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Editorial

Being interested to bring to the readers a good se­
lection of interesting contributions arising from the 
East and the West in if possible equal range, we have 
chosen from the increasing amount of manuscripts 
which were send to us for the third issue of our Jour­
nal: two papers from the Netherlands, one from Italy 
and two from Czechoslovakia.

We also took care to the balance among theoretical­
ly oriented papers, the papers presenting the overall 
general views and the papers oriented more to appli­
cations.

From the last point of view the paper prepared by 
Vitkova and Micek is hoped to be interesting. The 
paper written by Kerckhoffs opens very inspiring

insight on the development of complex user oriented 
simulation and knowledge systems supporting the hu­
man experts activity in several significant areas, like 
banking, transportation control and engineering sys­
tems faults prediction, detection and protection.

This represents the main part if this issue content. 
Beside this, we insert in this issue some information 
on papers and books which appeared in the last time. 
Of course, the preference is given to the original con­
tributions and the above mentioned information is 
therefore presented in limited extend only.

M. Novak

A VIEW on
PROBLEM-SOLVING PARADIGMS INCLUDING

NEUROCOMPUTING
Eugene J. H. Kerckhoffs

Connectionism is considered as a problem-solving pa­
radigm among other methodologies such as (numeric) 
simulation and (symbolic) reasoning. In order to create 
still more powerful and useful problem-solving tools, si­
mulation systems, knowledge-based expert systems and 
connestionist systems can, at least in principle, be cou­
pled. The spectrum of these so-called “coupled sy­
stems” (or “ hybrid systems” ) is surveyed with respect to 
methodological aspects, functionalities and practical 
applications. The emerging role of parallel processing 
when dealing with the more complex systems in either 
domain is discussed. Finally, some neural-network ap­
plication projects currently running at Delft University 
of Technology (the Netherlands) are briefly dealt with; 
they might illustrate some of the issues considered.

1. Introduction

Engineers are assumed to solve (technical) pro­
blems in engineering, such as physical, chemical, me-

*) Delft University of Technology 
The Netherlands

chanical, and civil engineering. At the universities stu­
dents are instructed on how to solve problems in va­
rious disciplines. “Problem solving” is a major issue 
in daily life. There exist several paradigms to solve 
problems. Problems can be solved a.o. by calculation, 
by reasoning, by learning and subsequent generalizati­
on, or by a combination of these. It depends on the 
particular problem concerned and the circumstances 
what is most efficient.

Let us consider a simple, even trivial, example to set 
the scene. Suppose we have to organize a number of 
matches, each with two players; the loser of a match is 
out, the winner continues the competition. The total 
number N of players is 16, and the problem is how 
many matches are to be organized. In the very essen­
ce, this is a computing problem. The straightforward 
way to solve the problem is by numeric calculation. 
The total number of matches is: 
(16/2) + (8/2) + (4/2) + (2/2) = 15. However, the 
straightforward or obvious way to solve a problem do­
es not necessarily need to be the most efficient. For 
example, the problem considered here could be solved 
by reasoning. Instead of oft the match winners we fo­
cus on the losers. At the very end there is only one (fi-
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nal) winner, hence we have M — N-l losers in total. 
Since each match delivers one loser, we clearly have 
to organize M, hence 15, matches. With respect to the 
value of N (the number of players), obviously the rea­
soning method is the most efficient, i.e. the effort to 
solve the problem is entirely independent of this va­
lue. (Note: if the problem was to find the number of 
matches in each round, only the numeric computing 
method is feasible).

Under certain conditions there is another way to 
solve the above problem. Suppose, we have “learning 
examples” : for N = 3, 9, and II it is known that the 
number of matches to be organized is respectively 2, 8 
and 10. “Generalization” of this immediately shows 
that with 16 players 15 matches should be organized. 
This is a really efficient way to solve the problem, be­
cause given the learning examples we immediately see 
the solution without consciously thinking as in the 
above cases of computing and reasoning. The latter 
paradigms can, of course, be used to verify the soluti­
on we “fed” automatically.

The computer era, in which we live today, allows to 
make extensive use of computers and computer-based 
techniques to solve the real-world problems we are 
confronted with. Also for computer-based problem 
solving the above-mentioned paradigms and their 
combinations are feasible: we distnguish numeric si­
mulation systems for computer-based calculation, know­
ledge-base (expert) systems for computer-based reaso­
ning, artificial neural networks (ANNs) for computer- 
based learning and generalization, coupled simulation 
/  expert systems, coupled expert systems /  AN Ns, 
and the like. It depends on the problems concerned 
and the circumstances what (combination of) tools 
and techniques are most efficient. One of the key issu­
es for future problem solving is: integration; various 
tools and techniques will be integrated in order to en­
hance their capabilities and compare alternative solu­
tions with respect to, for instance, efficiency. Integra­
ted environments to run simulations, expert systems, 
artificial neural networks, and combinations of these 
(compare this with the existing integrated packages 
for word processing, spreadsheets and databases) 
could perhaps provide — along with intelligent front- 
and back-end systems — the ideal toolboxes for pro­
blem solving in the future.

2. Some Problem-Solving Approaches in 
a Nutshell
In this paper we focus on model-based approaches 

to problem solving. As shown in Fig. 1 we may distin­
guish (continuous and/or discrete) numeric models, 
(rule-based and/or frame-based) symbolic models, 
connectionist models and all possible combinations of 
these, covered by the collective term “coupled mo­
dels” (or “hybrid models”). In contrast with numeric 
and symbolic systems, the are designed to model part 
of the real-world problem domain we are interested
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in, connectionist models are inspired by the functiona­
lity of the brain. They reflect modelling at a different 
level. Their network topologies may well depend on 
the kind of application concerned (such as optimizati­
on, classification, organization, and adaptive control).

Figure I: The spectrum of numeric, symbolic, connectionist and cou­
pled models

In principle the numeric, symbolic and connectio­
nist paradigms can be coupled in order to create still 
more powerful, more useful and more user-friendly 
problem-solving tools. The interdisciplinary use of 
knowledgebased, numeric and connectionist methods 
is still largely prescientific; the research community 
has hardly begun to establish a rigorous methodology 
for developing coupled systems. The current state-of- 
the-art in coupled systems, although evolving especi­
ally in the coupled numeric/symbolic field [Kowalik 
and Kitzmiller, 1988], [Widman et ak, 1989], are not 
particularly sophisticated. Most existing coupled sys­
tems employ relatively simple coupling schemes and 
combine the simpler methods of each discipline.

In general, it is useful to think of three methodolo­
gical levels of coupling [Widman and Loparo, 1989]: 
shallow, deep and “very deep”. (It should be noted 
that the usage of the terms “shallow” and “deep' dif­
fers from the usage of these in describing expert-sy­
stem knowledge bases; see section 2.2). In shallow 
coupling, a system treats another one as a black box to 
be called as needed. In deeply coupled systems, in 
a way a system has additional “knowledge” about 
another system that is coupled to it. In “very deep' 
coupling there is no real distinction between the sepa­
rate systems; they are fully integrated.

In the technical sense, it is more common to speak 
of loosely coupled, tightly coupled and fully integra­
ted systems. In loosely coupled systems, the communi­
cation relies mainly on simple file interfaces; variati­
ons may include pre- and postprocessing by one sys­
tem of data provided by another system. In tightly 
coupled systems, the communication is established by 
data passing. Variations may include blackboard-sys­
tem, cooperating-system and embedded-system tech­
niques. in fully integrated systems, it is hard to dis-
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cern any separate modules and communication is ac­
complished through a dual nature of the structure.

All of these have their benefits and limitations. As 
for the loosely coupled systems the benefits include 
model simplicity, ease of development, usability of 
commercially available software, and reduced mainte­
nance time, whereas limitations are operation speed, 
communication overhead, overlapping data gathering 
and redundancy in the development process.

Benefits of tight coupling include reduced commu­
nication times, increased run-time performance, retai­
ned modularity and being more robust and sophistica­
ted than loose coupling. Limitations are the increased 
development and maintenance complexity, limited 
possibilities in using available software and more dif­
ficult testing.

The benefits of fully integrated systems are operati­
on speed and resource utilization, elegance and robust­
ness of the model, flexibility in development and no 
redundancy in data gathering. Limitations, however, 
are the complexity in conceptual and design issues, in­
creased development time and resource requrements, 
the lack of commercially available tools, and increa­
sed complexity in testing and maintenance.

2.1 Numeric simulation systems

Computer simulation is the problem-solving pro­
cess of predicting the future state of a real-world sys­
tem by studying a (more or less idealized) computer 
model of this. Simulation experiments are usually per­
formed to achieve predictive information that would 
be costly or impractical to obtain with real devices. 
Typical applications would include determining the 
most energy-efficient design for a reactor, the best mix 
of reactants to maximize production of a certain pro­
duct, and the optimum capacity and lay-out of a facto­
ry. Ultimately, information gained from simulation 
experiments should contribute to decision making 
with respect to real-world systems modelled by the si­
mulations. Other purposes of simulation could be the 
accessibility and documentation of knowledge about 
specific real-world systems, and education and trai­
ning.

There are two major types of simulation: conti­
nuous and discrete. Continuous simulation predicts 
the behavior of systems that can be described by (ordi­
nary and partial) differential equations, such as elec­
trical, mechanical, thermal, and fluid devices. Discrete 
simulation predicts the behavior of event-driven sys­
tems, such as manufacturing plants, purposeful mo­
vements of people such as in bank queues, and messa­
ge traffic on networks. Typically, these event-driven 
systems use stochastic processes to model unknown 
influences on the system.

Building and using a simulation model is a skilled 
process requiring expertise in a number of theoretical 
fields including statistics, systems analysis, and nume­
rical analysis. Also, practical rules of thumb and expe­

rience are needed to use simulation as an effective 
tool. Simulation studies normally follow some well- 
defined subsequent steps with possible feedbacks (see 
Fig. 2):
— Problem specification (result: detailed abstract pro­

blem description)
— Selection of modelling method, conceptual model 

description (result; tool-independent mode des­
cription)

— Selection of solution techniques and tools, realiza­
tion of an executable model (result: tool/compu- 
ter-dependent model)
Model validation (result: validated model) 
Experiment planning, performing model experi­
ments (result: simulation results)

— Analysis and interpretation of results.
The programming languages available for simulati­

on include the general-purpose languages such as 
FORTRAN, PL/1, C and Pascal. Specialized langua­
ges have evolved for certain types of simulation. Con­
tinuous simulation is supported bv DYNAMO, 
CSMP, ACSL, CSSL IV, and many others. Discrete- 
event simulation is supported by process-oriented lan­
guages such as GPSS and SIMSCRIPT 11.5, and ob­
ject-oriented languages such as SIMULA and 
SMALL-TALK-80. As the limitations of these langua­
ges have become more apparent, hybrid languages 
combining features of several types of simulation have 
become available (e.g. PROSIM, COSMOS, SLAM II, 
SI MAN).

K P re tTuM  ANALYSIS y

PROBLEM IDENTIFICATION 
•nd SPECIFICATION

Figure 2: Stages in a typical modelling and simulation process
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There exist many good introductory textbooks in 
the simulation field covering various aspects such as 
simulation methodology [Zeigler, 1976 & 1984], ma­
thematical modelling techniques (Spriet and Van- 
steenkiste, 1982], continuous simulation (Roberts et 
ah, 1983] and discrete simulation [Neelamkavil, 1987],

2.2 Knowledge-based (expert) systems

Artificial intelligence (AI) programs are assumed to 
perform tasks that, if performed by a human being, 
would be considered intelligent. AI includes many fi­
elds, such as robotics, natural-language understan­
ding, machine vision, character and speech recogniti­
on, and machine learning. The area that currently has 
the largest impact outside the research setting, how­
ever, is that of knowledge-based (expert) computer 
systems. The terms "knowledge-based systems" and 
“expert systems” are commonly used to indicate the 
subfield of AI that deals with reproducing human ex­
perts’ behavior given a problem within their specia­
lisms. A knowledge-based system is an intelligent 
computer program that uses knowledge and inference 
procedures to solve problems that are difficult enough 
to require significant human expertise for their soluti­
on; if the human expertise in a specific narrow do­
main is emulated, we speak of a (knowledge-based) 
expert system [Harmon and King, 1985], [Johnson,
1984],

Expert systems typically consist of a knowledge ba­
se, which includes the expert knowledge available, 
and an inference engine, which contains the control 
structures that enable the program to use the knowled­
ge base.

Modern expert systems contain one or more me­
thods of knowledge representation, and one or more 
control algorithms.

C O N S U L T A T I O N  L E V E L

N .  In s t a n t ia t e d  g o a l* ,  o b j e c t * ,  ru le * ,

\  Ä n d  In f e r r e d  f a d #

P R O C E D U R A L  L E V E L

Ns\ ^  G o a l *  a n d  « e t *  of rule* \
D E S C R I P T I V E  L E V E L

N .  C o n t e x t * ,  o b j e c t *  a n d  r e l a t lo n * h l p *

\  .........^ ' v

M E T A - L E V E L

R u t* *  that e x a m i n e  th e  o t h e r  l e v a i «

Figure 3: Knowledge at different conceptual levels

Knowledge can be represented at different concep­
tual levels (see Fig. 3): consultation, procedural, des­

criptive, and meta-level. Depending on the knowled­
ge-representation technique used, knowledge-based 
systems can be distinguished between:
— rule-based systems (knowledge at the procedural 

and — if the system is being used — consultation 
level), embodying independent chunks of knowled­
ge (production rules), and
object-oriented or frame-based systems (knowledge 
at the descriptive, procedural and — if being used- 
consultation level).
In the latter case, the developer starts by describing 

objects and their relationships; some of the objects 
might have rules associated with them, and these rules 
would create a procedural level. Structured rule-based 
systems and context trees are between the above-men­
tioned extrema.

For both above types of knowledge representation 
the standard control algorithms are forward and back­
ward “chaining". Backward chaining is a reasoning 
method starting with the desired goal (goal driven); in 
forward chaining the reasoning proceeds from input 
data (data driven). A major strength of these algo­
rithms is their ability to deal with uncertainty. Uncer­
tainty can arise from noisy, unavailable or incorrect 
data and incomplete or self-contradictory expert know­
ledge. Uncertainty is quantified by “confidence fac­
tors" with each datum and each rule, yielding in the 
reasoning process to confidence factors for the con­
clusions and recommended actions.

Most expert systems that nowadays are in widespre­
ad use are of the “first generation" (i.e. shallow reaso­
ning systems based on empiric rules of thumb). They 
have shown limitations with respect to representing ti­
me-varying phenomena, performance outside the nar­
row range of expertise, ensuring consistency in the 
knowledge base, and the ability to learn form errors. 
Some of these are addressed in the “second-generati­
on” and even “third-generation" expert programs. In 
second-generation expert programs the knowledge is 
primarily captured in {deep) models of the expert do­
main rather than in empiric rules of thumb. In con­
trast to production rules, that capture the empiric 
mapping from causes to effects without asserting cau­
sality, these models capture explicitly causal relation­
ships in the system being modelled. As these deep mo­
dels have become more complex, their application has 
become progressively more difficult. Third-generation 
expert systems focus on learning or parameter tuning 
from examples; they still are rare.

AI programming has traditionally been done in the 
FISP and in the PROLOG language. These are howe­
ver not unique in supporting AI programming; some 
large and complex expert computer programs have 
been written in conventional languages such as C, 
Pascal, Modula and even FORTRAN. FISP-to-C con­
verters are becoming more popular because C is faster 
and more widely available.

In addition to the above languages, there exist dedi­
cated software packages that support the development 
and application of expert systems: “on-the-shelf" sys-
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terns and expert system shells (or tools). Shells provi­
de the user more general support than (A1-) languages 
do; languages are however more flexible. Three well- 
known hybrid tools with multiple knowledge repre­
sentations and inference techniques) are: ART, KEE 
and Knowledge Craft. These tools are LISP-based 
and run on LJSP-machines (such as Symbolics and 
TI-Explorer) or advanced workstations. KEE has 
been ported to PC, which is an interesting develop­
ment. Meanwhile, a collection of PC-based hybrid 
tools has appeared on the market, which exploit the 
enhanced capacity of PCs (like 386-based PCs) to of­
fer a representational power comparable to the larger 
systems at moderate prices. Examples are: Gold Hill’s 
GoldWorks, Neuron Date’s Nexpert Object, TI’s Per­
sonal Consultant Plus, and Intellicorp’s 386-based 
version of KEE.

For a general introduction to A1 concepts, the rea­
der is referred to [Tanimoto, 1987]. Expert system 
technology is reviewed in [Hayes-Roth et ah, 1983], 
[Buchanan and Shorlife, 1984] and [Szolovits, 1987],

2.3 Coupled simulation /  expert systems

In the sections 2.1 and 2.2 there was talk of two his­
torically distinct approaches to model reality: numeric 
(quantitative) and symbolic (qualitative) modelling. 
Since the mid 1980s the gap separating these two 
schools has narrowed. Both the numerical modelling 
community and the AI community have found that AI 
can contribute to simulation and simulation to AE 
The growing cross-fertilization of ideas between the fi­
elds of AI and simulation is evidenced by the inclusi­
on of special sessions at the major simulation confe­
rences since 1985. Also in 1985, the first (stand alone) 
Working Conference on “AI and Simulation” in Eu­
rope was held at the University of Ghent, Belgium 
[Kerckhoffs et ah, 1986]. In the AI community, the US 
National Conference on Artificial Inteligence held its 
first Workshop on AI and Simulation in 1986.

KNOWLEDGE BASED SIMULATION SIMULATION SUPPORTED REASONING

NUMERIC NU ME R I C  / S Y M B O L I C SYMBOLIC

Figure 4. The spectrum o f numeric/symbolic systems

A) B)

C) D)

Figure 5: Expert systems in simulation: A) embedded, B) advisory, C) 
intelligent front-ends (IFEs), and D) decision support; as distinct from  
embedded systems and IFEs, the expert systems in B) and D) are nor­

mally also denoted as “cooperating systems''

The spectrum of coupled numeric/symbolic sys­
tems can globally be subdivided in “knowledge-ba­
sed simulation systems” (AI included in simulation) 
and “simulation-supported reasoning systems” (simu­
lation included in AI). Fig. 4 shows examples in each 
of these categories, seen from a functional point of vi­
ew. Because of the diversity in practical realizations, 
they may well overlap and shift along the spectrum of 
coupled numeric/symbolic systems. Knowledge-ba­
sed simulation systems can be distinguished in (see 
Fig. 4 and 5):

1. (Numeric) simulation systems. See section 2.1.
2. Simulation systems with embedded expert systems. 

For example, a simulation system may obtain know­
ledge about queue priority from an embedded ex­
pert system according to the states of the modelled 
objects [Castillo et al., 1988].

3. Simulation systems and advisory expert systems. 
An advisory system or advice giving system is an ex­
pert system that gives coherent useful advice on an 
particular topic following a short consultation. Simu­
lation system and expert system are both accesible to 
the user; they may well cooperate and share some da­
ta (see Fig. 5B). Advisory systems for simulation are 
developed for application in the various stages of the 
modelling and simulation process as shown in Fig. 2. 
Most of the first available expert systems are applica­
ble for only one isolated problem area, such as the se­
lection of a model-adapted and computer-adapted si­
mulation language [Elmaghraby and Jagannathan,
1985] or analysis of results for presentation to the 
user. Also conceptual modelling is a particular area of 
the simulation process where users may benefit from 
advice. An example of an expert system in this vein is 
given in [Doukidis and Paul, 1985], which allows natu­
ral-language input of model definitions and prompts 
the user to extend these definitions, pointing out inac­
curacies and inconsistences. More recent research
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projects typically address more than on of these pha- 
ses in the simulation process.

4. Simulation systems with intelligent front-ends 
(IFEs). An intelligent front-end is a user-friendly inter­
face to a simulation software-package that would 
otherwise be technically incomprehensible and/or too 
complex to be accessible to many potential users. 
Front-ends are directly accessible to the user, whereas 
the access to the simulation system is exclusively 
through these front-ends (see Fig. 5C). This class of 
expert systems is used to bridge over the gap between 
problem domains and a certain modelling tool. The 
meaning and description of items of a specific appli­
cation domain are internally mapped into terms used 
and needed by the particular modelling tool. Exam­
ples of IFEs are described in [Fjellheim, 1986] and 
[Muetzelfeldt et al., 19861.

5. Simulation-based decision support systems. Frequ­
ently, simulation studies are aimed to provide predic­
tive information which ultimately should contribute to 
decisions. Expert systems can select (especially in da­
ta overload situations) pertinent data and help in the 
interpretation of trends, provide perspectives from si­
milar cases in its database, and help define further qu­
estions and new simulation experiments addressing 
unresolved issues [Mellichamp and Wahab, 1987]. Si­
milar to the advisory systems mentioned above, decisi­
on support systems and their related simulation sys­
tems are separately accessible to the user (see 
Fig. 5D). Decision supporting expert systems take ob­
viously more part in the proper problem-solving pro­
cess than the expert systems included in the knowled­
ge-based simulation systems considered in the forego­
ing points 2—4.

6. Simulation systems with multiple decision-making 
agents. Here, the real-world system is modelled partly 
by a traditional simulation model (e.g., physical pro­
cesses) and partly by an expert system to mode! the 
decision making processes.

7. New integrated systems. In these systems the si­
mulation paradigm is changed essentially using know­
ledge-based technology; we speak of new simulation 
development environments. In fact, the simulation sys­
tem and expert system are fully integrated. Well- 
known examples are Knowledge-Based Simulation 
System (KBS) developed at Carnegie-Melon [Fox et 
al., 1989], and Rule-Oriented Simulation System 
(ROSS) developed by the Rand Cooperation.

The systems considered in point 3, 5 and 6 are so­
metimes termed as “cooperating systems” [Merkurye- 
va et al., 1990]. Programming paradigms for knowled­
ge-based simulation systems include:

— Object-oriented programming (eventually with em­
bedded rules). Examples are: LASER/SIM (IntelH- 
Sys. Corp.), KBS (Carnegie-Mellon), ROSS (Rand 
Corp.).

— Rule-based programming. Examples are given in 
[Merkuryeva et al., 1990].

— Logic programming. The knowledge-based simulati­
on systems may be based on different derivations 
from the Prolog family such as T-CP, T-Prolog and 
TS-Prolog, adapted particularly for simulation. 
Examples are given in [Merkuryeva et al., 1990],

— Multiple programming. Different programming sty­
les are used in one simulation environment. For 
example, available hybrid expert system tools, inte­
grating several programming styles, are used to bu­
ild knowledge-based simulation systems (e.g., KBS 
using SRL [Fox et al., 1989], SIMKIT using KEE 
[Nielsen, 1987]).

Simulation-supported reasoning systems may be 
functionally distinguished in (see Fig. 4):

1. Knowledge-based control systems in simulation en­
vironment. Using knowledge-based expert systems in 
(real-world) supervisory and also direct process con­
trol is becoming an increasingly important application 
domain. Simulation of the process to control would 
replace the often complex, expensive and fault-prone 
input and output interfaces and related programs bet­
ween the controller and the process. It can also serve 
as a testbed within which precise, well-designed expe­
riments might be run in order to check the knowledge- 
based controller with respect to its perfect working. 
Hence, in the simulation domain we are confronted 
with a knowledge-based expert system controlling 
a simulation system. The knowledge base may contain 
process knowledge (such as the order of the process, 
the parameters and their values and variations, non-li­
nearities), technical control knowledge (e.g., rules to 
control damping and overshoot) and heuristic know­
ledge based on past experiences (for example, with 
respect to similar processes).

