasis is w tinted can reach a maximum thickness of 0,5 mm. l abelling ol the figures must be casx legible alter reduction. It w ill be as lar
as posible placed across the width of the diagram from left to right. The height of the characters after scaling down must not be less than
I mm. Photographs for insertion in the text will be well defined and printed on glossy white paper, and will be scaled down for printing to
a width of 7,5 to 15 cm (3 to 6“). All markings on photographs are covered by the same recommendations as for figures. It is recommended
that authors of cummunications accompany each figure or photograph with a descriptive title giving sufficent information on the content of
the picture.

7. Tables
Tables of characteristics or values inserted in the text or appended to the article must be prepared in a clear manner, preferably as Camera
Ready text. Should a table need several pages these must be kept together by sticking or other appropriate means in such a way as to em
phasize the unity of the table.

8. Summaries
A summary of 10 to 20 typed lines written by the author in the English will precede and introduce each article.

9. Required information
Provide title, authors, affiliation, data of dispatch and a 100 to 250 word abstract on a separate sheet. Provide a separate sheet with exact
mailing address for correspondence.

10. Reference
References must be listed alphabetically by the surname of the first author, l ist author(s) (with surname first), title, journal name, volume,
year, pages for journal references, and authors(s), title, city, publisher, and year for the book references. Examples for article and book re
spectively:

Dawes, R. M. and Corrigan, IT: Linear models in decision making. Psychological Bulletin, Vol. 81, 1974, 95—106

Brown, R. G.: Statistical Forecasting for Inventory Control, New York, McGraw-Hill, 1959.

All references should be indicated in the manuscript by the author’s surname followed by the year of publication (e. g„ Brown, 1959).

11. Reprints
Each author will receive 25 free reprints of his article.

This is
?D is si

Technology
S e a g a t e ' s line o f h a r d d i s c
d r i v e s is p a c k e d w i t h h i g h t e c h n o l o g y . A n d e v e r y o n e is b u i l t t o t h e
h i g h e s t q u a l i t y a n d reliability s t a n d a r d s i n t h e i n d u s t r y .

A n d n o w , S e a g a t e d r i v e s a r e a v a i l a b l e l o c a l l y for all y o u r P e r s o n a l C o m p u t e r a p p l i c a t i o n s .
O n l y S e a g a t e c a n of f e r y o u full t e c h n i c a l s u p p o r t , a n d a

o n e - y e a r w a r r a n t y . t h r o u g h o u r a u t h o r i s e d r e p r e s e n t a t i v e s in y o u r c o u n t r y .
C o m p l e t e t e c h n i c a l a n d i n t e r f a c e d e t a i l s a r e i n c l u d e d i n t h e S e a g a t e p r o d u c t b r o c h u r e s , w h i c h

a r e free o f c h a r g e t o p r o f e s s i o n a l P C b u y e r s
a n d u s e r s . S i m p l y u s e t h e
c o u p o n b e l o w t o r e q u e s t
y o u r c o p i e s .

Y o u ' l l s o o n s e e w h y S e a g a t e
h a s b e c o m e t h e w o r l d ' s l e a d i n g i n d e p e n d e n t m a n u f a c t u r e r of d i s c d r i v e s .

<$? Seagate
Seagate Technology Europe
Seagate House, Fieldhouse Lane, Globe Park, Marlow SL7 1LW Great Britain.
Tel 0628 890366 Fax: 0628 890660 Telex: 846218 SEAGATG

To: Seagate Technology Europe,
Seagate House, Fieldhouse Lane,

Globe Park, Marlow SL7 1LW Great Britain.
Please send me technical details of Seagate disc drives
Nam e________________________________
[ob Title
Organisation
Address

Country ————----------- — -
Type of business
Number of employees Number of PCs
L I use a PC Li I authorise the purchase of PCs
[. l a ma technical support manager

l_