2. Simulation systems as a testbed for expert systems. 
Simulation may be used to verify expert system rea­
soning as a refinement of the expert knowledge base. 
For example, in a design problem the expert system 
would select reasonable bounds for each of the para­
meters concerned; simulation with optimization routi­
nes could then be used to select the best parameter 
values. Simulation can also be used as a double-check 
on the expert program in tasks such as fault identifica­
tion or planning, in which the system concludes that 
a given problem exists or a given sequence of actions 
will lead to the desired goal.

3. Expert systems with embedded simulation systems. 
During its operation the expert systems may use data 
which are produced by an embedded simulation sys­
tem. For example, the expert system may need a si­
mulation to obtain some results for the user [O’Keefe,
1986]. An expert system may use one or more time-de­
pendent variables and a simulation is needed for up­
dating their values; in [Russel, 1989], applications are
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considered where the expert system needs to know the 
position of a military aircraft.

4. Qualitative simulation systems. Qualitative simula­
tion, also termed “envisionment”, is the most com­
mon application of qualitative reasoning; it is used to 
describe changes in quantities and their propagation 
[Forbus, 1984], These changes are characterized by qu­
alitative values, such as “increasing” and “decrea­
sing”. Along with describing changes in quantities, 
the qualitative simulation identifies possible changes 
in the state of behavior of the device. For instance, if 
water is being heated, at some time it may begin to bo­
il, representing a change of state from liquid to ga­
seous. While there are many advantages to qualitative 
simulation, it does have its limitations. A primary 
drawback is the frequency of ambiguities in determi­
ning how quantities change. To resolve these, several 
methods have been explored such as combining quali­
tative reasoning with quantitative techniques to choo­
se among the different possibilities generated by the 
envisionment.

5. Knowledge-based expert systems: 2nd-generation 
(deep-model based) and 1 st-generation systems. See sec­
tion 2.2.

For more details about coupled numeric/symbolic 
systems including knowledge-based simulation sys­
tems and simulation-supported reasoning systems, 
the reader is referred to the literature fFishwiek and 
Modjeski, 1991], [Widman et ah, 1989], [Merkuryeva et 
ah, 1990], [Kowalik and Kitzmiller, 1988].

2.4 Artificial Neural Networks

An artificial neural network (ANN) is an adaptive 
information-processing system that develops its own 
algorithms (in response to its environment) to solve 
the problems concerned, without especially having 
been programmed for that. A neural network is adap­
tive or self-organizing: it learns on the basis of trai­
ning. These characteristics reveal AN Ns truly a new 
computing paradigm.

An ANN consists of a number of identical, fairly 
simple processing elements called neurons, that are 
densely interconnected. The particular fashion in 
which the neurons are connected is called a network 
paradigm, of which there are currently some 15 in 
common use. Just like a human neuron, each artificial 
neuron can have any number of inputs but only one 
output, which may branch out to become the input for 
many other neurons (see Fig. 6). Some neurons in an 
ANN receive their input from the outside world (in­
put neurons). The signals handled by an ANN may be 
analog or digital. In either case, during processing 
a neuron performs a weighted sum of its inputs, and if 
that sum exceeds a given threshold, the neuron out­
puts a signal: it “fires” or is “stimulated”. (Often, the 
neuron’s “activation function” is not a hard limiter,

but a continuous function such as the Sigmoid-functi­
on considered below). During “learning” the weights, 
which affect the relative strength of each input of any 
neuron, are modified according to both a “learning 
rule” and the data being presented to the ANN. Infor­
mation or knowledge in an ANN is represented by the 
complex patterns of neuron stimulations and the adju­
sted weights associated with each interconnection. 
The knowledge associated with an ANN is therefore 
distributed throughout the network, and not located 
in any one location as it is in other computing sys­
tems.

The diffuse, highly parallel structure of information 
in an ANN offers interesting advantages. First, it may 
make an ANN inherently more resistant to damage 
than a traditional computing system. Second, it may 
eventually allow AN Ns to be implemented successful­
ly in very large VLSI chips, since they could tolerate 
many more defects. Third, in a parallel processing en­
vironment it would enable an ANN to solve many 
problems very quickly, even though its individual pro­
cessors are quite slow. Despite their superficial resem­
blance, AN Ns exhibit a surprising number of the 
brain's characteristics. For example, they can learn 
from experience (i.e. modify their behavior in respon­
se to their environment), generalize from previous 
examples to new ones (note the example in section 1) 
and abstract essential characterises from inputs con­
taining irrelevant data.

ANNs are currently implemented with several diffe­
rent training algorithms. The most popular network is 
the multilayer backpropagation neural network 
(BNN) which has a structure similar to the one in 
Fig. 6, however in general with multiple hidden 
layers; the training is supervised (i.e. on the basis of 
the differences between actual and desired outputs), 
and during the training phase the errors that appear at 
the output neurons are “baekpropagated” through the 
net [Rumelhart and McClelland, 1987], In the BNN of 
Fig. 7 the variables ujs_ M, w|¡’1 and Ijs| respectively re­
present the current output state of the i-th neuron in 
layer s-1 to a j-th neuron in layer s and the weighted
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summation of inputs to a j-th neuron in layer s. Trai­
ning the BNN implies the computation of the synaptic 
weights (w’s) such that corresponding desired or tar­
get outputs (d’s) will appear on the output layer neu­
rons when a set of data is presented to the neurons of 
the input layer. Once training is completed, correct 
outputs are available, also if previously unknown data 
samples are presented (generalization).

LAYER (s-1) LAYER (s) (OUTPUT) LAYER (s+t)
NEURONÍ NEURONÍ NEURONk

(4)
k

For more details on BNNs the reader is referred to the 
literature on neural networks [Soucek, 1989], [Wasser- 
man, 1989], [Dayhoff, 1990],

ANNs can be simulated on traditional sequential 
computers. There exist many commercially available 
neural network development systems, e.g. Neural- 
Works from NeuralWare Inc., Nestor Development 
System (NDS), Cognitron from Cognitive Software 
Inc., ANSirn from Science Application International 
Corp., DESIRE/NEUNET [Korn, 1989], Genesis 
from Neural Systems Inc., and many others. It is evi­
dent that there is an increasing interest to implement 
ANNs on general-purpose parallel computers in order 
to try reducing especially the often long training ti­
mes; an example is presented in section 4.4.

2.5 Coupled systems including ANNs

Figure 7: The backpropagation neural network (BNN)

The process in the BNN-neuron j in layer s results 
in an activation u |s| which is mathematically characte­
rized

where

g(I)
__ 1
1 + e i

( I )

is the so-called Sigmoid-function. In the forward pass 
these activations are propagated from predecessor 
layer to successor layer.

During the backward pass (in the training phase) 
weights are modified according to

Aw ^  ( t + 1) = i]5 !s,u !s M + aAw ^(t) (2)

Recently, we have seen a beginning appearance of 
articles and papers dealling with the combined usage 
of expert systems and ANNs as well as simulation sys­
tems and ANNs, and even all three approaches com­
bined in one application. It would be useful to arran­
ge those coupled systems functionally along the two 
edges concerned of the triangle in Fig. 1, and in the in­
terior of this triangle as well, just as we did for cou­
pled numeric/symbolic systems (see section 2.3 and 
Fig. 4). It is the author’s current study and research to 
do so in the near future. Therefore, rather than presen­
ting a functionally systematic overview on coupled 
symbolic/connectionist and numeric/connectionist 
systems, in this section we shall restrict ourselves to 
some preliminary notes and comments. One remark in 
advance is, that up to now coupled symbolic/connec­
tionist and numeric/connectionist systems did not 
mature to such wide-spread applications as we current­
ly see with coupled numeric/symbolic systems, and 
even for the latter we are just in the very beginning 
[Kowalik and Kitzmiller, 1988], [Widman et ah, 1989],

where q and a respectively denote the “learning rate” 
and “momentum”, and t characterizes the backward 
cycle concerned. The so-called error signal 5 in Eq. (2) 
is defined for neuron k in the (output) layer s + 1 as 
(see also Fig. 7):

51; ‘ 11 * (A -  u'l 1 "% '(C  ° ) : ck ~  ia = r.k, (3) 
where

g'(i) = 4f- = g ( i -g ) .

For neuron j in a hidden layer s this error signal 5 is
given by:

a) Combining neural and symbolic processing

Historically, AI has been separated into symbolic 
and nonsymbolic approaches to simulate intelligence. 
For a considerable time the symbolic approach has 
dominated, but the interest in parallel (distributed) 
processing in recent years has given the nonsymbolic 
approach new momentum. The symbolic approach (or 
more specifically knowledge-based systems and ex­
pert systems), however, have yielded systems with ca­
pabilities different from those of nonsymbolic systems 
(such as ANNs or connectionist systems). ANNs have 
shown to be adept in tasks such as image processing 
and pattern recognition, whereas expert systems have 
had more success in problem solving and game 
playing. To provide systems that demonstrate both
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characteristics (referred to as “ low- and high-level 
cognitive processing“ [Hendler, 1989] or “behavior- 
based and knowledge-based problem solving” [Steels, 
1989], several approaches are possible:
— Designing a methodology for getting expert sys­

tems to handle image processing, pattern recogni­
tion and other perceptual processes

— Designing a methodology for getting AN Ns to hand­
le high-level symbol-processing tasks in applied 
domains, involving for example manipulation of 
data structures and handling variable bindings

— Linking the current connectionist systems and the 
current symbolic systems, and produce coupled sys­
tems exploiting the strengths of both.

Currently, the focus is mainly on the last-mentioned
possibility. The most important reason for combining 
neural and symbolic processing are their complemen­
tary characteristics. Most ol (he limitations of expert 
systems, such as 

unadaptiveness, 
no generalization capabilities, 
difficulty with complex pattern matching,

—- the knowledge-acquisition bottleneck, and
relatively slow' performance in normal operating 
environments

may be overcome by the benefits of AN Ns. Vice versa, 
the limitations of AN Ns, such as 

non-transparency
— lack of explanation facilities, and 

extensive initial training needs
may be overcome by the benefits of expert systems.

The three models for coupled (or hybrid) systems 
that we described in the heading of section 2, namely 
loosely coupled, tightly coupled, and fully integrated, 
do obviously apply to coupled eonnectionist/symbo- 
lic systems [Serra, 1989],[Amy et al., 1990], Loose cou­
pling may include coprocessing as well as pre- and 
postprocessing by AN Ns functioning as a user-inter­
face. As shown in Fig. 9, tightly coupled systems may 
embody blackboard systems, cooperating systems and 
embedded systems; an example of the latter can be 
found in [Hendler, 1989], w'here a local connectionist- 
like network is embedded into a symbolic network. 
Fully integrated systems are sometimes referred to as 
connectionist expert systems [Gallant, 1988], In the 
spectrum of coupled connectionist/symbolic systems, 
these connectionist expert systems have the same loca­
tion (namely, in the middle) as the new integrated 
knowledge-based simulation systems have in the spec­
trum of numeric/symbolic systems (see Fig. 4).

For practical applications of coupled connectio­
nist/symbolic systems the reader is referred to the lite­
rature, a.o. [Bigus and Goolsbey, 1990], [Schreinema- 
kers and Touretzky, 1990], [Rabelo and Alptekin, 
1989], and [Vercauteren et al., 1989],

b) Combining neural and numeric processing

In principle, again the above three models of cou­
pled systems do apply. Loose coupling may include

f  igure 8: Loosely-coupled connectionist symbolic systems (NN: neural
net)

preprocessing by AN Ns of data needed as input for 
numeric simulation systems (an example of this is gi­
ven in section 5.2) or preprocessing by numeric sys­
tems of input data for AN Ns (see the example dis­
cussed in section 5.3). lightly coupled connectionist/ 
numeric systems may embody cooperating systems 
and AN Ns embedded in numeric systems. Systems in 
which neural and numeric processing are fully inte­
grated may be possible, since analytical functions can 
be learned and generalized by AN Ns (note: in con­
trast with “connectionist expert systems”, the author 
never met the term “connectionist (numeric) simulati­
on system”).

Since AN Ns do well in pattern-recognition tasks 
and simulation modelling can often be formulated as 
a pattern-recognition problem, AN Ns could at least in 
principle be employed in the modelling process. As 
such, the use ol them is comparable with the employ­
ment ol expert advisory systems in numeric simulati­
on (see section 2.3). Let us consider an example con­
cerned with the selection of an appropriate numeric 
model for a given input-output data stream of a so- 
called ill-defined system (input-output measurements 
subject to noise and other inaccuracies). Each candi­
date model (on the basis of a priori knowledge) can be 
characterized by a point in an n-dimensional feature- 
space. If all the features are independent, it is possible

(a) BLACKBOARD

(b) COOPERATING (c) EMBEDDED

Figure 9: Tightly-coupled connectionist/symbolic systems (NN: neural
net, ES: expert system)

NNW 3/91, 129-154 Kerckhoffs: Problem-Solving Paradigms 137



3. Problem-Solving Capabilitiesto select a model on the basis of feature selection. 
Then, by investigating the variability of each feature, 
one can decide which model best corresponds with 
the real-world system. ANNs are proposed for classi­
fication of the least variable feature [Vermeersch et al., 
1990],

There is an increasing use of ANNs in nonlinear 
process control. A reason may be that the control 
tasks are extremely knowledge-intensive and there is 
a need to integrate various decision-making modules 
into one effecively functioning mechanism. The 
ANN’s training process reflects that complexity, super­
imposing different pieces of knowledge onto the dis­
tributed memory of the ANN [Pao and Sobajic, 1990]. 
Moreover, the benefit of adaptiveness of ANNs may 
be very useful in process control. The development of 
a neural-net control system strategy normally pro­
ceeds in two steps: first, we deal with a simulated en­
vironment (see Fig. 10) and second, the simulated sys­
tem is replaced by the real-world system. So, in the 
simulation domain we have to cope with a coupled 
connectionist/numeric system: neural-net control sys­
tem. in the spectrum of coupled connectionist/nume­
ric systems, neural-net control systems are functional­
ly similar to the knowledge-based control systems in 
the spectrum of coupled numeric/symbolic systems 
(see section 2.3).

a) DIRECT MODE b) INDIRECT MODE

Figure 10: Direct and indirect mode neural-net control in the simulati­
on domain

c) Integrating numeric, symbolic and neural computing

In [Ballard, 1990], an ongoing research effort is des­
cribed whose goal is to develop a single, unified com­
putational paradigm for conjoint computing which in­
tegrates concepts from symbolic processing, numeric 
processing, and neural-network technologies. The re­
sult should be a novel methodology for synthesizing 
intelligent systems. By combining these technologies, 
it may be possible to build systems that really behave 
intelligently, i.e. operate in real time, exhibit adaptive, 
goal-oriented problem-solving skills, tolerate errors, 
exploit large amounts of knowledge, use symbols and 
abstractions, and learn from the environment.

The term“problem solving” is frequently met in the 
simulation and AI literature. In simulation, problem 
solving is based on model formalism and model use to 
tackle e.g. “what-if” and optimization questions, whe­
reas in AI problem-solving may include methods such 
as generate-and-test, heuristic search, inferences, and 
many others (in this paper, we concentrate on inferen­
ce techniques). In the ANN-literature we also meet 
the term “problem solving”, especially as far as con- 
nectionist reasoning and connectionist expert systems 
are concerned (see section 2.5a). For interesting gene­
ral considerations on problem solving the reader is re­
ferred to [Newell and Simon, 1972].

In this paper we are using a fairly broad definition 
of (computer-based) problem solving. Problem sol­
ving is simply the process of finding relevant answers 
to questions about real-world situations by employing 
problem-domain related knowledge formerly stored in 
the computer. This, irrespective of the particular know­
ledge representation (e.g., implicit in a differential 
model, explicit in a rule- or frame-base, diffuse and 
distributed in a neural net), and irrespective of the 
particular knowledge acquisition (e.g., a priori know­
ledge and measurements for deductive and inductive 
modelling, extraction from experts, training ANN as 
a form of problem solving, namely the answering of 
the question: “to which class does this pattern be­
long”.

a) Numeric simulation

In numeric simulation the quality of the problem 
solving depends on the validity of the model used. Let 
us restrict ourselves to mathematical models. Sources 
for mathematical modelling are: a priori knowledge, 
measurements (a posteriori knowledge) and goals. For 
“well-defined systems”, the modelling methodology 
encompasses deductive analysis with additional para­
meter estimation and validation. For so-called “ill-de­
fined systems’, appropriate techniques are necessary 
to combine the (often small) a priori knowledge with 
data information and goal considerations. Here, ad­
vanced methods are needed for frame definition, in­
ductive structure-characterization, inductive parame­
ter-estimation, experimental design and goal incorpo­
ration, and in addition, more than normal attention 
must be paid to model validation [Spriet and Van- 
steenkiste, 1982].

In Table 1, systems and goals for problem solving 
by numeric simulation are listed. The ordering is ba­
sed on the well-known “Arc of Karplus” [Karplus, 
1976]. From top to bottom, systems are gradually 
changing from “hard” to “soft” disciplines, from 
“white” or well-defined to “black” or ill-defined, and 
from mathematical models of high validity to those of 
low validity. In fact, the table reveals the concept of 
“ill-definition” : a property of systems that makes the­
ir mathematical models be less valid so that their pro-
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blem-solving capability by simulation is reduced, For 
well-defined systems we have high-quality a priori 
knowledge, i.e. general mathematical laws and princi­
ples of broad generality and large validity, allowing 
a deducive way of modelling. For ill-defined systems, 
a priori knowledge is of low quality or missing at all, 
forcing us to inductive modelling techniques on the 
basis of experimental fits and data interpretations of 
often narrow generality and small validity.

As can be seen from Table 1, for physical and engi­
neering systems the problem-solving goals can be set 
on a higher level than for systems from other discipli­
nes. For ill-defined systems the goals have to be more 
modest so that a proper (goal-dependent) model can 
be assembled.

SYSTEMS GOALS

Mechanical Systems Design

Electrical Systama
Prediction

Aero-hydro dynamical

Systama Control

Haat Systama

Chemical System« Test ot strategies

Hydrological Systems

Biochemical Systems Test of 
hypotheses

Microbial Systems

Physiological Syslems
Increase Insight

Ecological System«

Economic Systems Help thinking

Psychologic Systems
Analyse data

Sociologie Systems

Political Systems Arouse public 
opinion

Tahle I : Systems ami goals in numeric simulation

For satisfactory handling of ill-defined systems, ad­
vanced information processing environments are ge­
nerally felt to be necessary. Such environments would 
comprise number crunching, advanced on-line con­
trol, database management, and symbolic and neural 
processing in addition to purely numeric.

Just like the other approaches to problem solving, 
numeric simulation has its benefits and limitations. 
While quantitative solutions to problems can be very 
accurate and provide a consistent set of values for the 
parameters involved, traditional numeric simulation 
systems are difficult to build and modify (since they 
require extensive programming effort), expensive in 
their use of resources, generally inflexible and not ex­
tendable in expressing model structures, insufficient 
in handling incompleteness and impreciseness, lac­
king of automatic examination of consistency, and are

not able to distinguish causes from effects; moreover, 
explanation facilities are missing and there are no 
possibilities of heuristic solutions. These drawbacks 
can be eliminated by combining numeric processing 
with symbolic and/or neural processing in coupled 
(or hybrid) systems (see sections 2.3 and 2.5).

b) Knowledge-based reasoning

In contrast with the procedural algorithms for pro­
blem solving in numeric simulation, in symbolic com­
puting they are more declarative: the program specifi­
es how to Find the sequence of steps needed to solve 
the given problem. For example, a numeric (procedu­
ral) program for selecting and optimal drug prescripti­
on might calculate the quantity of drug and the inter­
val between doses using a formula adjusted to the pa­
tient’s age, weight, liver and kidney function, and se­
verity of illness. In contrast, an expert-system (decla­
rative) program for selecting the best of several antibio­
tics to administer when the exact infecting organism 
is not known, might assemble a list of possible orga­
nisms using a knowledge base of frequent and/or se­
rious organisms in the involved part of the body, the 
particular part of the hospital, and the specific under­
lying condition of the patient.

PROBLEM
DOMAIN PROBLEM DESCRIPTION

CONTROL Performing real world irrlervenlions 
lo achieve desired goals

DESIGN The making ol specif leal ions lo create 
objects saiisfying particular requirements

INSTRUCTION Teaching concepts and inlormalion to 
non-experts

INTERPRETATION Analysis ol data lo determine 
their meaning

REPAIR Prescription ol real-world 
interventions lo resolve problems

PREDICTION Forecasting the future from a model 
ol the past and present

PLANNING Creating programs ol actions that can 
be carried out lo achieve goals

MONITORING Continuous interpretation ol signals 
and Ihe setting ol alarms when 
intervention is required

DEBUGGING
DIAGNOSIS

Finding faults in a syslem based on 
Interpretation ol potentially noisy and 
Incomplete data

Table 2: Some types o f problems to which expert systems have been ap­
plied

Table 2 lists some problems to which knowledge- 
based expert systems have been applied. Some of the
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criteria to decide whether a particular area of kno­
wledge is suitable for problem solving by expert-sys­
tem reasoning are [Widman and Loparo, 1989], [Wal­
ters and Nielsen, 1988]:

The knowledge required is weli circumscribed 
— There are acknowledged experts in the field

Experts can find high-quality solutions to a typical 
problem in a reasonable time 
Nonexperts require much more time to achieve so­
lutions of generally lower quality 
A timely solution to the problem is worthwhile 
The knowledge base is stable: once the knowledge 
is extracted, it can be used with only little modifi­
cations for a substantial period of time.
Also the employment of knowledge-based expert 

systems for problem solving has its benefits and limi­
tations. While expert systems can reason under uncer­
tainty, provide explanations about their solutions, and 
are generally explicit and transparent in the capturing 
of knowledge, they suffer from the well-known know- 
ledge-acquistion bottleneck [Bounds, 1989], are inhe­
rently very domain-specific (non-graceful degradation 
of results), are difficult to ensure consistency in the 
knowledge base, and are generally nonadaptive; mo­
reover, they are not specifically good in image proces­
sing, pattern recognition and other perceptual proces­
ses, and they are difficult to parallelize due to their 
inherently sequential nature (see section 4.3). To over­
come these drawbacks, dependent on the problem 
area concerned one might prefer another problem-sol­
ving approach (neural net or coupled system appro­
ach).

c.) Neural computing

AN Ns are not a panacea. They are not specificly su­
ited to such tasks as, for example, calculating the pay­
roll. it appears that they will, however, become the 
preferred technique for a large class of pattern-recog­
nition, classification and image-processing tasks that 
conventional techniques do poorly, if at all. There ha­
ve been many impressive demonstrations of ANN ca­
pabilities: a network has been trained to convert text 
to phonetic representations, which were then conver­
ted to speech by other means [Sejnowsky and Rosen­
berg, 1987]; another network can recognize handwrit­
ten characters [B urr, 1987], and a neural-network ba­
sed image compression system has been devised [Cot­
trell et al., 1987]. These all used the backpropagation 
network (see section 2.4).

In Table 3, some ANN applications currently under 
development and investigation are listed. It shows 
that the spectrum of practical ANN applications co­
vers much more than the ones mentioned-above. New, 
still unexpected application possibilities might be dis­
covered in the (near) future. With a view to the above 
broad definition of problem solving, we may conclude 
that very many of the today’s ANN applications show 
problem-solving aspects, especially those concerned

with optimization, adaptive control, prediction, sche­
duling, and the like.

*• SALES PREDICTION 
*• AIRLINE SEAT SCHEDULING 
"  STOCK FORECASTING 
** MEDICAL EXPERT SYSTEMS 
“  PHONETIC TYPEWRITER 
"  SENSOR FUSION 
•* HEARING AID CHIP 
*• PATTERN RECOGNITION 
** TOYS
** SHARE PORTFOLIO MANAGEMENT 
•* INDUSTRIAL DEFECT DETECTION 
*• OPTIMI7AUON 
** ADAPTIVE CONTROL 
** SIGNATURE RECOGNITION 
** FACE RECOGNITION 
*• RADAR ECHO IDENTIFICATION 
*• SONAR CLASSIFIER 
'* VISUAL TEXTURE ANALYSIS 
** ROBOTS
•* HANDWRITTEN CHARACTER

RECOGNITION
”  MULTISENSOR ANALYSER 
'* EVALUATING INSURANCE RISKS 
*• ACOUSTIC EMISSION ANALYSIS 

CREDIT WORTHINESS EVALUATION

Table .1: Some ANN applications

Just as numeric and symbolic cumputing, neural 
computing has its benefits (such as adaptiveness, ge­
neralization, robustness, graceful degradation, lear­
ning and abstraction capabilities) and drawbacks; in 
coupled systems (see section 2.3 and 2.5), the first 
might be strengthened and the latter be reduced. So­
me major limitations of the ANN approach are that 
the network cannot be “told” facts, as can conventio­
nal expert systems, and that knowledge in the network 
is not easily available to the user. Unlike a symbolic 
AI system, the ANN elements cannot “explain” their 
numeric weighting factors.

d) Hybrid computing

In hybrid systems we are confronted with four pos­
sible combinations: numeric/symbolic, numeric/con- 
nectionist, symbolic/connectionist, and numeric/sym- 
bolic/connectionist. From the problemsolving capabi­
lities of numeric, symbolic and neural computing each 
(see section 3a, b, c) and the motivations and possibili­
ties to couple them (see sections 2.3 and 2.5), it is ea­
sy to conclude the problem-solving capabilities of hyb­
rid systems.

Returning to expert systems and ANNs, some may 
that ANNs are going to replace expert systems, but 
there are many indications (see section 2.5a) that the 
two will coexist and be combined into systems in 
which each technique performs the tasks for which it 
is best suited. This viewpoint is supported by the way 
how humans operate in the world. Activities requiring 
rapid responses are governed by pattern cognition (wi­
thout conscious effort). When our pattern-recognition 
system fails to produce an unambigous interpretation 
(and when time permits), the matter is referred to hig­
her mental functions. These may require more infor-
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mation and certainly more time, but the quality of the 
resulting decisions can be superior. One can envision 
a acoupled conneetionist/symbolic system as an artifi­
cial system that mimics this division of labor [Wasser- 
man, 1989],

4. The Emerging Role of Parallel Processing

The design motivations and application areas of pa­
rallel processing systems cover a broad spectrum, and 
there is increasing overlap. Along with parallel Office 
Systems (such as parallel UNIX systems, e.g. Sequent 
SYMMETRY and Encore MULTI MAX, parallel da­
tabase systems supporting large relational databases, 
and parallel Communication Systems for simulta­
neously routing a number of messages, e.g. BNN 
BUTTERFLY), three notable application areas do re­
flect exactly the angular points of the triangle in 
Fig. 1:

(Mini)supereomputers for numeric computation 
and simulation
Artificial Intelligence systems for symbolic compu­
tation, also denoted as 5th-generation computers 
Neurocomputers, specifically designed to imple­
ment artificial neural networks, also denoted as 
6th-generation computers.
Users of digital computers for numeric computation 

and simulation are strongly motivated to demand high 
processing speeds for two distinct reasons [Kerckhoffs 
and Vansteenkiste, 1990]; the increasingly detailed re­
presentation required for more and more complex dis­
tributed parameter systems, characterized by partial 
differential equations (PDEs), and the real-time (or fa­
ster than real-time) computation of complex and lar­
ge-scale lumped parameter systems, described by ordi­
nary differential equations (ODEs).

Also the AI community is fully aware of the crucial 
importance of robust, flexible, extremely fast (hence 
highly parallel) systems. Such systems are necessary to 
handle the complexity and stringent real-time de­
mands of the real-world problems we are confronted 
with. Without computers that are enormously large 
and highly parallel, true artificial intelligence is im­
possible, and we are doomed to remaining tackle the 
rigid toylike problems for which Al systems are too 
often developed. In order to be able to develop AI sy­
stems (such as e.g. intelligent robots with vision) that 
concurrently recognize, move to, gain control over 
and interact with moving and changing real-world ob­
jects, AI researchers are increasingly turning to paral­
lel processes [Uhr, 1987],

The use of artificial neural ( AN Ns) to perform such 
tasks as artificial vision, speech recognition, signal 
processing, and the like, is promising, but especially 
the training algorithms (such as backpropagation, see 
section 2.4) tend to be very time-consuming. It is the­
refore natural to try to capitalize on the intrinsic pa­
rallelism of these systems in order to speed up the 
computations. Also the increasing demands for larger

and larger networks as well as the beginning real-time 
use of AN Ns require their implementation on neuro­
computers or on general-purpose (massively) parallel 
computers [Treleaven, 1989], [Soucek, 1989],

In section 4.1, we examine the above-mentioned 
three classes of parallel computers in some more de­
tail. In the subsequent sections 4.2- 4.5, we deal with 
implementation aspects of respectively simulations, 
knowledge-based systems, AN Ns and coupled sy­
stems on general-purpose parallel computers.

4.1 Parallel computing framework

One of the earliest and most common taxonomies 
for parallel computers is that of Flynn [Flynn, 1972], 
He differentiated between computer structures in two 
dimensions, namely flow of control and flow of data: 

SISD (single instruction stream, single data stre­
am), which covers all conventional uniprocessor sys­
tems (such as IBM 370, DEC VAX, Sun)
SIMD (single instruction stream, multiple data 
stream), which includes both vector processors 
(such as Cray-1) and array processors (such as EPS 
and the classic ILLIAC IV)
Ml MI) (multiple instruction stream, multiple data 
stream), which covers multiprocessor systems with 
both shared memory (such as Sequent SYMME­
TRY) and distributed local memories (such as Intel 
iPSC and NCube hypercubes).
For the MISD-architecture, no obvious example is 

forthcoming.

a) Numeric supercomputers and minisupercomputers

Numeric simulation has been particularly influenti­
al in the evolution of SIMD and MIMD systems, 
which resulted in a wide range of supercomputers and 
minisupercomputers. Although these systems have 
been specificly developed for complex numeric com­
putation and simulation, they may well be used (and 
indeed often are being used) for AI purposes or neu- 
rocomputing.

The first supercomputer to win wide-spread accep­
tance was the Cray-1, which was installed in 1976. In 
this computer the pipelining (vector processing) con­
cept was incorporated in the architecture. The machi­
ne had a peak performance of 160 Mflop/s (i.e. 160 
million floating point operations per second). This 
Cray-1 was the trend-setter for many later supercom­
puters with a similar approach to high-speed compu­
tation. Control Data introduced in 1980 the Cyber 205 
with a peak performance of 400 Mflop/s. These two 
(American) machines have dominated the market un­
til the early 1980s, when three Japanese vendors (Hita­
chi, Fujitsu, and NEC) introduced a new generation 
of supercomputers with peak performances of 
710—11 300 Mflop/s. Along with a better performan­
ce, these machines had better vectorizing compilers. 
Cray and Control Data responded to this challenge in
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the mid and late 1980s with new models (Cray X-MP, 
Cray-2, Cray Y-MP, Eta-10); these MIMD-structured 
systems were no longer uniprocessors and had consi­
derably improved software. After then, new super­
computers emerged and surely will emerge (Hitac 
S820, Fujitsu VP2000, Cray-3).

In the above systems the individual processor is 
a vector-processing unit. Currently, there is an increa­
sing interest to develop massively parallel computers, 
in which the individual processors are scalar CPUs. 
These machines are expected to be able to deliver the 
same or even more computing power than the “traditi­
onal” vector-oriented supercomputers. Recently, Cray 
announced to start developments in the direction of 
massively parallel computers. In this respect, NCube 
has starting experiences and expertise for many years. 
They recently announced the fastest supercomputer of 
today. Ncube-2 system (model 80) with 8192 proces­
sors arranged in a 13-dimensional hypercube structure 
(peak performance: 27 000 Mflop/s).

In the mid 1980s, some vendors started to fill the 
gap between supercomputers and mainframes by in­
troducing computers with peak performances of 
“only” several tens of Mflop/s for prices comparable 
to those of large minicomputers or small mainframes. 
These became known as “minisupercomputers”. Their 
architectures contain concepts used in supercompu­
ters (both vector-processing units and multiple scalar- 
CPUs), but they are built mainly with of-the-shelf hard­
ware resulting in good price/performance ratios. 
Currently, market leaders are Convex, Alliant and 
SCS, which produce computers with peak performan­
ces in the range 20 — 200 Mflop/s.

For more details on supercomputers and minisuper­
computers the reader is referred to the literature, e.g. 
[Hockney and Jesshope, 1988].

b) Parallel Artificial Intelligence Systems (5th-generati-
on systems)

The term “5th-generation computer” was introduced 
in the mid 1980s by the Japanese authorities to an­
nounce an extensive research program by Japanese 
universities and computer manufacturers with respect 
to a new computer paradigm. This project, with 1990 
as its original goal, has had enormous amounts of fun­
ding, and of publicity and imitation both in the USA 
and Europe. The project focusses on developing a gi­
gantic Prolog machine, capable of executing 1 000 
Mlips (i.e. one billion logical inferences per second, 
where each logic inference needs the equivalence of 
100 to 1 000 ordinary instructions).

The Japanese initiative has had as a result, that also 
elsewhere in the world extensive research projects ha­
ve been started with respect to 5th-generation systems. 
At present, it is not fully clear what exactly is meant 
with “5th-generation computers”. The term is general­
ly reserved for parallel AI systems, i.e. parallel com­
puters designed to efficiently support symbolic pro­

cessing. These parallel computers might also be called 
“high-level language computers”, because each is ty­
pically optimized to support a specific class' of high- 
level programming languages. The four major approa­
ches are [Treleaven, 1990]:

Object-oriented (e.g. Philips DOOM [Bronnenberg 
et al., 1987])
Functional (e.g. ICE FLAGSHIP [Watson et ah,
1987])

— Logic (e.g. Bull DDC [Bergsten et ah, 1988])
Knowledge-based (e.g. the rule-based computers 
NON-VON and DADO [Treleaven et ah, 1987], 
and the cellular array computer Thinking Machi­
ne’s Connection Machine [Hillis, 1985]).
For more details about 5th-generation systems, the 

reader is referred dto the literature, e.g. [Uhr, 1987], 
[Treleaven et ah, 1987] and [Treleaven, 1990]; in the 
latter reference, 5th-generation system developments 
within the framework of ESPRIT (the well-known Eu­
ropean Stragegic Programme for Research and Deve­
lopment in Information Technology) are reported.

c) Neurocomputers (6th-generation systems)

A neurocomputer is an information-processing sys­
tem specifically designed to implement ANNs [Trele­
aven, 1989]. Neurocomputers are said to be ol the 
sixth generation, since they reflect a really new compu­
ting paradigm. Current implementations involve one 
or more of three basic technologies: electronic, optical 
and electro-optical, although electronic implementati­
ons of neurocomputers are presently dominant (the 
other two technologies are beyond the scope of this 
paper). Each of these implementations can be “fully 
implemented” or virtual. In a lull) implemented sys­
tem, each neuron is an individual processor with a fi­
xed interconnection geometry, A virtual neurocompu­
ter implements most of the neurons sequentially and 
uses standard memory to maintain their states and in­
terconnection weights. For many current applications, 
virtual neurocomputers are more poupular. They are 
slower than hard-wired systems, but have the advanta­
ge of being more general and flexible. Many of the 
current implementations use high-speed digital signal­
processing VLSI chips with advanced CMOS memory 
and virtual network strategies; examples of this class 
of (virtual) neurocomputers are HNC ANZA and 
SAIC Sigma. The next level of perfomance can be rea­
ched by using multiprocessor techniques, such as in 
the TRW Mark III (still virtual) neurocomputer. The 
logical ultimate extension of this last kind of neuro­
computers is a fully-implemented configuration, in 
which each processing element consists of a unique 
piece of silicon (or gallium arsenide). These systems 
could be realized with digital or analog circuits. Work 
on analog neurochips is being performed by AT&T 
and Synapties.
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4,2 Parallel implementation of numeric simulation sys­
tems

The definition of a supercomputer, i.e. top-of-the-li- 
ne computer, given by N. Lincoln: “a system that is 
only one generation behind the computing require­
ments of leading edge efforts in science and enginee­
ring" is not only a flexible one, but it also emphasizes 
the relationship between (mini)supercomputers and 
computational science, which is essentially simulati­
on-based. Realistic problems may lead to very com­
plex models requiring extensive computational re­
sources.

For many often encountered numerical problems, 
stable and robust algorithms have been devised for 
SISD-type computers. It is usually clear which vari­
ants of those algorithms will lead to the most efficient 
implementations. This has stimulated the birth of pro­
gram libraries: collections of standard portable soft­
ware for problems of very different nature. Some of 
these have matured to widely accepted collections of 
subroutines at a distinguished high level, preventing 
the user from large programming efforts and testing 
problems. At present, many scientists have access to 
vector computers, such as Cray-1, Cray X-MP, Cyber 
205, ETA 10-P, Convex, Alliant, and the like. Early 
experiences indicated that the efficient use of these 
computers requires a considerable modification of 
many existing codes and many popular algorithms 
had to be replaced by more suitable ones. As a conse­
quence, existing libraries are gradually being adapted 
to other than SISD-architectures; some general soft­
ware packages that are, or will be made, suitable for 
a wide variety of vector computers as well include 
1MSL, NAG and LAPACK.

While the use of vecor processors is quite well un­
derstood by now, this is far from being true for paral­
lel computers that embody shared-memory systems 
with a modest number of vector processors (such as 
Cray X-MP/4, Cray-2, Convex C-240, Alliant FX/80) 
and local memory systems with either (a large number 
of) scalar processors or (a modest number of) vector 
processors, such as NCube’s hvpercubes, Intel’s hy­
percubes, ETA-10E/8, and transputer-based systems 
like MEIKO. At present, a major problem with those 
systems is that there are many different programming 
styles and different algorithms, and therefore it seems 
impossible to construct general efficient transportable 
software for the various computers concerned.

Rather than performance measures in, for instance, 
Mflop/s provided by the vendors, realistic performan­
ce comparisons and predictions are to be based more 
reliably upon benchmark problems. A general additio­
nal remark is that, based on the special characteristics 
of the parallel or vector computer and the size of the 
simulation system (e.g. the number of state equations, 
the number of finite difference or finite element po­
ints, the types of nonlinearities to be included), the 
user must be enabled to provide various directives to 
allow the compilers to recognize parallelizable or vec-

torizable code in order to take optimal advantage of 
the computers’ potentialities.

For a thorough treatment of vector-oriented and pa­
rallel numeric computing methods, the reader is refer­
red to the literature, e.g. [Ortega, 1988] and [Schendel, 
1984].

In addition to the motivations of using parallel 
computers in (real-time or faster than real-time) simu­
lations of complex distributed or lumped parameter- 
systems as mentioned in the heading of section 4, the­
re may be other motivations to apply parallel simulati­
on. In methodology-based interactive simulation, the 
specific architectures of such parallel computers 
might well be exploited. Focussing the attention on 
MIME) arrays of scalar processors, examples of this in 
model implementation and experimentation are 
[Kerckhoffs and Brok, 1985]:

— the exploitation of a one-to-one analogy between 
a model's structure and its physical implementati­
on on the computer,
model composition by assembling submodels run­
ning on different processing elements (configuring 
excitable units), and
interactive experimentation on model bases (for in­
stance, multimodel output analysis after one single 
run).

4.3 Parallel implementation of knowledge-based (ex­
pert) systems

As said before (heading of section 4), the AI com­
munity is increasingly turning to parallel processing. 
Examples are: the use of multicomputers in percepti­
on (such as image processing, pattern recognition and 
computer vision); parallel processing in the structu­
ring and accessing of symbolic, linguistic and percep­
tual information; the use of multicomputers in speech 
recognition and language analysis; the use of multi­
computers in robot motor control; parallel learning 
systems. A good survey can be found in [Uhr, 1987], 
where is examined how well the multicomputer archi­
tectures meet the demands from the various subfields 
of AI. In this section, we restrict ourselves to paralle­
lism in reasoning and problem-solving systems, and 
more particularly to parallelism in expert systems ba­
sed on production rules.

In their original pure form, expert production sys­
tems use
a) sets of if-then production rules pertaining to condi­
tions to be searched for in:
b) a single common memory.

Pure production systems have no control structures 
(such as the ordering of rules and procedure calls) 
that specify how to move between productions. How­
ever, most systems are given a number of additional 
control capabilities. In the following, we examine the 
various possibilities of parallelism in a rule-based ex- 
pert system. At the highest level we have to distingu-
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ish knowledge-representation (rule-base) parallelism 
and knowledge-manipulation parallelism.

Rule-base parallelism can be subdivided in the follo­
wing distinct types:

1. Context parallelism. In context parallelism several 
disjunct contexts (groups of rules) are distributed 
among different processors. Since it is plausible that 
data dependency is high within a context, but low bet­
ween different contexts, theoretically speed-ups can 
be obtained. The speed-up attainable is determined by 
the ratio of internal and inter-context data dependen­
cies. Therefore, context parallelism is domain depen­
dent since this ratio varies among applications. A 
slightly different form of context parallelism can be 
obtained if processing redundancy is allowed (over­
lapping instead of disjunct contexts). The introduc­
tion of redundant processing of rules in a rule-based 
system can reduce the data dependency and might 
well increase the speed-ups attainable.

2. Production parallelism. Production parallelism ex- 
plits the possibility of distributing all productions (ru­
les) among different processors. Besides the large 
number of processors needed, the major disadvantage 
of production parallelism is the small fraction of pro­
cessors that can run concurrently. This is caused by 
the implicit sequential coding of production rules.

3. Action parallelism. Action parallelism exploits the 
possibility of executing the actions in the consequence 
(then-part) of a rule concurrently. Since variable bin­
dings occur in the antecedent (if-part) of the rule and 
the actions often are independent from each other, 
true parallelism might be possible. The major disad­
vantage of action parallelism is the small number of 
actions normally occurring in the consequence of a ru­
le and the relatively short time needed to execute the­
se actions, even if they are executed sequentially 
[Gupta, 1987], Therefore, the possible speed-up resul­
ting from action parallelism is rather limited.

4. Clause parallelism. Clause parallelism can be ex­
ploited to obtain further speed-ups. In clause paralle­
lism different clauses in a production are executed in 
parallel. Clause parallelism can be subdivided in two 
subclasses [Conery, 1987]:

4a. Or-parallelism. Consider the following clauses in 
a production:
p(X) or q(X) or r(X) — ...... , where X is an unbound

variable.
Three processes can be executed concurrently to eva­
luate p, q and r respectively. If p binds X to a constant 
a, q binds X to a constant b and r binds X to a con­
stant c, all three bindings are legitimate and we have 
found three solutions simultaneously. For example, 
“p(b) or q(b) or r(b)” is true, since q(b) is true. There­
fore, or-parallelism can be exploited to speed-up the 
reasoning process.

4b. And-parallelism. Consider the following clauses 
in a production:
p(X) and q(X) and r(X) ► ...... , where X is an un­

bound variable.
If three processes are executed concurrently to evalua­
te p, q and r respectively, and p binds X to a constant 
a, q binds X to a constant b and r binds X to a con­
stant c, we do not have a solution of the antecedent of 
the rule. For example, “p(b) and q(b) and r(b)” needs 
further evaluation, since the truth values of p(b) and 
r(b) are unknown. Therefore, and-parallelism cannot 
be exploited directly to speed-up the reasoning pro­
cess. If p(X) is evaluated first, the resulting binding 
can be used to evaluate q and r concurrently. For 
example, if p binds X to a, q(a) and r(a) can be evalua­
ted in parallel since they are independent. Note that 
this scheme does not work for antecedents of the fol­
lowing type:
p(X) and q(X,Y) and r(X,Y) —► ...... , where X and Y

are unbound variables.
On the other hand, if in this case r(X,Y) is evaluated 
first, resulting in a binding of X to a and Y to b, p(a) 
and q(a,b) can be evaluated in parallel. This type of 
and-parallelism is only possible if the ordering in 
which p, q and r are evaluated is not important. In 
many production systems, however, the ordering in 
which the clauses are evaluated is important and, con­
sequently, and-parallelism cannot be exploited.

According to [Gupta, 1987], the average number of 
clauses in a production (although dependent on the 
kind of application) is about 2. Hence, the possibility 
of speeding-up the reasoning process by and-paralle­
lism is rather limited.

Knowledge-manipulation parallelism can be subdivi­
ded in two types of conceptual parallelism (inference 
parallelism and case parallelism) and functional pa­
rallelism :

1. Inference parallelism. Inference parallelism explo­
its the stategy to use several different inference (reaso­
ning) techniques to attack a problem (note: this strate­
gy is based on ideas from [Newell and Simon, 1972] 
regarding “strategy shifts” of human problem solvers) 
and to execute these different techniques concurrent­
ly. As soon as one technique succeeds in solving the 
problem, the other processes can be halted. In compa­
rison with a sequential approach (where the techniqu­
es have to be performed on after each other) relevant 
speed-ups can be obtained if the number of techniqu­
es is relatively large.

2. Case parallelism. Case parallelism can be used 
whenever a variable can take on a limited number of 
different values. For every possible value of the varia­
ble a process can be run in parallel (independent of 
the others) to infer the validity of a certain conclusion. 
Proofs by exhaustion are quite common in mathemati­
cal problems. Case parallelism can also be used in 
those situations, where the validity of a certain state-
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ment b can be proven by proving “a-*b” and “not 
a-*b”. These two cases can be evaluated in parallel. 
For example, induction proofs cosist of two parts. The 
first part of the proof is based on an assumption such 
as “i = 0“. The second part of the proof is based on 
the assumption “i< > 0“ (actually, most inductions 
are based on “i> 0 ”). Both partial proofs can be per* 
formed in parallel. It is allowed to have a part of 
a proof dependent on another part of the proof, as 
long as such proo-dependencies are not cyclic.

3. Functional parallelism, Functional parallelism ex­
ploits the distinct concurrent functions within an ex­
pert system and the possibility to implement these on 
different processors. Some functions can be imple­
mented in manifold to increase the speed-up of the sys­
tem further. For instance, functional parallelism was 
used in the HYDRA-2 system [Kerckhoffs et al., 
1989]. Here, a User Interface, Rule-Agenda Manager, 
Question-Agenda Manager, Data-Base Manager, and 
Rule Processor (in manifold) were implemented to 
run in parallel. Research in the HYDRA-project has 
shown that functional parallelism suffers too much 
from inherent sequentialism (contention problems) 
and that speed-ups are limited to a factor considera­
bly below 10.

It has turned out that parallelizing standard produc­
tion expert systems normally yields disappointingly 
little speed-up when using most of the above-mentio­
ned rule-base parallelism techniques or the functio­
nal-parallelism approach [Gupta, 1987], [Uhr, 1987], 
[Kerckhoffs et al., 1989]. Although this is not systema- 
ticly examined, to the author’s opinion more substan­
tial speed-up might be attained in combining a num­
ber of the various approaches, or in expert systems 
that are more complex than the standard ones (for in­
stance, functional parallelism could do well in expert 
systems with embedded numeric simulations [Kerck­
hoffs et al., 1989]), or dependent on the specific 
rule base concerned by the context-parallelism ap­
proach with overlapping contexts, or by ultimately ex­
ploiting the inference-parallelism and case-parallelism 
approaches. Nevertheless, a general feeling is that 
production systems with entirely different formulati­
ons and algorithms than the traditional ones, and hen­
ce much greater inherent parallelism, should be explo­
red in today’s and future research.

4.4 Parallel implementation of ANNs

The regular architecture of ANNs suggests their si­
mulations on general-purpose parallel computers to 
be implemented with simple placement rules. How­
ever, the processors which are available on many paral­
lel computers are much more powerful, and have 
a much smaller number of input-output ports, than an 
individual neuron. Hence, the placement problem is 
not trivial and deserves attention since the communi­
cation problem is obviously crucial.

Many ANN-implementations on general-purpose 
parallel computers have been reported in literature 
[Petrowski et al.. 1989], [Bourrelv, 1989], [Wang et al, 
1989], | Be> non and Dodd, 1987], As an illustrative 
example, in this section we consider briefly our own 
implementation of backpropagation neural networks 
(BNNs), see section 2.4, on an NCube/4+ parallel 
computer [Kerckhoffs et al., 1991], This NCube/4+ is 
a lst-generation hvpercube computer, that consists of 
16 processing elements with 512 kbyte memory each, 
arranged in a 4-dimensional hypercube architecture; 
see Fig. I I.

Node Binary 
Mo

Node Binary 
No

0000 To 10
1 0001 11 1011
2 0010 12 1100

3 0011 13 1101
4 0100 14 1110
5 0101 15 1111
0 0110
7 0111
0 1000
9 1001

Figure 11 : The NCuhe 4 f  architecture (neighbouring nodes only dif­
fer in one single bit o f their binary addresses)

The BNN-implementation, considered here, partitions 
the units (neurons) of any layer among all the availab­
le nodes of the requested hypercube (subcube), so 
exploiting parallelism per layer. The subsequent 
layers have to be handled sequentially. This approach 
allows large networks to be trained and recalled ac­
cording to the pure unchanged backpropagation algo­
rithm.

For each unit the relevant data (such as incoming 
weights, bias, activation, backpropagated error) are 
stored locally on the node that holds the unit concer­
ned. For the purpose of propagating the activations 
and backpropagating the errors (differences between 
actual and target outputs), both during the forward 
and backward pass (in the training phase) data from 
the neurons in the current layer have to be transferred 
to all neurons in the next layer to be handled. Conse­
quently, after the parallel computations for a certain 
layer any node of the hypercube has to transfer data 
to each other node. This is realized by shifting the in­
formation several times along the nodes placed in 
a ring structure. It is easy to map the hypercube struc­
ture on such a ring structure; see Fig. 12. By a techni­
que of shifting partial sums along the ring, while buil­
ding up the required total sums representing the back- 
propagated errors, the efficiency of the computation 
has been optimized [Kerckhoffs et al., 1991J.

The speed-up of a parallel BNN-implementation is 
defined as the “sequential time” divided by the “pa­
rallel time” necessary to complete a fixed number of 
learning cycles. The time, it takes to execute this on 
one single node, is defined as the “sequential time”. 
Efficiency is defined as the speed-up divided by the 
needed number of nodes. To get an indication of the
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Figure 12: Ring structure (node numbers correspond with those o f 
Fig. 11)

speed-up dependent upon the network size some dif­
ferent net configurations have been executed on the 
Ncube/4 + , The results of varying the sizes of respec­
tively the input, hidden and output layer in a three- 
layer network with a fixed number of 64 units in the 
remaining layers are depicted in Fig. 13. It shows that 
varying the size of the input or output layer has less 
influence on the results than varying the size of the 
hidden layer. This can be explained by the fact that 
the processing of a hidden unit amounts to more com­
putation than that of an input or output unit.

In Table 4, peak performances are given for two-, 
three- and four-layer networks with equal layers, both 
in training and recall phases, measured over ten pat­
terns in one sweep. The input and target patterns are 
stored on the nodes, so a greater number of examples 
will lead to smaller maximum network sizes and lower 
peak performance rates. Performance rates are given 
in KLips, meaning the number of thousands of links 
that are updated per second in the training phase, or 
the number of thousands of links that are passed per 
second in the recall phase.

N e t T r a i n i n g R e c a l l W e i g h t s

896-896 187 635 803
624-624-
624

137 609 779

512-512-
512-512

124 594 786

Table 4: Peak performances for the “unit distribution per layer" proce­
dure on an NCube/4+ computer (with 10 training examples): network 
size, performance in KLips for training and recall phases, and number

of weights in Kweights.

4.5 DUTIES: A parallel environment for coupled simu­
lation /  expert systems

At present, parallel implementations of coupled sys­
tems are rare. In this section, as an illustrative exam­
ple we describe an environment for parallel coupled 
numeric/symbolic systems currently being developed 
at Delft University of Technology: DUTIES (Delft 
University ol Technology Intelligent Environment for 
Simulation). It is meant to support running concurrent­
ly simulations and coupled expert systems on a distri­

buted and/or parallel hardware platform. Both the si­
mulation and expert systems themselves can be paral­
lelized too (see sections 4.2 and 4.3). Starting points 
such as accessibility, flexibility, openness and maintai­
nability have led to a design philosophy based on:
— Automatic code generation and program mapping
— Abstraction of concepts
— Modularity of software
— Machine-independence.

a) Global system set-up: code generation and program 
mapping

The DUTIES environment provides programming 
tools to implement simulation systems, expert systems 
and combinations of both on distributed hardware en­
vironments and/or MIMD-structured parallel compu­
ters. Roughly speaking, the programming tools can be 
subdivided in three groups:
— Code generator for (numeric) simulation systems
— Code generator for (symbolic) expert systems
— Program mapper.

Code generator for numeric systems:
For the time being, DUTIES only supports the use 

of (first-order) ordinary differential equations (ODEs) 
to model the numeric system. The ODEs must be for­
mulated as a set of systems of ODEs. The code gene­
rator implements every system of differential equati­
ons as a separate subprogram to be placed on a sepa­
rate processor. The differential equations are solved 
by means of a selected numerical integration method. 
Furthermore, the code generator generates data (to be 
processed by the program mapper) regarding the in­
formation needed (input) and generated (output) by 
each of the subprograms. The final generated pro­
grams (C-source code) include the communication 
procedures generated by the program mapper. They 
are linked to the above-mentioned subprograms. Fi­
nally, these subprograms are linked to a special libra­
ry containing specific machine-dependent procedures.

In principle, the final generated programs can be 
ported to any distributed environment and/or multi­
processor machine, provided that a C-compiler and 
linker are available. The special library, containing 
the machine-dependent procedures, should be ported 
separately. If the processor-interconnection structure 
dillers from the original one, the program mapper 
must be re-invoked.

Code generator for expert systems:
The structure of the code generator for (symbolic) 

expert systems is more elaborate. Basically, a rule ba­
se is translated into an intermediate code which is in­
terpreted by an expert system shell (inference engine). 
Different rule bases are translated into different parts 
of intermediate code, interpreted by different (concur­
rently running) expert system shells. The rule base 
compiler and the expert system shell are constructed 
from several modules. These modules support the use
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Figure 13: Speed-up (a, b, c) and efficiency (A, B, C) o f three-layer back propagation neural networks
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of specific data structures, functions or inference me­
chanisms.
In addition to creating intermediate code, the rule-ba­
se compiler also generates data to be processed by the 
program mapper to map efficiently the different ex­
pert systems on different processors (taking into ac­
count the communications between the symbolic sub­
programs mutually and between the numeric and sym­
bolic subprograms).

Program mapper:
The program mapper maps the generated (numeric 

and symbolic) subprograms on the available proces­
sors and generates the communication procedures to 
be used by these programs. In order to be able to per­
form these tasks, the program mapper needs informa­
tion about the intercommunication between the va­
rious subprograms. This information is generated by 
the code generators for the symbolic and numeric sys­
tems. For mapping the programs on the processors 
the program mapper uses several heuristics to achieve 
a reasonably optimal distribution. It tries to minimize 
the communication overhead by placing the programs 
as efficiently as possible. After the programs have 
been mapped on the various processors, the imple­
mented system routes the data through the intercon­
nection structure. Since, in general, there are several 
paths between two processors in a network, the data 
can be routed along various different routes. Several 
switches are introduced to enable the user to influence 
the mapping and routing,

b) Abstraction o f concepts

The meaning of abstraction is to generalize, i.e. to 
extract the essential elements while ignoring the irrele­
vant details. Abstractions play an important role in 
problem solving by reducing the problem to the fun­
damental issues which underlie the problem. Software 
development uses abstractions in order to achieve uni­
formity and clarity in the code. An important form of 
abstraction in software development is procedural ab­
straction, which is available in advanced high-level 
computer languages, such as Pascal, ADA, etc. In the­
se languages, one can declare procedures to perform 
a certain task. The programmer is only interested in 
“what” kind of a task a procedure will perform, not 
“how" it is done.

Although more concepts have been generalized, the 
following abstractions play a key role in DUTIES:

— Data abstraction: This mechanism allows to access 
of each data element available in DUTIES, irrespe- 
cive of its type, form or location.

— Communication abstraction: This mechanism facili­
tates a uniform way to address any type of commu­
nication device, whether it is serial, parallel, a LAN 
or modem. Implementation details concerning rou­
ting, protocol and multiplexing are hidden from 
the user.

Medium abstraction: A medium is defined as any 
IO device or memory device, which accepts or pro­
duces a stream of bytes. Typical examples of such 
devices are files, windows, keyboards, cache me­
mory, etc. The medium abstraction is a powerful 
mechanism allowing to access each medium in 
a uniform way.

— Administration abstraction: A variety of strategies to 
organize information (such as, sequential, indexed, 
and sorted) is accessed through the administration 
mechanism in an identical way.
Lazy evaluation abstraction: This mechanism is 
used to create a “truth-maintenance facility” for 
the expert systems in the DUTIES environment.

The main idea behind the generalization of a con­
cept (such as the above “data”, “communication”, 
“medium”, “administration”, “lazy evaluation” con­
cept) is to create a uniform way to deal with that con­
cept, and at the same time hide implementation de­
tails. Every concept is sustained by a specific set of 
functions. “Abstraction” implies creating a new set of 
generalized (abstract) functions and generalized (ab­
stract) elements. The abstract functions operate on the 
abstract elements to cover the actual functions with 
a conceptually equivalent working.

Simulation system Progam Expert system
code generator mapper code generator

A bstract

Support

Base

Machine

APPIJCATION
LAYER

GROUND
LAYFJt

Figure 14: Software modularity in DUTIES

c) Modularity o f software

The DUTIES software is based on two main layers 
(see Fig. 14):
— the "application layer", containing the afore-mentio­

ned code generators for the simulation systems 
and expert systems as well as the program mapper, 
and

— the "ground layer", forming the basis of the DUTI­
ES environment on which the applications are bu­
ilt. It is constructed as a set of increasingly com­
plex sublayers:
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— the “machine layer”, which is the interface to the 
operating system of a particular computer system. 
It is this layer that renders DUTIES its machine in­
dependence (see section 3.5d). Every time the soft­
ware of DUTIES needs to access a piece of hard­
ware, the calls are routed through the machine 
layer, which hides specific implementation details 
from the operating system. To port DUTIES to 
another hardware platform, only the machine layer 
must be rewritten; the other layers only have to be 
recompiled.

*  the “base layer“, which contains a number of type­
less (i.e. solely byte-oriented) mechanisms, such as 
memory management routines and primitive 10 
mechanisms. Some base-layer functions are meant 
to improve the quality of the machine-layer functi­
ons, for instance by adding error handling. Other 
functions provide utilities that can be used throug­
hout the system, such as “stack mechanism“, “pool 
mechanism” and “semaphore mechanism”, 
the “support layer", which imposes structure and li­
mitations on the base layer and introduces the ty­
pes of data, medium and other concepts on top of 
this base layer. For instance, on the base level one 
can print information anywhere on the screen whi­
le on the support level printing is only allowed wi­
thin the borders of a predefined window. Strings, 
integers and lists with their supporting manipula­
ting functions are examples of data types that are 
introduced in the support layer.

— the “abstract layer", which utilizes the similarities 
of the data, medium and other concept types intro­
duced in the support layer to cover each class 
through a set of abstract functions (see section 
3.5b). In this layer several kinds of abstractions are 
created for the various concepts implemented in 
the support layer, such as data, medium, etc.

d) Machine independence

med to run concurrently with the simulation and to 
reason on the basis of (continuously changing) in­
formation monitored from the simulation system. 
Simulation system and expert system run on sepa­
rate (clusters of) nodes of the hypercube machine 
and they regularly exchange data.

— Multiple expert systems acting on a simulated dyna­
mic object: For example, in a moving robot with vi­
sion multiple intelligent processes have to be per­
formed concurrently.

— Parallel treatment of “method bases” : For instan­
ce, several dynamic parameter optimization algo­
rithms can be run concurrently on separate (clu­
sters of) nodes. An expert system, running in paral­
lel on one or more additional nodes, might be used 
to select the best method(s) on the basis of interme­
diate dynamic system results.
Parallel treatment o f “model bases": For instance, 
inductive mathematical modelling leads to nonuni­
que models which might result in more or less ex­
tensive model bases. The various mathematical mo­
dels with related additional equations (such as e.g. 
parameter sensitivity equations) can be run simul­
taneously on different (clusters of) nodes, and 
again an expert system may be used for decision 
making ‘on the fly’ (i.e. in parallel with and based 
on the model simulations).

— Parallel implementation o f progressive reasoning 
techniques: In real-time applications expert systems 
have often to respond within a certain time-frame. 
Running multiple inference engines in parallel on 
different rule bases with knowledge on different le­
vels of abstraction allows to select “on the fly" the 
best advice (on the possibly deepest level) given the 
available time; the more time available, the more 
accurate and detailed the expert system’s advice. 
The rules bases must obviously be constructed in 
such a way that this kind of explicit parallelism can 
be exploited.

Machine indepence, as defined by the designers of 
DUTIES, exists when the software does hardly reli­
es on the structure or functionality of a particular 
computer or operating system. Therefore, in princi­
ple DUTIES can be ported to any computer system 
different from the target computer NCube/4+ (see 
section 4,4) used in this research. Our objective was 
to minimize the efforts needed to do so.

e) Applicability o f DUTIES

At the moment of writing this paper the actual im­
plementation of the DUTIES environment on the 
NCube/4 + computer is in its final stage. After 
completion the system will be used to run practical 
applications of coupled numeric/symbolic systems. 
Examples are:
Knowledge-based direct or supervisory control of (si­
mulated) continuous processes [Meijer and Ker- 
ckhoffs, 1990]: A control (expert) system is assu-

5. Some ANN-Aplicatson Research Projects

In this section, we describe shortly three current 
ANN-application research projects of the Group KBS 
(Knowledge-based Systems) at Delft University of 
Technology. The chosen example projects may illu­
strate some of the issues dealt with earlier in this pa­
per.

In the first project, the problem is how to have more 
grip on the cost related to large software development 
projects, especially in the beginning phase when un­
certainties and incomplete information are to be faced. 
This essentially budgetting problem is tackled with the 
use of two backpropagation neural networks (see sec­
tion 2.4) in cascade.

The second project concerns the problem of finding 
the optimal (in the sense of minimum cost) air-route 
among a limited number of (5 —10) possible routes 
connecting two cities. The cost as a function of the de-
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lay (i.e. difference between actual and scheduled de­
parture-time) is actually calculated in a numeric simu­
lation model; an ANN-based preprocessor is propo­
sed to provide some of the needed input data to this 
simulation system.

In the third project, the problem of predicting in an 
early stage the remaining life of mechanical assembly 
on the basis of vibration responses is dealt with. Here, 
time-signals arc preprocessed numerically (Discrete 
Fast Fourier Transform (DFT) processing) in order to 
provide training data and input data for a classifying 
ANN.

The systems in the second and third project are ac­
tual examples of practical applications of (loosely) 
coupled connectionist/numeric systems as considered 
in section 2,5a.

5.1 Budgetting large software projects

Frequently, the budgetting of big software develop­
ment projects suffers from serial problems. A number 
of causes that may constitute these budgetting pro­
blems are, for instance, the lack of empiric data from 
finished projects, the instability of the system specifi­
cations during the software development, the specific 
features of the software development process, the lar­
ge number of factors that influence the development 
effort, the unknown influence of factors on the deve­
lopment effort, etc. There exists a general need for 
techniques which support the budgetting process, 
A technique that has proven its usefulness is the so- 
called “Function Point Analysis” (FPA) developed by 
IBM Data Processing Services. This technique was 
originally meant to measure objectively and in a uni­
form way the productivity of software developers, but 
it has also shown its value in budgetting software de­
velopment projects. The FPA technique estimates the 
functionality of the desired software system. This fun­
ctionality, expressed in function points, is transfor­
med into effort, i.e. manhours, by using productivity 
curves. The productivity curves are derived from em­
piric data gathered from previous finished projects.

Unfortunately, FPA is only applicable when the 
functionality of the system can be measured (System 
Implementation Phase), i.e. when the greater part of 
the development process has already taken place. It is 
highly desirable to have also insight in the effort nee­
ded in an earlier stage of the software development 
process (Information Analysis Phase), Techniques 
that support this do not yet exist, mainly due to the 
specific features of the budgetting problems in this 
earlier stage of the development process.

In this research, it is tried to tackle the budgetting 
problem (for the earlier stages of the development 
process) in a way similar to the FPA technique. Just as 
is the case with FPA, the technique proposed actually 
consists of two submodels (see Fig. 15). The first sub­
model, the Complexity Point Analysis (CPA) model, 
transforms the problem, identified through problem

characteristics, into complexity points. Hence, com­
plexity points (being an as yet non-existing measure) 
are an environment-independent indicator of the sco­
pe of the problem. These complexity points, added 
with environment characteristics, are then transfor­
med into effort by the second submodel, the Producti­
vity model. Because of the constraints of lack of rules 
and empiric data, as well as the needed adaptation to 
changing environments, in this research both submo­
dels are realized by (backpropagation) neural net­
works (see section 2.4). The topology of the networks 
and their training have been subject to examination.

Problem
Characteristics

Environment
Characierislics

Figure 15: Neural networks in a budgetting model

The research considered is a common project of the 
NMB Bank (the Netherlands) and the Delft Universi­
ty of Technology. The results achieved are satisfactory 
[Pellikaan and in ’t Veld, 1990]; these will be publis­
hed in the near future.

5.2 Optima! air-route selection

Recent years showed an increasing trend in the 
number of delayed European flights with a delay of 
more than 15 minutes (see Fig 16). A substantial part 
of these delays was due to a growing congestion in the 
airspace. Causes for this congestion are among others: 
shortage of air-traffic controllers, lack of radar capaci­
ty, incompatible air-traffic control systems and the (in 
time and space compressed) number of (lights to be 
dealt with. One of the options to avoid or reduce the 
delay caused by congestion is to fly over less popular, 
hence less congested, routes. It is not known in advan­
ce, however, which of the possible alternative routes 
has the least delay. It is also unknown whether the ad­
ditional operational cost of these, often longer and 
more expensive, routes counterbalance the gains of 
less delay.

The problem of choosing the (near) optimal route in 
a particular situation focusses in the very essence on 
determining the (for the moment unknown) quantiti­
es:
—- actual departure-times of each of the possible rou­

tes
— cost of delay as a function of delay-time.

The problems that arise in determining these quan­
tities are due to the fact that there are no data about 
the consequences of delays and about the cost of these 
consequences. Furthermore, the actual time of depar­
ture for a route is unknown until the authorities (in
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Figure 16: Flight delays from January 1986 until June 1989

the Dutch case, the RLD: Dutch Airspace Authority) 
have determined a time-slot for departure, while only 
one slot at a time can be requested from them.

A numeric simulation model to calculate the cost of 
a delay as a function of delay-time has been built with 
the use of the simulation-package STELLA (a graphi­
cal simulation tool, originally designed to model fi­
nancial and economical processes). The model is ba­
sed on extensive research with respect to the causaliti­
es and values of the parameters of a particular schedu­
led service (KL501) Amsterdam-Athens), big. 17 
shows a typical graphical representation of a part of 
the model, that is mainly meant to calculate the influ­
ence of the delay on passenger yield. This submodel 
also deals with some elements, that are hard to quanti­
fy, such as cost of non-quality experiences by passen­
gers as a result of a delay. The spherical shapes in 
Tig. 17 represent the parameters, defined as mathema­
tical functions of other parameters or as constant va­
lues; the arrows represent relations between these pa­
rameters.

Inklm l Inbml yieldtrftti bml rftb kirn 1 rwnc^i 1 nouqbhotel 1 good 1 pasl Ir r t  noritq

depdelay goodcon3 dep3

Figure / 7: Submodel for calculating the influence o f a delay on the
passenger yield

With the aid of this model an empirical sensitivity 
analysis has been perfomed to determine the influen­
ce of some 55 relevant parameters on the model’s out­
put. Parameter sensitivities are determined in three 
different setpoints, then averaged, and the results here 
of are compared with their average (see big, 18). The 
sensitivity analysis shows that there is a limited num­
ber of more sensitive parameters. After further investi­
gation it became evident that a few of these can be 
quantitatively evaluated without any problem, but 
a seven parameters cannot, since the information nee­
ded to this is incomplete for the parameters cannot di­
rectly be expressed in numeric values (e.g., passenger 
satisfaction). So, further research had to be concentra­
ted on a “quantification” of these seven parameters. 
With them known, and given the actual departure-ti­
me per route (the main input variable for the model), 
the model can provide the final cost per route. The 
route with the minimum cost is the wanted optimal 
route. Unfortunately, also the actual routes’ departu­
re-times are unknown in advance and should in a way 
be predicted on the basis of past (incomplete) data.

The above problem might be solved by coupling to 
the numerical simulation system additional modules 
based on other techniques, such as knowledge-based 
or ANN approaches (or perhaps constraint propagati­
on techniques). At present, it is tried to estimate the 
unknown departure-times by using an ANN appro­
ach, A (backpropagation) network architecture has 
been designed (and is currently being tested) to pre­
dict delays (i.e. differences between actual and sche­
duled departure-times) for multiple routes in a given 
situation on the basis of available historical data.

The project considered is a common project bet­
ween KLM (Royal Dutch Airlines) and Delft Univer­
sity of Technology.

5.3 Guarding of a mechanical “ fingerprint”

All rotating machinery generate their own vibration 
patterns, the analysis of which renders valuable data 
about the condition of the machines. This so-called 
“fingerprint”, represented by a repetitive waveform, is 
composed of multiple time-varying real-time respon­
ses 1 ¡(t) (such as acceleration, velocity, pressure and 
temperature), detected by superior surface mounted 
transducers, which are mounted practically near or 
even within the Mechanical Assembly (MA) in order 
to be able to produce optimum responses. Diagnostics 
performed in an early stage not only permits estimati­
on of the remaining life of each MA, but also is of 
particular engineering interest in order to be able to 
non-destructively evaluate the overall conditions and 
in situ determine the amount of degradation of the va­
rious subparts with respect to preconditioned toleran­
ces.

A more efficient use of all the information embed­
ded in the vibration signal can be achieved by charac­
terizing the differences (due to disturbances and wear
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Figure 18: Parameter sensitivities

of the mechanical components within a MA) with re­
spect to the “fingerprint” by analyzing either the Po- 
wer/Frequency or Amplitude/Frequency spectrum. 
In order to be able to exploit the real-time situation to 
the utmost, the processed result of the previous trai­
ning-set has to determine the moment of occurrence 
of the next training-set. So, superior occurring defects 
of increasing gravity will decrease the time with re­
spect to the succeeding training-set. This can be achie­
ved by developing a mechanism in which an actual 
trespassing of a predetermined “error” threshold ap­
points the moment of occurrence of the next training- 
set.

Figure 19: A block-schematic overview of the "fingerprint" analysis
and guarding

After the time signals have been transformed to 
a discrete frequency spectrum by way of a numerical 
DFT algorithm, an array of numbers, representing the 
amplitudes of the various frequency components, is 
subject to a connectionist analysis with the help of an 
ANN algorithm (see Fig. 19). ANN techniques, sup­
porting massively parallel networks of simple structu­
red neurons, offer an approach to recognize differen­

ces in patterns based on automatic learning procedu­
res. The application is attractive, not only because it 
provides faster responses, but also because of its capa­
bility to automatically discover irregularities in a pat­
tern not seen or detected before. It even enables the 
discovery of regularities in the training signal itself as 
a consequence of the learning process.

A backpropagation algorithm (see section 2.4) is 
probably the most applied method to perform a super­
vised learning task, which in this context means the 
adaptation of an ANN in that actual outputs Ok(t) ap­
proach a set of target outputs Tk(t), given a training- 
set containing P learning patterns. But before varia­
bles or parameters can ever be adapted, first a training 
database of actual information and correct classifica­
tion have to be processed. An overall bandwidth of at 
least 2 KHz combined with a frequency interleave of 
2 Hz composes a database, filled up with 1 000 discre­
te frequency components. Classification of a certain 
vibration guarding pattern could easily require 100 of 
such learning patterns, which not only represents the 
actual “fingerprint” but also the alterations caused by 
the influences of mechanical failures.

During execution, the “interconnection topology” 
will first define the influence of the inputs I,(t), on the 
(in our case five-digits wide) actual outputs Ok(t), ta­
king into account the information of the disired 
results Tk(t). This relationship then forms a set of 
weights W,j, representing the variables or parameters, 
which will be adjusted concurrently during the lear­
ning process. The procedure passes into a so-called 
“learning rule”, during which the weights are adju­
sted as to force the actual outputs Ok(t) to approxima­
te the desired results Tk(t),

The final goal is to adapt the parameters of the 
ANN in such a way that it also adapts to those pat­
terns, which were not generated before in the original 
training-set. A feature of essential importance when 
processing data with varying contents due to changes 
in the location of the sensors and possible deformati­
ons in the material.

The project considered has been started at Delf 
University of Technology and will be continued in 
cooperation with the Academy of Sciences in Prague 
(Czechoslovakia).

6. Final Note

In this paper we surveyed the usage of numeric, 
symbolic, connectionist and coupled systems to “pro­
blem solving”. The emerging role of parallel proces­
sing in all of these has been stressed.

We have made the suggestion that integrated envi­
ronments to run simulations, expert systems, artificial 
neural networks, and combinations of these (coupled 
systems) could perhaps provide along with intelli­
gent front- and back-ends — the ideal toolboxes for 
“problem solving”. It is the authors opinion that the 
ideal hardware platform for such integrated environ-
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merits is a distributed network ol dedicated processors 
or a heterogeneous parallel computer, in which the 
above different techniques could run (councurrently 
and with mutual data exchange) on different dedica­
ted (clusters of) processors. Such heterogeneous paral­
lel machines do not exist. The best alternatives are 
provided by (massively) parallel computers that are 
really “generalpurpose”, i.e. with powerful nodes, fast 
and sufficiently dense interconnection structures, ex­
tensive local memories and appropirate general-pur­
pose software facilities. We think that, for example, 
NCube’s 2nd-generation hypercube parallel compu­
ters, launched as (massively) parallel systems for both 
scientific and business purposes which also underli­
nes their general-purpose character, are very suited 
for research as considered above.

There will come a time that it is feasible to imple­
ment, on an appropriate multicomputer, several large- 
scale intelligent systems, large-scale AN Ns and com­
plex simulation systems, that — if necessary con­
currently operate and interact with each other in a tru­
ly real-time mode. The obstacles and problems to sol­
ve on the way to such advanced “coupled-systems en­
vironment” will be numerous and so complex that to­
day we only can start attempting to handle them. This 
paper intends to stimulate thinking and discussion 
about further research needed.
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INFORMATION STORAGE IN 
NEUROCOMPUTING

V, Cimagalli, M. Baisi*), A. De Carolis**)

Abstract:
In this paper we introduce the concept of “ relational 

informations” as a peculiar property of neurocompu­
ters. In fact, due to the distributed way of storig and 
processing information, the organized structure of 
a neurocomputer adds significant relations to data fed 
to it and this is the reason why it is able to generalize 
from a limited number of training inputs. After having 
summarized the most significant results related to our 
problem, available in the literature, we suggest methods 
for measuring the said relational information both in 
a dynamic system as a chaotic map and in a neural net­
work of any kind.

1. Introduction

Regardless of the particular kind of neural network 
under consideration, we may look at it as to black box 
with an input and an output. Its purpose is to process 
the information contained in the input signal in order 
to obtain some specific result as, e.g., to recognize pat­
terns, to classify data, to detect moving objects, to sol­
ve a problem of minimum, etc. This means that the net 
maps the space of all the admissible inputs into the 
space of its outputs according to some well defined 
rule. The peculiar characteristic of neural networks is 
that such a rule (i.e. the rule or the algorithm that al­
lows the desired result to be obtained) does not need 
to be explicitly formalized as in the case of AI. Never­
theless such a rule exists and is an amount of informa­
tion stored into the network. A deep understanding of 
the mechanism by which such an information is loa­
ded and stored in the network should be paramount 
for using the best way each type of neural network, 
for choosing the particular network most suitable for 
solving a given problem and for devising new and mo­
re powerful architectures.

Knowledge, a systematic comprehension of infor­
mation processing by means of neural networks is still 
an open problem far from being solved. In our opini­
on this is due to the twofold way through which the
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research in such a field has developed. On one hand 
we note the works of neurophysiologists and physi­
cists, the aim of which has been to develop models of 
physical and chemical processes occurring in the lear­
ning of living beings: they did not pay too much atten­
tion to questions related to information or made a mi­
sleading use of concepts proper to information theory. 
On the other hand, engineers, who should have been 
more familiar with information theory, generally have 
preferred to overcome deep theoretical problems and 
work hard to solve actual problems by means of heuri­
stic methods.

Among the more significant problems related to the 
study of the behavior of information in neural net­
works, we may quote:

1. Is the classical definition of information, as sta­
ted by Shannon in 1948 for the purpose of its use in 
communication theory, still valid in our case or does it 
need to be revisited? And the algorithmic theory of in­
formation too, how much turns out to be useful in 
a computing structure where no sequential algorithm 
is present?

2. As the “content” of a message (i.e. of the input to 
the neural network) and the “association” of the mea­
nings of different inputs play an important role in 
neurocomputing, how, where and in what quantity is 
information stored in the network for accomplishing 
semantic and relational tasks?

3. Independent of the fact that learning is previous 
to, or simultaneous with the processing phase, do dif­
ferent sets of inputs having the same amount of bits, 
or the same set stored in different architectures, or in 
the same architecture in different places with different 
strategies, give rise to the same amount of stored in­
formation?

4. If the answer to the last question is negative, (a) is 
it convenient to speak of a “relation information” as 
the information related to the structure of the mathe­
matical relations and/or to the architecture of the net­
work that process it and (b) is it possible to devise 
some method for measuring it?

In part 2 of our paper we will briefly review the 
main trends and the main results available in the lite­
rature related to our previous questions. In part 3 we 
will introduce the concept of relational information as 
applied to a mathematical relationship and to the abi­
lity of generalization of a neural network.

Cimagalli et al: Information Storage in Neurocomputing 155



2, Classical approaches to informational que­
stion

2.1 Semantics in neurocomputing

A general neural network can be depicted as in 
Fig. /.

input X = F(X, W\ t) IV = 11{X, W; t) -* output

hg. /

where .V is the vector of state, W is the vector defining 
the dynamics (in the more current cases it is the vector 
of weights) and Fand H are nonlinear functionals or 
functions.

It would be advisable that a neural network be able 
to perform the following tasks:

1. To recognize the inner coherency of its input da­
ta;

2. To classify them by detecting some of their inva­
riants (e.g. with respect to translation, rotation, added 
noise, etc.) and taking into account its previous expe­
rience.

3. To take some appropriate action in the case of 
meaningless input data.

From the standpoint of information theory, such 
a set of operations may be viewed as a twofold coding 
function: a dynamic or static coding definition and an 
encoding of the input signal. However, as the concept 
of “meaning” is involved, the question arises as to the 
quality and the amount of information that need to 
have been stored into the network in order to render it 
amble to distinguish between a “meaningful” and 
“meaningless” input signal.

In the late fifties D. M. Mac Kay, in a series of bro­
adcasting talks and papers, faced the problem of se­
mantics in communication and in representation of 
some physical or non-physical (mental or ideational) 
aspects of experience. He said [1] that “information 
may be defined in the most general sense as that which 
ads to a representation" Hence a criterion for defining 
false or true a set of input data is strictly related to the 
diminution or to the increase of the extent of corre­
spondence between this set and the original represen­
ted by it. Applying this concept to neurocomputing, 
we can deduce that: Lit is convenient to relate the 
amount of information entering a network with the 
dynamic operation of changing the state of it, and 2. it 
is necessary to refer to an original. Such an original 
may be a thing (e.g. a learned pattern in a usual neural 
network) or a rule. This is well explained again by 
Mac Kay [2] when he examines the sentence “This 
message is meaningless” and writes that it means 
“This message lacks a selective function . . .  it has no 
selective relationship to . . .” and adds that “now it is 
possible for something to lack a selective function for 
two reasons: (a) one or more of its component terms 
may be undefined — may have no selective function
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— so that the total selective operation is undefined; 
(h) two or more of the component selective functions 
may be incompatible, so that the total selective opera­
tion cannot be completed.” Once again we are led 
back to the problem of storing in the computing archi­
tecture either definitions or rules forjudging of com­
patibility.

More recently Haken [3] observed that it is possible 
to attribute a meaning to a message only if the respon­
se of the receiver is taken into account. Therefore he 
deals with system interacting with surroundings, i.e. 
with open systems from the point of view of thermo­
dynamics, and models the receiver by the Langevin 
equation. Under this hypothesis it is possible to judge 
if a given message is useful or not; the usefulness co­
inciding with the jump of the receiving system from 
one attractor (fixed point, limit cycle or strange attrac­
tor (fixed point, limit cycle or strange attractor) to 
another. An input is useless if it leaves the system in 
the previous state and therefore it is “meaningless”.

If, in addition, we attribute to the attractors a relati­
ve weight 0 < p ' < 1, normalized in such a way that 
!,/?' = 1, it is possible to classify messages according 
to their utility, and hence according to their content of 
“meaning”. Let M jk be the normalized (Lk M jk — 1) 
probability for the attractor k reached after input / has 
been received; we define as the relative usefulness p t 
of the input / as the following:

v k P, = Xa
M,

I  / M* Ë P* ( ! )

where /; is an arbitrary small quantity that prevents the 
numerator and denominator from going to zero simul­
taneously.

We note that such an approach (a) requires an a pri­
ori classification of the attractors (i.e. it needs some in­
formation related to the “meaning” of admissible in­
puts to be stored into the receiver — in our case into 
the neural network) and (h) gives a criterion for choo­
sing the “most meaningful” messages. In a certain 
sense we get an answer to question 3 of our Introduc­
tion, as according to Haken’s classification not all the 
sets of inputs having the same amount of bits are equ­
ally useful and we may find the existence of some “re­
lational information".

It should be pointed out explicitly that such a “rela­
tional information” as introduced in question 4 of our 
Introduction is different from Mac Kay’s “structural 
information”. In fact the latter is defined as the basal 
multiplicity o f distinguishable groups or clusters [ 1], whi­
le our “relational information” stresses not a merely 
dimensional property, but the proper choice among 
equidimensional sets that are not equivalent because 
of different relations between their elements. As a trivi­
al example we may note that the set of the numbers 10 
and 2 has different meanings (and the resulting num­
ber needs a different number of bits to be represented) 
if we choose one or another of the following expressi­
ons :
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10 + 2, log210, 210, 102. (2)

In Haken’s work the necessity of storing in the net 
an a priori classification of the relative importance of 
the attractors is still present. This renders the net scar­
cely useful in dealing with time varying inputs, as the 
structure of its state space is fixed in advance and mo­
reover it needs a rigid classification of the things that 
are meaningful. Such a way of operating corresponds 
to verifying the meaning according to the rule (a) of 
Mac Kay that we quoted above in this paragraph (i.e. 
the selective function is based on definition of terms). 
On the contrary it would seem of more general utility 
and more similar to the behavior of living beings to 
use the rule (b) of Mac Kay (i.e. to use logical rules for 
judging of the inner coherency of the input).

Some efforts in this direction have been made by 
our research group. We are pursuing research on a ar­
chitecture with weight dynamics granting a conti­
nuous redefinition of its state space [4] [5] and on an 
architecture able to recognize moving objects [6],

2.2 Information and organization

Obviously the behavior of a neural network de­
pends on its architecture and on the actual values of 
its parameters, i.e. on the way its data is organized. It 
is well known that information is stored in a distribu­
ted fashion and therefore we may argue that the archi­
tecture itself is able to store information in a more or 
less efficient way.

Complex systems were considered by Atlan [7] who 
studied a system composed by several subsystems 
connected to each other by noisy communication 
channels and deduced equations describing the infor­
mation supplied to an observer as a function of time, 
noise and interaction with environment. Although his 
analysis is very clever, its hypothesis seems at present 
to be too far from being immediately applicable to 
neurocomputing.

Other authors studied problems specifically related 
to neural networks, but the influence of organization 
on information is considered from the point of view of 
how dynamics evolves rather than from the point of 
view of how information is stored. So Parisi [8] found 
that asymmetry in the synaptic strengths may be cruci­
al for the process of learning, while Tsuda et al. [9] 
proposed a mechanism with positive and negative 
feedback that gives rise to a type of chaos that can be 
an effective gadget for memory traces.

If we take again into consideration the Langevin 
equation in the case of a system made up of several 
subsystems and limit ourselves to considering only de­
terministic stationary solutions (i.e. fixed points), it is 
possible to arrive at some interesting conclusions. 
This has been done by Haken [10] and the results may 
be summarized as follows; (a) the amplitudes of stable 
modes (modes corresponding to eigenvalues A, < 0) 
can be computed as a function of the amplitudes of
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the ¡stable modes (i.e. with A, < 0) and (b) as a conse­
quence, it may happen that even important changes in 
the macro-structure of the system require only a little 
change of the amount of information necessary for 
describing it and this corresponds to a strong com­
pression of information. Unfortunately such intere­
sting results have been obtained at the expense of 
strong simplifying hypotheses, the most important be­
ing linearization. Therefore the criticism expressed 
with regard to the work of Atlan applies once again.

Nevertheless the quoted works may be considered 
as the first useful stones for building up a systematic 
theory of relational information.

2.3 Memory capacity of a neural network

As neural networks are mainly used as classifiers, it 
is evident that one of the most important problems is 
to know how many different patterns a given network 
is able to recognize correctly. In the case where the 
network acts as a dynamic system that evolves from 
an initial point or state (the input pattern) to a stable 
attractor (the corresponding reference pattern), a very 
simple and intuitive formulation of the problem seems 
to be that it consists in finding the number of attrac­
tors, each attractor corresponding to a memorized pat­
tern. Nevertheless such a problem is more subtle than 
how it may appear at first glance. First of all, it is ob­
vious that the capacity of a network depends on the 
architecture of the network itself and on its size, but 
there are two other important factors: the learning al­
gorithm and an exact definition of what the words “to 
recognize correctly” mean. Therefore, besides being 
of great importance in the field of neurocomputing, 
the estimate of the capacity of a neural network has 
been a challenging topic in information theory. Despi­
te this fact, some results have been obtained only in 
very particular cases and a general theory is not yet 
available.

Only the Hopfield network with one and three 
layers has been investigated and some sufficient con­
dition is known for cellular neural networks. Huh and 
Dickinson [11], extending results obtained some years 
earlier by McEliece et al. [12], computed values of ca­
pacity for a Hopfield network with only one layer, 
using the outer product algorithm for learning, under 
different conditions of operation, which differ from 
each other because of the use of the idea of probabili­
ty in defining what we called “proper recognition”. 
From there, in the asynchronous case three different 
kinds of convergence follow which we summarize in 
this way:

— convergence a: at every step the point in state 
space representing the actual state of the network mo­
ves along a straight line toward a fixed point;

— convergence h: movements of the state point oc­
cur with the amount o f probability great hut less than 
one toward a fixed point that ultimately is realched as 
in case a ;
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— convergence c: with a great probability, the state 
point reaches a new fixed point that is much nearer to 
the correct point than the starting point was.

The said values of capacity C(n), where n is the 
number of nodes of the network, are:

A) Convergence a is required for almost all the me­
morized patterns:

where 0 < a < 1/2 is a parameter (called radius of 
convergence of the associative memory) associated 
with the dimension of the basin of attraction.

B) Convergence a is required for all the memorized 
patterns:

the Hamming distance between the patterns to be sto­
red as well as betveen them and the patterns to be re­
cognized. Probability is not at all involved in the defi­
nition of capacity. Their studies are still in progress, 
as the said condition seems to be too restrictive and 
far from the necessary one.

All of the studies noticed, focused on capacity, con­
sidered only one aspect of information storage in neu­
rocomputing, i.e. what is equivalent to memory size in 
sequential machines. An attempt to encompass such 
a limited point of view has been made by introducing 
in some way the concept of probability, but the pro­
blem of evaluating how much information, useful for 
processing the incoming information, is stored both in 
the memory and in the architecture o f the network, has 
not yet been faced.

C(n) n
In (n) (4)

C) Convergence b is required for all the memorized 
patterns:

C(/7),
n

4■In(n) (5)

D)C divergence b is required for almost all the me­
morized patterns:

C(n)n = 2 ■ C(w),. (6)

E) Convergence c is required and an amount of er­
ror of 10 4 is admitted:

= 0.0723 n (7)

In the case that learning is made by means of the 
spectral algorithm, Venkatesh and Psaltis [13] found 
that:

C(n), = n (8)

A greater value of capacity was found by Mitchin- 
son and Durbin [14] in the case of a three layer Hop- 
field network, with n input nodes, h hidden nodes and .v 
output nodes (s < li < n ). However it should be no­
ted than in this case they assumed as capacity C the 
number of input-output pairs that the network can 
store while the error probability does not exceed 0.5. 
Under these assumptions they arrived at the following 
inequalities:

2// < C < nt • log(0 (9)

where t = 1 + h/s.
In a recent paper [15] Tan, Hao and Vandewalle 

found a sufficient condition for k sub-patterns to be 
stored in a cellular neural network using the Hebb ru­
le. This rule is founded on some relations concerning
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3. The relational information

We think that a neurocomputer stores some data 
but also, even more importantly, an algorithm for 
using these data. Moreover the structure of the set of 
stored data can itself contain more or less information 
according to the task to be performed, even if the 
amount of stored bits is invariant. Having such an 
idea in mind, we started to investigate how to suggest 
some methods for evaluating such particular informa­
tion, hidden within the relations implied bv a formula 
or by the architecture of a network.

In the present paper we limit our attention to neural 
networks that act as dynamic system evolving to at­
tractors that are fixed points only. This is due to the 
fact that only this case was taken into account in the 
current literature on the topic of our interest and we 
summarized. However it is also well known that other 
kinds of attractors can be used in neurocomputing 
and in particular our research group is investigating 
the use of chaotic dynamics as possible devices for 
storing information [16].

For this reason we present now in the next sub-pa­
ragraph an original study on the measure of informati­
on stored in chaotic dynamics [ 17]. Such a research 
also led to rather interesting results in the field of 
communication as a means for reducing transmitted 
information.

The second sub-paragraph will deal more directly 
with neurocomputers and will report on research on 
the ability of a neural network to acquire knowledge 
by induction [18],

3.1 Information properties of chaotic dynamic

In this section we discuss how information is pro­
duced, processed and stored by a chaotic dynamic sys­
tem: we will show that such a system has a behavior 
which is quite peculiar as compared both to ordinary 
deterministic and to stochastic systems. A series of da­
ta obtained from observations of the evolution of

NNW 3/91, 155-162



a chaotic system displays a hidden structure that can 
be recognized and exploited.

The most striking feature of chaotic dynamics is 
a strong local instability: orbits diverge locally expo­
nentially (at least in one direction) and are eventually 
kneaded. Supposing that we can divide the state space 
into a finite partition (because of limits in the precisi­
on of measuring or computing), it happens that the 
points contained in one of the subsets spread over ma­
ny subsets and eventually fill the whole attractor un­
der the action of the dynamics. This menas that the 
entropy of the set is varied, and information is not 
conserved; as a consequence we lose ability to fore­
cast the state into the future. This is explained in phy­
sics by observing that the system is non-conservative, 
and described by means of instability parameters such 
as Lyapunov exponets. From a mathematical point of 
view, topology and the theory of measure are applied, 
and scaling parameters computed.

Both approaches to the problem are found to be in­
sufficient in engineering because the dynamics is des­
cribed globally, but no knowledge is available about 
the semantics, that is how information flows through 
and is processed by the system. K. Matsumoto and 
!. Tsuda [19] dealt with the problem of tracking the in­
formation about initial conditions, but in the quoted 
paper they kept themselves on a qualitative level.

We claim that to understand the informational pro­
perties of chaos a study is needed of the structure of 
the data produced by the evolution of the system. The 
key consideration for our reasoning is that chaotic dy­
namics lives on the border between determinism and 
change: even if the system is totally determined, the 
knowledge of it does not allow for long-term predicti­
on, so that the behavior appears eventually random, 
and our inability to follow the orbits is inherent in the 
structure of the system. This structure should be re­
cognized and respected when attempting to measure 
information.

Looking at a stream of data produced by a chaotic 
system (we have studied maps on the unit interval that 
are time-discrete), it is possible to extract from it an 
approximate representation of their generation law. 
However, even if we were able to reconstruct it exac­
tly, as we have argued above, this is not enough to 
predict future data. So if we want to compute the sa­
me data by letting the reconstructed dynamics evolve, 
we need additional information to keep the precision 
of the computation to a given standard; for one-di­
mensional systems the average information change 
amonts to the Lyapunov exponent for each time step. 
We divide in this way the stream of data considered 
into two streams; the first, which we call “prediction 
flow”, conveys information about the dynamics, e.g. 
parameters of a reconstruction, the second, called 
“unpredictable flow”, completes the information 
about the actual data. We note here that the amount 
of information stored in the prediction How is much 
higher than one could expect by merely computing 
the number of transmitted bits. This is due to the fact

that, as already stated, it conveys information about 
the dynamics, or, in other words, “relational informa­
tion”.

We have developed a model of a communication 
system that implements this splitting of information 
and tested it by computer simulation. As was conjec­
tured, this system does information compression, 
which is stronger when the system is less chaotic, This 
is obtained by processing the data to extract a polyno­
mial reconstruction of the chaotic function, using an 
algorithm developed in our research group [2 1 ], and 
transmitting the coefficients of the polynomial as pre­
diction flow; the unpredictable flow is made of the 
symbolic dynamics associated with the system. Opera­
ting like that, the information How can be dramatical­
ly reduced, because the amount of information requi­
red for transmitting the prediction flow is almost ne­
gligible even with a limited amount of data processed, 
while the unpredictable flow conveys one symbol per 
data (data are real numbers!).

The following computations will show how a stora­
ge of information is produced by attaching to a set of 
numbers the meaning of being coefficients of a poly­
nomial approximating the dynamical function. Let 
h ( ri, N) be the number of bits per data needed to re­
present a data How of length N within a mean square 
error of rr, by applying the optimized chaotic coding 
sketched above. Let nu (rr) and (rr) be the same 
quantities in the case where we apply a traditional uni­
form or statistically optimized quantization (we consi­
der here also non-integer values of nu and /2opt, obtai­
ned by reversing the formulas for a(n) that can be 
found in the literature [2 2 ]).

We define “statistical information” as the diffe­
rence

I ,  -  n „( c T)  -  {(7) .  (10)

This quantity is non-negative, and has an explicit ex­
pression which does not depend on a, but just on the 
shape of the distribution of the data. Statistical infor­
mation measures the amount of information contai­
ned in the statistical structure of the data.

Additionally, we denote the “deterministic informa­
tion relative to the N data” as

/,/(<t, N) = nopt(a) -  n,(<j, N) (11)

and the “absolute deterministic information of the sys­
tem” (or just “deterministic information”)

¡A<T) -  lim 7,/(rr, N). ( 1 2 )
— * oo

Deterministic information measures the amount of in­
formation contained in the deterministic structure of 
the data. The behavior of / (/(<t) must obey the conditi­
ons:

lim /,/ ( rr ) ~ + oo (14)
rr—»0
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lim /</(£) = 0
CT—’ + CQ

(14) 3.2 Information involved in the generalization process
of a neural network

which correspond to the limit situations of exact or no 
knowledge of the dynamics.

As an example we the case of a very simple chaotic 
system described by the relation

xn 4 | = 0.95 sin (nxn) (15)
-x, e [0 , 1].

f lows(b it/da ta)

2 0
15

to

5

O
1 0 ~ 7 1 0 " 6 1 0  ' 5 1 0 " 4 1 0  3 1 0  2 

mean square error

Fig. 2 Information flows as a function of the accepted error, for 
function 0,95 sin(pi. x)

Figure 2 shows n f a ), wOPr((T) and n f ( r) on a bro­
ad range of rr; is not shown as depending on N be­
cause it settles on a value very close to l independet 
of <7 already for N in the range of thousands, due to 
the fact that the prediction flow is in this case very 
low, so that the total flow is almost completely the 
flow of symbols that are here binary.

It is apparent that I d has and exponetial behavior, 
which is consistent with the conditions stated above. 
It also evident how large the deterministic informati­
on is, as compared to the total.

The definition of deterministic information can give 
us a clearer view of how information is stored in a ma­
thematical expression. At first consideration, we 
should say that a known dynamic function stores infi­
nite information and produces nothing neew (i.e. un­
predictable) in its evolution. Actually, as in no practi­
cal case may we suppose an exact knowledge or repre­
sentation of the function, expecially when dealing 
with chaos, deterministic information may be exploi­
ted to measure the amount of information linked to 
the approximate knowledge of a dynamic function, se­
parating it from the information linked to the pseudo­
random behavior peculiar of chaos.

The study of such quantities could provide valuable 
hints for the design and operation of neural networks 
exhibiting chaotic evolution.
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We consider below the deductive and inductive cha­
racteristics of the neural processing of information 
and give a measure of the generalization capability of 
a neural network.

PROPOSITION 1 : A digital neural network is able 
to implement any boolean logic function: for any given 
algorithm there is an appropriate neural network that 
implements it.

The dimension of the network (number of nodes 
and number of synaptic connections) will depend on 
the particular algorithm and on the chosen architectu­
re, but the focal point is the capability of a neural net­
work to implement a logical function anyway: a con- 
nectionist system is a universal deductive automa­
ton [23].

DEFINITION 1 : Generalization bv induction in the 
neural information processing is the capability to learn 
an algorithm without using the entire amount o f  infor­
mation about it.

If we select a subset of possible inputs to the neural 
network (an appropriate training set) and, after the le­
arning phase, the network is able to make an exact 
mapping of the inputs into the outputs, according to 
the algorithm, we can say that the network performs 
a total generalization. On the contrary, if the number 
of the correct outputs of the system is random we say 
that the generalization process did not happen.

Now we consider a neural network with p n and nOM 
binary inputs and outputs. Moreover we define an al­
gorithm p as an operator such that for all 2"'" input bi­
nary arrays the 2" output arrays are univocally defi­
ned (Fig. 3)

x input output

Y= Pf x )
V X 6 XV ye T

Fig. 3. Pertaining to the definition o f “algorithm "

PROPOSITION 2: The amount of information neces­
sary for a system with nm and wout binary inputs and out­
puts to implement and algorithm F is expresed by

Aiet ( P* ) ~  ~p b i t  ( , 6 )

where P is the probability that the network, untrained, 
is able to respond correctly to all the inputs:

P = Pr( Y= F (x), Mx e X  and Vye Y (untrained ne- 
tvork)

Intuitively this probability P is smal and then the 
quantity Ine[( F ) will be a large amount of informati­
on. To evaluate the said probability Pwe assume that:
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A) The nom events are statistically independent and 
équiprobable, i.e.:

q, = Pr(yt = P {x) | Vxe X  (untrained network)
(17)

q, — q V / = 1

B: In the situation of an untrained neural network, 
synaptic connections have random values and theore- 
fore

q = 0.5

C: The events “exact outputs ye Y of the untrained 
network, according to the algorithm”, are statistically 
independet.

Under hypotheses A and C we obtain the following 
expression for the probability P:

As pointed out in the Introduction, in our case we 
are not dealing with an amorphous amount of infor­
mation, like that stored in the memory of a digital 
computer or traveling in a communication channel. 
Then it becomes evident that the organized structure 
of the network plays an essential role in the total ba­
lance of information. In the trivial example by (2) we 
showed that different results are obtained if number 2 

is next to the number 10 as an addend or as an expo­
nent: the numbers are the same, but their relation is 
different. Analogously we claim that the architecture 
of the neurocomputer introduces relations between the 
different items of information supplied to it and that 
also this fact turns out to be an amount of informati­
on. Moreover we are now able to quantify it and give 
the following

DEFINITION 2: We call “relational information” 
stored in a neurocomputer the following quantity:

T- Pr(\ y(l) = P \ a-!1))(, . . , |T ' 2.*= P’( \ 2 ’)} /
/  untr. net.) = (q" )" (18)

Now, from (18), hypothesis B and Proposition 2, we 
are able to calculate the following expression for the 
information amount /ncl(P ):

7net( 0  = 2"in • nou{ bits (19)

This is the amount of information that should be 
necessary to supply to the network in the case of using 
for the learning all the possible inputs x e X.

On the contrary, if in the learning phase a set of
only m « l""' inputs were used, the amount of informa­
tion supplied to the network should be:

7nel(m) = m . noul log2(//q) = m.noul bit (2 0 )

Actually the true amount of information supplied to 
the network is greater than the quantity computed by
(2 0 ), because it is assumed that the used set is an ap­
propriate set, i.e. its elements are supposed to have 
been chosen in such a way to put into evidence as 
much as possible the rule to be learned by the net­
work, So, e.g., if we have to implement an algorithm 
for separating two clases of elements, one should not 
choose a training set containing only elements of one 
class. The evaluation of such a supplementary infor­
mation /(is still a matter of investigation. Nevertheless 
we may suppose that its relevance diminishes as m in­
creases and we will neglect it in the following.

If the network is able to perform a complete genera­
lization after having been trained by means of m in­
puts, we may state that:

(a) the behavior of the network under consideration 
is the same as that of a network having an amount of 
information /uel (P*);

(b ) the amount of information actually supplied to 
the network is inel(m)+Ic.

A/nct(m) = /1U, (P ' ) ~ luc[(m) -  l  noul . (2 ""’ ~ m)
(21)

As an example we may consider the simple case of 
classifying N elements in M classes. As

«in = [ log2 N ] and noM -  f log , M j (22)

if we suppose that a complete generalization is obtai­
ned training the network with only the most signifi­
cant element of each class, the relational information 
stored in the network is:

/„«(M) = [log2M] ■ (2 N- M )  (23)

The amount of sucha relational information can be 
not at all negligible. E.g. we consider the particular ca­
se of the experimental results obtained by Paternello 
and Carnevali [24]. They implemented the 8 -bit sum 
by a network of 80 nodes and obtained a complete ge­
neralization with a training set of m = 2 2  inputs out of 
the 64,000 possible. Applying (21) we obtain:

AInel (224) = 8 . (2 16 -  224) -  522496 bits (24)

4. Conclusions

We have examined the problems connected with in­
formation storage in neurocomputing putting into evi­
dence (a) that many current ideas need to be revisited 
and probed further and (b) that the architecture of the 
neurocomputer is itself able to store information inde­
pendently of the actual data fed to it. We have called 
this type of information “relational information” and 
have shown how it is possible to measure it by carry­
ing out the difference between known quantities.
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BINARY NEURAL NET: A LOGICAL NETWORK 
MODELING SOME FEATURES OF NEURAL NETS

XI. Jifina *)

Summary
The paper deals with possibility of using the principle 

of ordinary digital logical elements for design of a ino­
de! of neural net. The two-layer structure of AND and 
OR logical gates similar to minimal disjoint form is in­
troduced. Active as well as adaptive dynamics is descri­
bed and it is shown that the net can serve as adaptive 
classifier, decoder and it can recognize „blurred“ pat­
terns, but it is not noise resistant.

1. Introduction

When classifying the neural nets two kinds of nets 
are usually considered [1]:

the „continuous“ or „analog“ nets. In these nets 
the input and output signals may be of arbitrary value 
from some interval of real numbers. The weights of sy­
napses are in essence arbitrary real numbers,

1». „binary“ nets having the input and output sig­
nals of two values only, preferably 0  and 1, or 1 and 
+ 1. The weights may be, as in the preceding case, in 
fact arbitrary real numbers, The function of the neu­
ron in the net of this kind is based in evaluation whe­
ther the weighted sum of input signals is greater than 
some threshold, or not. According to this the output 
becomes in one of two possible states [5].

In this contribution a special case of binary neural 
net is introduced. Not only inputs and outputs, but al­
so the weights may be in two or three states only. The 
weights have values — 1, 0  or I, the inputs have values 
0 or 1. Two possibilities in setting the threshold are 
used. In the first case the threshold is set so low, that 
a single positive or inverted negative input signal is 
sufficient to overcome it. Than the overall function of 
neuron is logical sum of direct (the weight + 1 ) or in­
verted (the weight —1) inputs. In the second case the 
threshold is set so high, that all positive and inverted 
negative inputs are necessary to overcome it. Thus lo­
gical product of direct or inverted inputs is accomplis­
hed. This kind of network represents a simplest purely 
digital kind of neural net. It is interesting from the po­
int of view of realization by digital technology.

The neuron with binary inputs and outputs is in no 
relation to standard logical networks. It may be mode­
led as an analog resistive network, where the conduc­
tances of resistors represent the synaptic weights [3].

*) Ing. Marcel Jifina, DrSc., Institute of Computer and Information Science. 
Prague. Czechoslovakia.

The neuron is then a threshold element and generates 
the threshold function

v,

/(.v , ....... y„) = 1 when X  (2r, - 1).y, > ,9,
/ i

0 (or I) otherwise.

In this formula .v,....... v„ are the inputs, v,, , , , vn are
the corresponding weights and .9 is a threshold.

Let a parallel /i-bit input signal, a pattern, be given. 
To detect it a single /7-inputs logical AND gate is suf­
ficient. The Ls in the pattern are directly connected to 
the inputs of the AND gate, the O’s in the pattern are 
connected via inverters. If only (/? 1) inputs AND
gate is used then one of signal bits (the / th) remains 
unconnected. The gate then detects two signals — pat­
terns as equivalent, just those having / th input 0  
or 1. From lessening of number of bits connected to 
the AND gate follows a broader class of signals detec­
ted as equivalent.

2. Theory of AND-OR neural net

2.1. Synapses of the AND-OR neuron

Definition 1. The pattern (or n  inputs pattern) is 
a vector of dimension //, having elements 0  or 1.

Definition 2. If the net generates some output com­
bination in response to a given pattern, it generates 
a feature of the pattern. The disjunction (or logical 
sum) of all undistinguishable patterns which generate 
the same feature form the maximal pattern My of this 
feature. The conjunction (or logical product) of all un­
distinguishable patterns which generate the same fea­
ture form the minimal pattern m v  of this feature.

Definition 3. The information is fed to the neuron 
by synapse. Each neuron has arbitrary but fixed num­
ber of synapses. Each synapse is any time in one of 
three states;

1. direct (noninverting),
2 . inverting,
3. disconnected (abolished, dead).
We denote the direct and inverting synapses as acti­

ve.

Definition 4. The stimulus of the synapse is a binary 
signal given by one element (bit) of the pattern.
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To the direct synapse corresponds the weight w = 
+ 1, to the inverting synapse the weight w = — 1. (Mo­
re exactly: the inverting synapse for stimulus equal to 
1 gives signal 0  to neuron’s body (soma), for stimulus 
0 it transfers signal 1.) The disconnected synapse cor­
responds to the weight 0. The disconnected synapse 
transfers no signal, but it doesn’t matter to the functi­
on, The neuron with disconnected synapse behaves as 
the neuron having one synapse less. For simplification 
of formal descriptions the states of synapses are deno­
ted simply by weights 1, 0 , —1.

2.2. AND-OR neural net

The AND neuron as well as OR neuron are arran­
ged as usual neurons are. We make difference bet­
ween the stimulus and the input to the body of neu­
ron :

Definition 5. The stimulus of the neuron or of the 
net is one pattern, whose individual elements form (as 
binary signals) the stimuli of individual synapses.

In the net one element of the pattern is an input of 
several synapses belonging to different neurons.

Definition 6. The input to the body of neuron is a bi­
nary signal coming from the output of active synapse 
(direct or inverting) to the body of neuron.

Definition 7. The AND neuron generates the feature 
just when all inputs to the body of neuron from active 
synapses are equal to 1.

Let us denote stimuli of direct synapses by xh . . .  jem­
and stimuli of inverting synapses by yh . . . y,. Then the 
AND neuron generates the logical function as follows

F= XiX, — VA.Vi.V2 • • • .Vi; (l)

The body of the neuron then generates the logical 
product.

Definition 8 . The OR neuron generates the feature 
just when at least one input to the body of neuron 
from active synapses is equal to 1 .

Using the same notation as above, the OR neuron 
generates the logical function

G -  X,+ x2+ . . . + xk + _y, + y2 + . . . V|. (2)

Definition 9. AND-OR neural net is a two-layer net 
with hidden layer formed by AND neurons and out­
put layer formed by OR neurons.

Usually we shall consider AND-OR neural net with 
simple OR neurons (i. e. neurons which have synaptic 
weights 0 or 1 only) in the output layer. Formally, i. e. 
without considering the kind of the neurons and kind 
of synapses, the structure of the AND-OR net is the 
same as of two layer perceptron.

The net of n neurons in hidden layer can be learned 
n different patterns in the sense of metrics according 
to next chapter.

Let two features P,, P2 be given. Let maximal and

minimal patterns Mu M2, mu m2 correspond to these 
features. If for some pattern v it holds

O’ c  (M, n Af2)) A ((mt U mi) C V), (3)

then the net generates the feature P(v) = P} (J P2. It 
can be useful property (the net generates more featu­
res than it was learned and therefore it distinguishes 
more classes of patterns, than it was learned). It may 
be an unacceptable property as well — to the pattern 
v’the feature P, corresponds correctly, and P2 is a sur­
plus. In this second case the condition

M, n n Of U m,) = 0 Ahj  = 1, 2 , . . . « ,

where n is number of neurons in hidden layer, is the 
condition for good behavior. The output will never be 
a conjunction of features to which the net was lear­
ned.

2.3. Metrics of the AND-OR net
Let the i-th neuron generate a feature for r patterns 

v,|,. .. vir Then the state of the neuron i for some pat­
tern 0) is

S'(v) = |vc U  
or

L(V) = ( v c Mi) A (rn, c v), (4a)

where v is the stimulus, M, is the maximal pattern and 
tn, is the minimal pattern.

If the P-th output neuron is a simple OR neuron, 
then its state is

r,

Sk(v) = U «V st(v), (5)
i = 1

where wkj is the weight ( 0  or 1) of i-th synapse and .v, is 
the state of z'-th neuron of the hidden layer. The AND- 
OR net generates then the feature

P(v) = (Sj(v), S2( v),.. . S M ) ,

where for Sk( N ), P = 1 ,2 , . . .  n it holds (5) and for 
Sj(N) it holds (4).

Next let us consider a nontrivial net, i. e, the net, 
where for each neuron in hidden layer there exists at 
least one pattern, for which it generates the feature. 
Let us choose in (5) such a numbering of neurons in 
hidden layer (for each output neuron different), that 
for first neurons the weights wkj are equal to 1 and 
the others are zero. Then

S*(v) = U Si(v) (6)
i = 1and then

V;, A U A-c (4)
j  - 1
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Sdv) = U t( c c .•)].
i =  1

Nonempty feature P( ij is generated, when
il

P = U Sk(v) = 1, i.e
A = I

r n i (A)
U U M,)A(m , c  r)j = 1, (7)A = I i = 1 (A)

where the symbol (A) denotes the numbering valid for 
A-th output neuron. It is easily seen that generally no­
thing guaranties the fulfillment of the eq. (7). Then it 
can exist a pattern v„ giving the empty feature, i. e. the 
outputs of all output neurons are zero.

The metrics in the space of patterns generated by 
AND-OR net is then

0 when P{ i'() — P{ ly),
/

/X b , Vj) =

1 otherwise.

from it follows, that p(i'()„ v'0/) 0  for all patterns u(1
for which the net generates the empty feature. The 
condition for distinguishing of the patterns r, a r, is 
clearly

P ( vi i Vj) = 1 ,

In practice it means, that the pattern v, by at least one 
stimulus (bit) does not go in the M„ or that in the i'; 
does not go the mr M, and m, are the maximal and mi­
nimal patterns for the feature f\ v').

2.4, Adaptive dynamics of AND or OR neuron

Each synapse may be in one of three states. The 
adaptive dynamics of AND-OR net is given by the 
conditions under which the states of individual synap­
ses are changed. It may depend on initial states of the 
synapses and on the sequence the states can follow 
each other. Beside this, it is also important, how the 
active dynamics of individual neurons is controlled in 
the whole net.

From this point of view in the ideal net the active 
dynamics of each neuron follows from states of sy­
napses, stimuli of the synapses, the demand to the sta­
te of the neuron, and globally given (to all neurons) 
commands for learning, initializing etc. The realizati­
on of such a net is in principle simplest, because only 
the neurons directly connected each to other are influ­
enced. For hardware realization it is more complica­
ted, when the learning is influenced by momentarily 
valid state of other neurons in the net. It means to bu­
ild more connections than it is given by basic inter­
connection between layers.

From the point of view of active dynamics influen­

ced by the hardware realization we then consider 
three kinds of nets:

1. The nets with fixed weights. In AND-OR net it 
means fixed connected logical network,

2 . externally learned nets, where the weights (states) 
of synapses are controlled by external signals accor­
ding to algorithm residing outside the net. For AND- 
OR net it means to set externally each synapse into 
one of three states. The memorizing of the state can be 
made in the net as well as outside of it. The reading of 
just valid state of neurons for informing the adaptive 
algorithm is not excluded.

3. The learning (self learning) nets, which have bu­
ild in means for changing the weights like inherent 
component of the synapses or neurons. We can distin­
guish two main kinds:

a) The control from outside is limited to the change 
adaptive dynamics active dynamics and setting the 
net into the initial state,

b) the control from outside influences in addition to 
ad a) the individual layers, or individual neurons, 
even individual synapses. Note, that by deepening of 
the control and lessening the independence of indivi­
dual neurons we can get an externally controlled net.

In this part we will concentrate to the nets of the se­
cond and third kind. Several kinds of self learning 
AND-OR nets will be designed and their behavior wi­
ll be shown, including a net without additional relati­
ons among neurons, but using randomly generated 
initial states of synapses.

2.4.1. The control of the learning process of 
one synapse

Let us suppose, that each synapse is controllable by 
two signals. One of these two signals U controls, whe­
ther the synapse learns or not the signal „learning“. 
By the other signal N it is possible to set the synapse 
into an initial state, independently on the preceding 
state signal „initialize“. The signals U and N are 
usually common to all synapses of the neuron. These 
signals are two extra inputs of the neuron.

A realization is possible having three controlling 
signals as follows: 

initializing A,
primary learning P (as separate signal), 
additional learning U (in preceding case only 

„learning“).
Note, here we distinguish two kinds of learning. 

The primary learning is the first learning of the neu­
ron since it was set to the initial state. The additional 
learning means, that the neuron is relearned to other 
pattern usually without forgetting the pattern it 
„knows“ already. The additional learning arises when 
there is no neuron in the initial state or in other spe­
cial circumstances.

Let W = (w,. us, . . . u’„) be the vector of synaptic 
weights of a neuron. Each weight wit i = 1, 2 , . . .  n 
has one of values 1,-1 or 0. Let the formula
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Pi = Wj * x„

where x, is a stimulus of a synapse (two-valued logical 
variable) and p, is the input to neuron’s body, have the 
meaning given by a table:

X i  = 0  1

1 0 1
Wj  — — 1 1 0

0 # #

In the table # denotes such an input to neuron’s bo­
dy, that it does not influence its function (disconnec­
ted synapse). In the case of AND neuron it is I, in the 
case of OR neuron it is 0. It is appropriate to introdu­
ce also the notation

P -  \Y* x,

where P = (/>,, p2, . . . p„) is the vector of inputs to body 
of the neuron.

From the point of view of adaptive dynamics we 
shall consider two kinds of learning:

A) primary learning, i. e. such a learning, that the 
synapses is set to one of two active states, direct or in­
verting. The primary learning arises as the first lear­
ning after the initializing signal N,

B) additional learning, i. e. the learning, when either
a/ the state of synapse is the same as the requested

state, or the synapse is in the disconnected state. In 
this case the state of the synapse is not changed, or

b/ the state of synapse is opposed to the requested 
state. Then the synapse changes its state to a discon­
nected state.

The manner of control of the learning may be then 
as follows:

a) the primary learning of a neuron may arise only 
once and it is its first learning after the initial state. 
Any other learning is an additional learning,

b) the primary learning may arise under defined 
condition not only as the first learning after the initial 
state.

2.4.2. Adaptive dynamics of the AND neuron

Let to the synapses of the AND neuron considered 
be applied the pattern. For this pattern the neuron ge­
nerates a feature.

Definition 10. Primary learning: Each synapse is set 
to direct state, if its stimulus i is equal to 1. The synap­
se is set to inverting state, if its stimulus is equal to 0 .

It is possible to write the primary learning in form:

w, -  2x, — 1,

where the multiplication and subtraction are operati­
ons of real number arithmetics. We write also

W = l x  — 1.

Definition 11. The additional learning: To the neu- 
ron is applied a new pattern. Each synapse, which is 
in direct state and its stimulus is 0 , or which is in in­
verting state and its stimulus is 1 is set to disconnected 
state. Otherwise nothing is changed.

The additional learning is possible to write in form

w. “  (2x, -  1 + w, ) / 2  ,

where w, denotes the preceding state of the synapse 
and w‘, its new state. We write also

W  -  (2.v -  1 + W)/2 .

2.4.3. Adaptive dynamics of a single layer of 
AND neurons

Let us consider the net according to chap. 2.2. 
When learning we apply a pattern to the inputs of this 
net. A feature requested P is applied to the output. 
The individual neurons can be divided according to 
this feature P to those, which should generate the fea­
ture (and therefore they should have the output equal 
to 1, i. e. pj = I), and the others, which should have the 
output 0. The neurons of the second group mentioned 
need not any learning. The synapses of the neurons of 
the first group have to be set in a proper way. If con­
trolling the i-th neuron by two signals N, and U, only, 
the signals N, may be common to all neurons and sy­
napses. The net then has a single initializing signal N. 
The signals of learning U, must be conditioned by the 
value of Pi. If the control signal of learning for the net 
is U, then U, = U.pj.

In the system of two control signals the primary le­
arning is the first learning following the initializing 
signal. Due to this fact the primary learning arise for 
neuron having /?,, = 1 only. The index 1 denotes the le­
arning to the feature. If learning the another pattern 
with another feature, the primary learning arises for 
the neurons having pa = 1 and if it was p,, = 0. For 
neurons having pi2 = 1 and pn = 1 the additional lear­
ning arises. The neurons having pn = 0 and also pn = 0 
remain in the initial state. For these neurons the pri­
mary learning may arise later.

3. Adaptive dynamics of the AND-OR net

First, we introduce an important notion.
Definition 12. Let the output of the hidden layer 

neuron be connected to active synapses of simple out­
put neurons. Let all these output neurons should ge­
nerate a feature (i. e. their outputs should be 1). Then 
this hidden neuron has uniform demand to the output.

3.1. The simplest model

Let us consider an AND-OR net, where the control 
signals of the hidden layer are common. The hidden
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layer is then controlled by the signals N„ U„ or P,, 
Ur Similarly, the output layer is controlled by signals 
N„ f/„ or t/„ Px,

During learning a pattern .r is applied to the inputs 
and feature requested p to the output. It is sufficient 
to take into our consideration the fact of undistingui- 
sability of the neurons in the hidden layer as well as in 
the output layer (and impossibility to control them in­
dividually). From it follows impossibility to state, 
which neuron of the hidden layer should generate the 
feature and which not. It is only possible to learn all 
neurons the same or nothing. From it an important 
conclusion follows, that it is necessary to „choose“ 
a neuron and only this neuron is learned. The main 
problem of the adaptive dynamics of the AND-OR 
net becomes a selection of the neuron to be learned, i. 
e. establishment of the rules for this selection and al­
gorithmic and hardware realization of these rules.

3.2. AND-OR net with random initial states of synap­
ses

In the same way as in the preceding chapter we as­
sume, that all neurons in the hidden layer are of the 
same kind and similarly connected. The same is true 
for output layer. In the same way as in chap. 2,4.3 the 
signals N, let be common. The net has then a single 
initializing signal N. The learning signals (7, must be 
conditioned by the value of the feature to be genera­
ted by the i-th neuron. Then if the command signal of 
learning of the hidden layer is U„ it is Uf = U,. pr The 
control signals for output layer are common and the 
output layer is controlled by signals N and Uy The sig­
nals Ps and Py we do not consider because it will be 
seen, that the primary learning does not happen for all 
neurons at the same time.

The adaptive dynamics algorithm:
Initial state: In the beginning the states of synapses 

of hidden layer neurons are random: disconnected, di­
rect or inverting. The neuron of the output layer has 
the synapses in disconnected state. (We proceed from 
the fact the synapses of the hidden layer are already 
set in some random way).

1) Apply a pattern to the inputs of the net. The acti­
ve dynamics of the hidden layer takes place. The sta­
tes of hidden layer neurons are set.

2) Learning of the output layer: If the output neu­
ron should generate a feature (its output should be 1) 
and its synapse is connected to the hidden layer neu­
ron generating a feature, the synapse is set to the di­
rect state ( + 1).

3) Learning of hidden neurons — there are two pos­
sibilities:

3a) If the neuron generates a feature, then the pri­
mary learning arises.

3b) If the neuron does not generate a feature (its

output is 0 ) and it has the uniform demand to the out­
put, it is additionally learned.

4) end.

For output layer there is no difference between pri­
mary learning and the additional learning. The lear­
ning begins from the state of all synapses disconnec­
ted. If any synapse becomes direct, it remains in such 
a state forever. It results in following behavior of the 
net: If for the same pattern a feature is given and later 
an another one, the net then generates a feature which 
is the disjunction of both of these features.

If the /-th hidden neuron was learned different pat­
terns r i, . . . yin it generates then a feature to each pat­
tern for which the formula (4) or (4a) holds. If this 
neuron is learned some pattern for which (4) or (4a) 
holds again, a primary learning arises. Since then the 
neuron „knows“ the latter learned pattern only. Then 
if a neuron is learned something it „knows“, it forgets 
all other what it was learned formerly.

The same way behaves the net: When it is learned 
a double pattern + feature it „knows“ already, it for­
gets all other patterns corresponding to the same fea­
ture.

The primary learning is necessary, because the addi­
tional learning only disconnects the synapses to which 
contradictory requests are applied. On the other hand 
there is no mechanism for preventing to the accidental 
repeating of primary learning. It is possible to include 
this mechanism by modification of steps 3a) and 3b) 
so, that a condition the neuron was never primarily le­
arned, is added. It means to check this fact, and it is 
a little complication.

3.3. AND-OR net with controlled order

We proceed from the net according to the chap. 3.1. 
The same way as in chap. 3.2 the net has a single initi­
alizing signal N.

The learning control signals of individual synapses 
in the output layer are conditioned by their order. In 
the hidden layer the learning control signals are con­
ditioned by the order of neurons, which were not yet 
primarily learned.

Algorithm of adaptive dynamics:
Initial state: The synapses of all neurons are in dis­

connected state.
1) Apply a pattern to the inputs of the net. The acti­

ve dynamics of the hidden layer takes place, the states 
of hidden layer neurons are set.

2) Learning of the output layer: If the output neu­
ron generates a feature, then it is found the first sy­
napse connected to a hidden neuron which should ge­
nerate the feature. This synapse is set to the direct 
state ( + 1).

3) The learning of hidden neurons:
3a) The First hidden neuron which was never lear-
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ned since initialization is found, Then primary lear­
ning of this neuron takes place.

3b) Otherwise (i. e. all hidden neurons was already 
learned) and the neuron does not generate the feature 
and it has the uniform demand to the output, it is ad­
ditionally learned.

4) End.

As the initial state of synapses of hidden layer is 
a disconnected state, all hidden neurons generate the 
feature (output signal is i).

The output layer is additionally learned the same 
way as according to the algorithm in chap. 3.2.

The hidden layer is primarily learned only once. It 
is additionally learned any pattern, for which the cor­
responding feature is already known. Additional lear­
ning arises also if the feature applied includes as 
a subset any feature already known. Otherwise the fe­
ature is not known and the output layer learns no­
thing. It is possible to condition the learning of the 
output layer by the fact whether in the hidden layer 
arises a primary learning or not. Then it is possible to 
modify the algorithm as follows:

Algorithm of adaptive dynamics:
Initial state: The synapses of all neurons are in the 

disconnected state.
1) Apply a pattern to inputs of the net. The active 

dynamics of the hidden layer takes place, the states of 
hidden layer neurons are set.

2) It is looked for the first never learned hidden 
neuron. When it is found, its number is K and go to 3), 
otherwise go to 5).

3) Learning of the output layer: If the output neu­
ron generates a feature, then its synapse No. K is set 
to the direct state ( + 1).

4) The K-th hidden neuron is primarily learned. 
End.

5) All hidden neurons having the uniform demand 
to the output, are additionally learned.

6 ) End.

There is impossible additionally learn the output
layer, but otherwise the behavior of the net is the same 
as in the preceding case. In this algorithm a very sim­
ple deterministic condition for learning is used.

3.4. A N D -O R  net — m odel „find the first, which . . . “

The condition for searching the neuron which 
should be learned can be substituted by another con­
dition, which uses no exactly given order. It is looked 
for the first neuron (in any order) of the hidden layer 
generating the feature. The first algorithm in the pre­
ceding chapter is changed so, that the step 3a) is a lit­
tle modified as follows:

3a) find the first neuron of the hidden layer, which

generates the feature. Then the primary learning ari­
ses.

In the same way the step 2) of the second algorithm 
from preceding chapter is changed:

2) Find the first neuron of the hidden layer, which 
generates the feature. If it is found, its number is N 
and go to 3), otherwise go to 5).

In contradiction to similarity of algorithms from 
this and the preceding chapter, the behavior of them 
differs heavily. It is due to the fact, that if the initial 
state of synapses of hidden neurons are disconnected
(0), all hidden neurons generate the feature. Than all 
neurons of the output layer are primarily learned to 
the first pattern. During next learning only additional 
learning of output layer arises (the hidden layer learns 
in a proper way), To eliminate this fact, it is necessary 
to learn the net to pairs empty pattern — real feature 
at first. Then after excerpting of all hidden neurons to 
learn the net again with nonempty patterns. The order 
of learning is not essential.

4, Example of an AND-OR net and its 
function

We choose the net for transformation of different 
types of characters to reference characters. The cha­
racters are formed in a grid of 8 x8 pixels, bits. The 
AND-OR net has 64 inputs, three hidden neurons and 
64 output neurons. The net generates to the different 
forms of letters A, R, C the features (characters) E, F, 
G respectively. The net uses the algorithm from chap.
3.2.

In Figs, / 4 in the left upper corner there is the
character applied, or the feature (character) as the re­
sponse of the net. In the lower half in the left, there 
are the states of synapses of three hidden neurons. To 
it correspond in the right hand side three arrays of 8 x8 

points. The first array represents the synapses of the 
64 output neurons connected to the first hidden neu­
ron. The same for second and for the third set of sy­
napses. The denotes a disconnected synapse, 
the direct synapse, and the inverting synapse.

In Fig. 1 there is shown the state after learning the 
first pattern and the corresponding feature. The se­
cond hidden neuron and the synapses from it to the 
output neurons was learned. For the first and the third 
hidden neuron there is seen an initial state. In Fig. 2 
the state after learning of all hidden neurons is shown. 
In Fig. 3 there is shown a state after additional lear­
ning of bold characters A, B, C. Now the thin letters 
A, B, C represent the minimal patterns and the bold 
ones the maximal patterns. These are samples of nor­
mal behavior when learning. The net in active state 
then gives the the feature (output) in form which it 
was learned for any form of letter A, B, or C which in­
clude the corresponding minimal pattern and is inclu­
ded in the corresponding maximal pattern. Now, let 
the net be learned the bold „A“ again with the prescri-
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Fig. !. The state after learning the first pattern and corresponding 
feature. Itt the first and the second hidden layer neuron the initial slate 
o f the net is seen.
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Fig. 2. The state after the primary learning of all hidden layer neu­
rons.
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Fig. 3. The state after additional learning o f .,bold" characters A, B. 
C. Now the ..thin" letters A. B. C represent the minimal patterns, the 
hold ones the maximal patterns.
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Fig. 4. The state after repeated learning o f the pattern hold A with 
assigned feature E. The primary learning took place not of the second, 
hut also o f the third hidden neuron and ,.B " is completely forgotten.
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bed feature ,,E“, In Fig. 4 there is seen that the lear­
ning has arisen not only for the second neuron, but 
also for the third hidden neuron. Both of these neu­
rons „know“ the bold „A“ only. For the third neuron 
it happened, because the feature ,,F“ is a part of the 
feature ,,E“. The response of the net for thin „A“ is 
empty feature now. The net is able to learn it additio­
nally again, but ,,B“ is forgotten forever. It is impossi­
ble to reach the state according to Fig. 3 again.

6. Conclusions

It is easily seen, that the binary neuron in the active 
dynamics is a combinatorial logical network only. In 
the adaptive dynamics the memories of synaptic states 
are put into the effect. The net of binary neurons in 
more complicated adaptive state is in the end a finite 
automaton only. Despite of this an AND-OR net 
shows a nontrivial behavior.

The class of tasks processible by the AND-OR net 
is derived in essence from the classification to n + 1 

classes, if it has been given n classes. For this it would 
suffice a single layer net. The second, output layer al­
lows to get the response in a requested form. The 
AND-OR net can serve as an adaptive classifier, deco­
der, error correcting network and it can recognize 
„blurred“ characters. The behavior of control structu­
res according to chap. 4 was tested just for simple pat­
tern recognition. From Chaps. 3.5 and 3.6 it is seen 
that the net is good for recognition or regeneration of 
„blurred“ patterns, but not for patterns attacked by 
noise.

The possibilities of realization by VLSI technology, 
especially CMOS, are easily seen. A little problem re­
mains, how complicated the net is in fact. Let us con­
sider a system for regeneration of up to 128 kinds of 
„blurred“ patterns in an array of 8 x8 pixels. The 
AND-OR net has 64 inputs, 128 hidden neurons with

8292 synapses and 64 output neurons with 8292 sy­
napses. Let approximately 1/3 of synapses of hidden 
neurons be disconnected, 1/3 inverting and 1/3 di­
rect. For output neurons let us suppose 1/2 discon­
nected and 1 / 2  direct synapses.

The fixed learned net then represents 128 approx. 
45 input AND logical gates, 64 approx. 35 input OR 
gates and approx. 2800 (1/3 of 8292) inverters. This is 
complicity of order of 10  0 0 0  transistors.

The fully adaptive net with minimal external con­
trol is approx. 50 times more complicated. It is neces­
sary to build all synapses, not only the inverting ones, 
and the synapses of the output layer. In all ol the sy­
napses of hidden layer neurons must be a three state 
memory, in all of the synapses of output layer neurons 
must be two-state (one bit) memory.

The speed is rather high. The fixed net represents at 
most three logical steps in series. The fully adaptive 
net represents approx, ten times more logical steps in 
series, but in form of internal gates. The learning of 
this net needs two clock intervals needed for setting of 
the internal memories for each pattern. Using minimal 
and maximal patterns for additional learning ot the 
net it is necessary to apply two times more patterns 
then there are features.
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KNOWLEDGE PROCESSING BY NEURAL
NETWORKS

(j. Vítková, J. Míček*)

Abstract:
The paper outlines the basic properties of a neural 

network associative memory extrapolation model and 
describes the main abilities of fuzzy cognitive maps. 
A revised equation for associative memory model per­
formance is proposed. Modeling the logical function 
„and“ for inferring knowledge by a neural network is 
discussed. The results of an investigation of an associa­
tive memory extrapolation based knowledge system used 
for diagnostics are presented. Outlined is the frame of 
the QUEST system for knowledge processing. The sy­
stem functions and its other facilities are also presented.

Keywords:
Neural network. Associative memory models. Catego­

ry formation. Single layer auto-associative memory. As­
sociative memory extrapolation model. Nonprocedural 
knowledge processing. Unsupervised learning.

1. Introduction

In the past four years, neural network models were 
used to build knowledge based systems [1,2,4,5]. 
Traditional knowledge-based systems face the pro­
blems connected with effective knowledge acquisition 
and representation, storage of experts’ knowledge, 
and appropriate knowledge — handling facilities. 
Knowledge acquisition, i.e. moving domain knowled­
ge into a software system by whatever means, extends 
over the complete lifetime of a knowledge-based sy­
stem. Continuous expansion and modification of a sy­
stem’s knowledge base is driven by two factors: chan­
ging domain knowledge, and broadening the scope of 
application. The iterative and uncertain nature of kno­
wledge only complicates the situation. Knowledge re­
presentation involves a study of how we can represent 
particular semantic notions such as time, causality, be­
liefs, intentions, and data consistency [13].

Neural networks offer one of many possibilities for 
coping with these problems and for confronting diffi­
culties related to implementation and maintenance of 
knowledge-based systems. An inference mechanism in 
neural networks provides necessary knowledge-han­
dling facilities. Adaptive or learning mechanisms in 
neural networks help to solve the knowledge acquisiti­
on problem and at the same time enables a knowledge

*) Ing. Galina Vítková. CSc.. Dr. Jiří Míček.
Institute of Computer and Information Science of tlíc C/celioslovak 
Academy of Sciences. Prague

base to improve throughout the whole of its lifetime.
The advantages of a neural network approach to 

knowledge base construction over other existing ap­
proaches are as follows:

the knowledge base response time is independent 
of the number of knowledge base components, 
which enables its real-time behavior [5,7|, 
the approach enables the gaining of knowledge by 
learning using measured data or data acquired in 
other ways even should the data be incomplete and 
inaccurate or inconsistent and noisy [1,2,5,12], 
the approach provides a possibility of combining 
learned knowledge and the knowledge of individu­
al experts into representative knowledge bases [5,7]. 
Using the main properties of the neural network as­

sociative memory model [3,9,10,11,20] and fuzzy cog­
nitive maps for representation of expert knowledge 
[5-8,21] the QUEST system was developed at the Insti­
tute of Computer Sciences of the Czechoslovak Aca­
demy of Sciences [15,17]. Its inference mechanism 
provides necessary knowledge-handling facilities . Its 
learning mechanism helps to solve a knowledge acqui­
sition problem. The system consists of three basic 
parts: the first one checks the consistency of related 
concepts introduced by different experts, the second 
part enables the maintenance of a knowledge base, 
and the third one processes queries to a knowledge 
base. The QUEST knowledge base is represented by 
a weights matrix of an associative memory model. The 
system supports the creation of a knowledge base i) by 
experts, ii) by learning, and iii) by a composition of 
existing knowledge bases. As learning algorithms, the 
Hebbian law [9] and the pseudo-Hebbian law [9,11] 
are used. The system is able to process matrices of we­
ights which contain both positive and negative values. 
An input vector (a query) is considered to involve only 
zeros and ones.

Below, after introducing the basic theoretical back­
ground, we present our approach to using a neural 
network associative memory model for knowledge 
processing.

2. Theoretical background

2.1. Memory extrapolation network

A neural Hopfield-like network capable of restoring 
continuous level library vectors from memory is intro­
duced in [11]. The interconnections in this network are
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determined analogously to the Hopfield model, i.e. 
they are formed by a set of library or training vectors. 
The network can operate synchronously as well as 
asynchronously and is fault tolerant. It differs from 
the Hopfield model in that the initially known neural 
states are imposed on the network’s last iteration. The 
nodes with the known states act as the network stimuli 
and the remaining nodes behave as the response. An 
analogy to human memory is our ability to recall com­
plete information given only a portion of it.

Consider a neural network consisting of L nodes. 
The interconnection strength between the y-th and i-th 
node is denoted wjr It is assumed moreover that the 
network is symmetric (i.e. w;/ = wy). The state of activi­
ty of the y-th mode is a function of the sum of its in­
puts (without loss of generality, we assume that thres­
hold Vj ~ 0 ), i.e.

£ ( 0  = ¿>*(0 0 ), 0 )

where c(0 is the vector of L input sums at time /, W is 
the matrix of interconnection synaptic weights, x{i) is 
the vector of the L neural states at time t. Let S denote 
the node operator that determines the next set of sta­
tes from the input sum:

x{t+  1) = S f t t ) .  (2 )

Substituting Eq.(l) into Eq.(2) gives the state iterati­
on equation :

x( t+  1) = SWx(t).  (3)

Now consider a set / of A continuous level linearly 
independent training vectors of length 
L > A, / = [f„ | 1 < n < A] and the corresponding 
matrix F = [/,' :/’,]. Using training vectors, the
following algorithm referred to as the pseudo-Hebbi- 
an learning law is used to compute W:

W = F ( E II) 1 F1. (4)

Let us say more about creating the matrix of inter­
connections W [9,11], Consider an auxiliary vector:

z = x(t + 1) -  Wx(t).

Then the pseudo-Hebbian learning law is expressed 
by the equation:

W -  W+ z . z7 / \ z \ ,  (5)
W= F. F , = (FT. F) 1 f  , (6 )

F is a s o - c a l l e d  p s e u d o - i n v e r s i o n  o f  a matrix F.

Given a portion of one of the vectors which belongs 
to a certain object described by matrix F, a memory 
extrapolation network will reconstruct the remainder 
of that vector. Let us divide all L nodes into two sets : 
one, in which states are known, and the remainder, in

which states are unknown. Without loss of generality, 
assume that states through the first P < L nodes are 
known for a given application. Sometimes these nodes 
are called a key. It means that for 1 < k < Pthe node 
state is kept without change. The P known nodes (or 
key) thus act as the input or the stimulus to the net­
work and the states of the remaining Q= L -  P nodes 
represent the output or the response.

In summary the algorithm describing the process is:
(1) Initialize all unknown states by setting to zero.

The state of the remaining nodes are equated to 
the known portion of the input vector.

(2) Multiply the state vector by W.
(3) Replace states of the first P nodes with their 

known (input) values.
(4) Go to step 2 and repeat the whole process until the 

state of the Q nodes does not change.

In this case, an active process (or recall) may be des­
cribed as follows:

*(0) = m ,

* (1) = w m ,  *(2) = K (*(!)),
x(3) = Wx(2), x(4) -  ----

w here K is such a function that
* • • • s r  9/’ /.......... b i )  =

( b i * ■ *, r  i , /  >).

Thus in general, the dynamics of the iteration pro­
cess is given by the following equations:

x(2t + 1) = Wxilt)  / -  0,1,. . . 
x(2t) = K(x(2t + 1)) / = 1,2 ,. . .

Generally, a memory extrapolation network doesn’t 
give the exact correct answer; it only gets iteratively 
closer and closer to the answer. Now let us make some 
short notes about convergence properties of the me­
mory extrapolation network and the effects of the in­
put uncertainty on the network’s performance.

The problem is whether a net iteration 
x(t + 1) = 51Tx(/) will converge. A sufficient conditi­
on for unique convergence is that P > A and the ma­
trix Fr (/[/.: . . . : / \ P) is full-rank (the proof is given 
in [II]). If P<  A there exists a continuum of soluti­
ons.

2.2. Fuzzy cognitive maps

Uncertain causal knowledge can be stored in fuzzy 
cognitive maps (FCM) [6 -8 ]. A FCM is a fuzzy signed 
digraph with feedback which represents uncertain 
causal relationships. A simple FCM has a causal edge 
in [1,0,1], i.e. shows a maximal degree of causality. In
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Fig. 1. The simple FCM expressing the 1st expert's opinion (FC'MI)

general FCM causal edge weights are numbers in 
[-1, 1], allowing one to express different degrees of cau­
sality. An example of a simple FCM is depicted in the 
graph below (see Fig. 1).

This non-fuzzy signed digraph with feedback is 
equivalent to the connection matrix in Fig. 2.

In the matrix, the i-th row expresses the connection 
strength of the edges undirected out from C,, and the 
i-th column describes the connection strength of the 
edges wu directed in towards C, (w,7 > I means a posi­
tive causal relationship between C and Cp wu < I me­
ans negative causality).

Simple FCM are easier to get from experts. They 
are usually more reliable because as a rule experts are 
more likely to agree on causal signs than on causal va­
lues. The simple FCM matrices drawn by individual 
experts can be combined into a non-simple FCM that 
represents causal relationships by a more representati­
ve scale. No restrictions on the number of experts or 
the number of concepts exist. The more experts, the 
more reliable the combined FCM; moreover each ex­

pert can be assigned a credibility weight of his opini­
on in [0,1]. Combined weighted FCMs reflect the dif­
ferent level of experts’ knowledge. Figures 2, 4, 5 illu­
strate a combination of two experts’ opinions into one 
representative matrix.

An FCM matrix representation enables an FCM to 
be viewed as a feedback associative memory model 
that allows causal inferences to be processed in 
a feedback associative memory fashion. Similarly to 
a neural network, each causal node C, is considered to 
be a nonlinear function which transforms the paths 
weighted activation into an output signal. Again simi­
larly to neural network models, this function is in ge­
neral a bounded monotone increasing transformation, 
such as the sigmoid or the S — shape function. The 
simplest nonlinear operation is thresholding, which in 
the case of a synchronous state-transition looks like:

C,(t+ i) = { 1 if C(i) W  > 0 ,
0  otherwise

where C(t) = (C,(/), . . . , CN (t)) is the state vector of
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C l C2 C3 C4 C5 C6 C7 C8 C9

C l 0 1 1 0 0 0 0 0 0
C2 0 0 0 - 1 1 1 1 1 0
C3 - 1 0 0 1 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 0
C5 0 0 0 * 1 0 0 0 . 0 0
C6 0 “ 1 0 0 0 0 0 0 0
C7 0 - 1 0 0 0 0 0 0 0
C8 1 - 1 0 0 0 0 0 0 1
C9 0 - 1 0 0 0 0 0 0 0

Fig. 2. The connection matrix o f FCM1

a causal activation at discrete time / (compare with the 
state vector of a neuron), and W is the /-th column of 
the FCM connection matrix W.

Causal flow in an FCM is easily maintained with 
a vector- matrix operation and thresholding. In gene­
ral it is described by the expression C(t + 1) = 
T[C(t) W] where T is the vector threshold operation. 
For simple FCMs and most nonlinear FCMs, the cau­
sal flow will quickly stabilize to a limit cycle. In the 
case of simple FCMs, convergence is always achieved 
because thresholding is a deterministic operation, and 
every FCM converges after at most 2" iterations [5], 
But complex (non-simple) FCMs with time-varying 
edges can resonate on chaotic attractors.

The resonant limit cycle of an FCM is a hidden pat­
tern in the causal edges W. The hidden patterns in an 
expert’s FCM correspond to the expert’s answers to 
What-if questions. As with an expert’s answer, the re­
sonant hidden pattern can be tested against the availa­
ble facts and the appropriate FCM can be changed 
accordingly as needed.

Consider, with respect to the matrix in Fig. 5, the in­
put vector V = (1 0 0 0 0 0 0 1 0 0 0 0 0 0  0). It is equi­
valent to the question „What happens if electric po­
wer production increases and reconstruction of power 
stations is realized“. The inferring iteration process is 
described by sequences of states as follows:

The limit cycle, which indicates the end of iterations, 
is: C3 C4 C9 Cl2.

It means that in this case living comfort will impro­
ve, the state of inhabitants’ health will not worsen , 
and costs for higher quality fuel will increase.

3. Development of a memory extrapolation 
model

As was mentioned, we have used the concept of an 
FCM (section 2.2) and the memory extrapolation mo­
del of a neural network (section 2 .1) as the theoretical 
background for our approach to neural networks’ ap­
plication in the development of knowledge systems. 
Below we present and argue our contribution to this 
topic concerning /) modification of the equation for 
associative memory model performance (or recall) 
and for performing the logical function „and“ by as­
sociative memory; ii) examination and analysis of 
neural network (more exactly its memory extrapolati­
on model) behavior used as a diagnostic system.

3.1. Associative memory model performance

Consider without loss of generality a neural net-

V

V I W =
( 1 0 0

( 1 0 1

( 1 0 1

( 0 - 1 1

( 1 0 1

( 0 1

( 1 0 1

0 0

0 0

0 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0

0
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Cl C2 C8 CIO Cll Cl 2 Cl 3 C14 Cl 5

Cl 0 1 0 0 1 1 0 0 0
C2 0 0 0 0 0 1 0 0 0
C8 1 -1 0 0 -1 0 -1 -1 0
CIO 1 0 0 0 0 1 0 0 0
Cll 0 0 0 0 0 0 0 0 0
Cl 2 0 . 0 0 0 1 0 0 0 0
CIS -1 -1 -1 0 -1 . 0 0 - 1 0
C 14 1 -1 0 0 -1 0 0 0 0
Cl 5 ~ 1 0 0 -1 -1 0 0 0 0

Fig. 4. The connection matrix o f FMC2

work consisting of 6  nodes and its synaptic weights 
matrix. (See F/g. 6, 7, 8.)

Consider a binary input vector .v and transform it 
into bipartite form x  according to the recommenda­
tion in [2 0 ], i.e.: 2x 1

( 1 0  0  0  1 0  ) = = > ( 1 - 1  - 1  - 1  1 - 1  ).

Now if we use for performance evaluations the equati­
on

Xt =  S  x i w a ~  c j  ,

(where xr xf denote a state o f  the i-th and ;-th neurons, 
Wy is a synaptic strength (weight) connecting neuron i 
and /, Vj is a ithreshold, S(x) = 1  if jc > 0 , and 
S(x) = 0 if x  = < 0) we get the result vector ( 0 1 0 0 0 
1 ). Testing this result against the evidence, we found 
that it is not adequate to the reality in some cases. Ba-
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Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO Cll Cl 2 Cl 3 C14 Cl

Cl 0 2 1 0 0 0 0 0 0 0 1 1 0 0 0
C 2 0 0 0 -1 1 1 1 1 0 0 0 1 0 0 0
C 3 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C6 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
C l 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0
C 8 1 -2 0 0 0 0 0 0 1 0 -1 0 0 0 0
C 9 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
CIO 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Cll 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 12 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
Cl 3 -1 -1 0 0 0 0 0 ”1 0 0 -1 0 0 “1 0
Cl 4 1 “1 0 0 0 0 0 0 0 0 "1 0 0 0 0
Cl 5 -1 0 0 0 0 0 0 0 0 „1 “1 0 0 0 0

Fig. 5. The combined matrix representing the opinion o f both experts

Fig. 6. Illustrations o f thresholding role (thresholds are here depicted as H)

seel on our experience with psychological questionnai­
res processing, and taking into consideration the fact 
that the thresholds magnitudes may be only positive 
numbers we proposed thresholding once more imme­
diately after multiplying x/ , wtj. In this case the perfor­
mance equation is:

Xij = SxjWij -  U j  ■

Using this equation, the result is quite distinct from 
the first one, i.e. the output vector equals ( 0 1  1 0 1  1 ). 
This result is the same as in the case of the conventi-
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Fig. 7. Recall performance with single thnl'sholding

I n p u t  

v e c t o r  I
W e i g h t s m a t r i x  W S ( I x  W )

1 0 0 1 0  0  1 0 0 1 0 0 1

0 0 - 1 0  1 - 1 0 0 1 0 0 1

- 1 0 - 1 0 i M
‘ 

O II 0 1 0 0 1 0

- 1 1 1 0 0  0 - 1 0 0 0 0 0 1

I - 1 1 - 1 0  0  0 0 1 0 0 0 0

- 1 0 - 1 1 1 0  0 0 1 0 0 0 0

S t a t e  o f  i n d i v i d u a l  n o d e s 0 3 2 0 1 3

t h r e s h o l d s 1 1 0 1 0 2

s u m X
•

1

S  X . W . . -  Û . 
3 ID  i

- 1 2 2 - 1 1 1

o u t p u t ; s u m s f  Z
1 j

S  x  . w . . -  û .
3 ID  i  J 0 1 1 0 1 1

Fig. 8. Recall performance with double thresholding

onal evaluation of the questionnaire. In Fig. 7, 8 an at- processing deals with the necessity of tapturing the si- 
tempt to illustrate this phenomena is depicted. multaneous influence of some concepts on others.

The next improvement which we have made in This function, similar to the logical „and“, can be rea- 
using neural network inference ability for knowledge lized by creating new auxiliary nodes in the neural
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C l

e
i

C6

r/e 9. Realization of “and" function with the help of thresholds

network graph representation. Thresholds of constant 
(for individual nodes) value are connected to the auxi­
liary nodes. In the case where weights magnitudes 
equal 1, the threshold value is given by the equation:
Vi = m -  1, where m is a ¡number of active nodes di­
rected to the node /. Then new nodes are activated where 
only if all links directed to the z'-th node are activated 
(see Fig. 9).

In general it is possible with the help of thresholds xr W\ ~ 
to regulate the strength of the mutual interconnection 
between nodes which are here considered as concepts.

#(0 - 6 * ( 0  + & ( 0 , 
çr( t ) = A>1T| + xQW3 , 
sy(0 = XpW, + Xq W4 ,

A2 ( t ) tV, 2 T . . .  + Xp( 1 ) W, p 

A', ( t ) Wp , + . . .  + X P | ( t) Wp p |

3.2. Memory extrapolation networks as a diagnostic 
system

Consider again a neural network which consists of 
/ nodes where every node is connected to another no­
de. A state of P  nodes is known, while a state of the re­
maining Q -  L — P  nodes is unknown. If the same P  
nodes are always used as input (this usually happens 
in diagnostic systems), the number of interconnections 
can be reduced. The state of these P nodes is not de­
pendent on their input V Thus the interconnections to 
these nodes can be excluded and the network can be 
reconfigured to Q < L nodes.

Assume again that the first P elements of a query 
vector is our input. Using equation (!) we can write 
for sums of inputs to the individual nodes (i.e. for an 
internal potential of proper neurons):

U t )  = *2 ( 0  H'|2 + A(0 W,3 + . . . + XL(t) W'i 1 ,

£>(0 = -C (0 W21 + A(0 + - • • + */(0 h2, /,,

U  t) = X, (t) Wp, ! + x2{t) Wp 2 f  . . .  + XL(t) Wp , ,
*r lit) -  A, ( / ) Wp. h 2 + X, ( 1) Wp, , 2 + . . . + X, ( t) Wp, 1. /.,

A/t / ) A t / ) It/ 1 + A. ; (  / ) W,  2  + . . .  ' A 1 l i t )  W p  1 1 .

Since the state of P  neurons does not change during 
network recall, it’s useful to partition the above equa­
tions into parts as follows:

Ay IT *
A, (t ) W p ,  +  X p i  t) Wp ,  p  p

x i ( 0  W p  , +  . . . +  Ap { t ) w ,  p  ,

A p  l \ \

X p i  1 ( t ) W p  / > , ] + . . • • +  X L ( t )  W p  i

A pi  1 ( 0  W p  P. 1 +  . ■ ■ +  X l  ( t )  W p  ,

X p \  2 (t ) Wp, i p. 2 + • • • + x, it) Wp

X p  ■ 1 ( 0  Wp p.+1 + .. • + xL lit) Wp

It means that matrix IT is partitioned in such a way:

Now we see that it is not necessary to care about the 
state of Pnodes because it remains the same. Thus Wu 
IT, have no contribution to the final result. Setting 
xQ(t+ 1) = «*Q(t) the informational part of the equati­
on is given by:

xQ{t+ 1) = xP(t) W3 T xQ(t) W4.
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Since .*,,(0 Wy has a constant value during recall, the 
proper weight matrix is W4.

In the case where no positive or negative intercon­
nections exist between individual Q nodes, a matrix 
WA contains only zeros. This means that in this case 
a neural network functions as a diagnostic system 
which evaluates queries immediately without iterati­
ons.

4. The QUEST system and its functions

The QUEST system has been developed using the 
theoretical background which was discussed in the 
previous sections. Corresponding to the two main 
working modes of neural networks (i.e. recall and le­
arning), QUEST consists of two main parts:

i) creation and maintenance of knowledge bases;
ii) query processing.
Further QUEST has a third part which is designed 

to check knowledge base consistency in a sense that 
the same concepts have the same meaning. The 
QUEST functions are depicted in Fig. 10.

A knowledge base created with the help of QUEST 
begins with the definition of so called concepts which 
can by introduced by different experts (for theoretical 
background see section 2.2). After checking the consi­
stency of concepts main and users concept files are 
stored in the system. Now it is possible to define the 
interconnections between concepts and create in this 
way a weight matrix, i.e. our knowledge base. It is 
supposed that interconnections may be defined by an 
expert or by learning using appropriate training files 
or by a combination of existing knowledge bases sto­
red in the system. This enables us to develop and ex­
tend knowledge bases throughout the lifetime of a sy­
stem.

The system supports learning according to:
a) the Hebbian rule

W’,;/(/+■ 1 ) =  U•,,(/) +  Y.< 1 ' I ) V ( / ' 1 ) ,

b) and the pseudo-Hebbian rule

Wij(t + 1) = w’„■(/) + z,(0 z; ( 0  / Vz,(/)-,(/), where

Q U E S T
INPUTS:

Fig. 10. The functional layout o f QUEST
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Fig. IF The FCM o f alarm handling
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1 . . 46 , . . 54 56 ■ ■ • 60 61 . , 67 60k 61k . . . 67k

1 0 0 0 0 0 0 0 0 0 1

6 0 0 1 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1
12

*
0 0 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 1 1 1
17 0 0 0 0 0 0 0 0 0 1
19 0 0 0 1 0 0 0 0 1 0
21 0 0 0 1 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 1 0
2 3 0 0 0 0 0 0 0 0 0 1

3 4 0 0 0 0 0 0 0 1 1 0

40 0 0 0 0 0 0 0 0 0 1
41 0 0 0 0 0 0 0 0 0 1

46
•

0 0 1 0 0 0 0 0 0 0

•
54 0 0 0 0 0 0 0 0 0 1

56 0 0 0 0 0 0 0 1 0 0

*
60 0 0 0 0 0 0 0 0 0 0

61 0 0 0 0 0 0 0 1 0 0

67 0 0 0 0 0 0 0 0 0 0

6 0k 0 0 0 0 1 0 0 0 0 0

61k 0 0 0 0 0 1 0 0 0 0

67k 0 0 0 0 0 0 1 0 0 0

Th re s h o ld s  0 0 0 0 0 0 0 —3 “ 3 - 8

Fig. 12. The connection matrix o f alarm handling

z , ( t )  X ( /  + 1 ) H'„(0 . X,(l + 1 ) . in the learning algorithms used 
x ( t +  1) is replaced by 2x ( t +  1) —

in QUEST, 
- 1.

the

With respect to the fact that a vector-stimulus ob­
tains only zeros and ones (binary form) whereas a we­
ight matrix contains in general numbers from <-l, 1>

The system is able to process matrices of weights 
which contain both positive and negative values of 
weights. The ability of an associative memory model
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to reconstruct an entire vector from a partial input is 
used here for inference. An input vector (a query to 
a knowledge base) is considered to contain only zeros 
and ones.

During recall, the system synchronously updates 
elements of a network with the equation:

X,(t + I) = sixS»',y(2*,(0- 1 )-  U/j.

The end of the iteration process is detected by a mi­
nimum of the so-called harmonian function which is 
calculated according to the equation:

n n
H(.v(, . . . , x„) = X Z xn(2x> “  1) (2x/ “ 0  •

/ = i ' = i

5. Application

Neural network based knowledge systems may be 
especially useful in real-time control and information 
systems. Alarm handling in power stations and the 
diagnosis of the emergency states is an example of 
a task that must be solved as fast as possible. In mo­
dern energy control centers, a large amount of detai­
led information is measured and displayed. Especially 
in the case of severe faults in the power system, the 
operator is flooded with a shower of messages, so that 
it is often a problem to determine which are the really 
important messages and to decide on the quickest way 
to return to a normal situation. We have chosen this 
area of application for testing our approach with the 
help of QUEST before all because we had an opportu­
nity to deal with the set of experimental and real data 
due the courtesy of our colleagues from respective re­
search institutes [2 2 ].

Let us examine in more detail how a diagnostic sy­
stem based on an associative memory model (see sec­
tion 3.2) can help in this case. Assume that fifty one 
primary indicators are placed in the steam generator 
environment for monitoring its auxiliary equipment, 
e. g. temperature and pressure of oil or water, switch 
gear status, vents status, etc. [22]. Using these indica­
tors (numbered from 1 to 51) and knowing their influ­
ence on the state of a steam-generator, the correspon­
ding FCM is drawn (see Fig. 11). In this FCM the 
concepts (or nodes) numbered 1 to 51 are always in­
put nodes. The nodes numbered 52 to 67 are always 
output. The nodes with the letter ,,k“ in their number 
are auxiliary and by using them, we are able to ex­
press the fact that only the conjunction of certain con­
cepts can influence another concept(s).

Now consider for example that indicators 16 (pres­
sure in the demi-water pump delivery dangerously in­
creased), 19 (pressure in the hermetic space also dan­
gerously increased), 22 (pressure in lO dangerously 
increased too), and 34 (the valve PS A is not closed) 
are activated. In that case, we have the input (query)

vector in which the input nodes 16, 19, 22, 34 are equ­
al to 1 while all others are equal to 0. After inference 
process is finished the value of the output node 61 will 
be equal to 1. If any of the nodes 16, 19, 22, 34 is not 
activated, node 61 remains equal to 0. Notice node 56, 
which may be activated in case of an active state at 
node 19 or node 21 or both 19 and 21. This means that 
for node 56 to contribute to the activation of the node 
60, it is enough for either node 19 or node 21 to be ac­
tive. We have tested this example for whole alarm 
handling for steam generator according to [2 2 ] and the 
results tallied with expected ones.

Needless to say, such partial knowledge bases mo­
nitoring different equipment in a power station can be 
gradually developed. After testing they can be combi­
ned (step by step too) into one representative kno­
wledge base for alarm handling in the whole power 
station.

6. Conclusion

The first experience gained during the building and 
testing of the QUEST system showed that an associa­
tive memory model of neural networks offers a power­
ful tool for inference in knowledge processing; mean­
while the learning abilities provided by QUEST based 
on this model did not appear as successful. Therefore 
the system now supports adaptive inference in the 
sense of expert knowledge and the combination of we­
ight matrices.

Needless to say, the problem of conditional proba­
bilities expressed by real numbers in a weight matrix 
was not addressed nov solved The problem is especi­
ally important in the case of a combination of such 
matrices. Nonetheless, by building QUEST we have 
developed assumptions for the serious testing of kno­
wledge processing by neural networks in real conditi­
ons.
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TUTORIAL

A VIEW ON NEURAL NETWORKS 
PARADIGM DEVELOPMENT

(Part 3)

J. Hořejš*)

Here we continue in the tutorial paper concerning the 
neural network paradigm, which first part was published 
in the Neural Network Word. No. 1, 1991.

6. Back-propagation |a famous learning algo­
rithm]

Our task now is to apply and illustrate general dis­
cussion of adaptation from section 3 for the case of 
complete multilayered nets. We will introduce the so 
called back-propagation algorithm (BP), one of the 
most used and most promising adaptation algorithm 
invented and elaborated by Rumelhart, Hinton, Willi­
ams and others from the PDP [Parallel Distributed 
Processing] group, like McClelland and Sejnowski not 
many years ago (although Werbos claims he covered 
the main ideas in his thesis in time of second generati­
on NNs). Let a CMN homogeneous net N with sigmo­
id nonlinearity S  from (7) be given (one input layer, 
one output layer and several hidden layers).

Suppose we have a training set 7’, [\j, y'] e Land we 
would like to establish all the many weights [in a m-k- 
l-n net there are k.(m + 1) + l.(k + 1) + n,(l + 1) we­
ights including thresholds] so that the net would 
implement the mapping (p^ such that </?w(xj) a  y whe­
re the sign a  stands for „approximately equal“. The 
error is caused (inevitably) whenever some compo­
nents of y ; should be 0  or 1 like in classification pro­
blems (because of asymptotic behavior of S) or becau­
se the convergence of adaptation process is not ideal 
(the error function does not reach zero, convergence is 
too slow). This again may be due to unprecise arit­
hmetic and/or numerical solution or due to the fact 
that the whole problem is too difficult for the chosen 
net (too small or too great number of hidden layers 
and/or hidden neurons, unlucky initial weights etc) or 
for the BP as such (not a rare case, sometimes avoided 
by some modifications of BP, preprocessing etc).

In many cases we also use a slightly ditferent termi­
nology, speaking about (input and output) patterns in­
stead simply of vectors, borrowing this term irom arti­
ficial intelligence theory or even cognitive and brain 
science.

We shall now the assume there is a teacher, who 
knows exact outputs, so that we can immediately cal-

*) Prof. Dr. Jiří Hořejš. CSc.. Department oí Computer Science. Charles Uni­
versity. 118 00 Prague I. Malostranské nám. 25. Czechoslovakia

culate the error as it appears in the output layer. What 
makes the trouble is to see how any one of the particu­
lar connection weight (somewhere in the deeper parts 
of the net) contributes to bad performance of N, 
whom to blame or praise (credit assignment problem).

We know similar problems from the daily life. It is 
not difficult for headquarters to recognize that some­
thing is getting wrong and it is even not so difficult to 
accuse the hierarchy just below. The real problem is to 
find exactly who and to what extent in the whole com­
pany is responsible for undesirable results and how 
anyone should change to minimize the overall dysfun­
ction. A right way out might be that on every level the 
accused leader tries to improve something in his own 
work and passes a memorandum to his men in such 
a way that everybody knows what to do to diminish 
the total error. Things are complicated in CM Ns by 
the fact that everybody may have more chiefs and eve­
ry chief is responsible for the whole collective in the 
level just beneath him.

Yet this metaphor can be adopted in BP, each up­
per layer successively informing the members (we­
ights) of immediately lower layer how much and in 
which direction they should change. Fortunately 
enough, everyone is characterized by the only number

its weight and is expected to change it slowly. Unli­
ke the activity spreading, which goes bottom up, the 
error warnings proceed from top down hence the 
term (error) back-propagation.

The main trick how to diminish the error function 
has been shown already on Fig. 9. Choosing any parti­
cular weight w [which represents just one coordinate 
value of the vector w in the manv-dimensional space 
of weights], we shall try to change vr so that E w dimi­
nishes (ever-present parameter w in E will be in the 
next often omitted). We simply calculate the slope of 
the curve [in this coordinate], which is given by the de­
rivative dE/dw and because of its hill climbing orienta­
tion (if positive), we move w slightly in the opposite 
direction, the more, the bigger is its responsibility, i.e. 
the bigger is the derivative. Thus we obtain the formu­
la for the update of w

Aw - i] ■ dEI dw for some //, 0 < ?/ < 1 (17’)
W"** = H’"kl + Alt’

However, the considered w runs along one coordi­
nate only. As Ew is a composite function, we have to 
replace dE/dw by the partial derivative SE/fw. Thus 
(17’) changes to

Aw = -  i] • r'EI rw for some ?/, 0 < ?/ < 1 (17)

The main task is now to compute these values rE / iw  
for any w in the CMN. To do that we use a picture of 
a pertinent fragment of a CMN, see Fig. 18. Here two 
adjacent layers are taken into account and w, x, ^re­
present weights, activities of stimuli along the connec­
tions and net incomes, respectively. All used values 
are scalars and subscripts/superscripts do here denote
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only that we deal with the lower/upper layer of the 
two. The dotted arrows indicate that there are other 
connections in the net, which do not enter directly in­
to the calculations while the horizontal dashed line is 
used to distinguish two cases: the neuron A can he an 
output one, in which case the picture above the das­
hed line is empty; otherwise it is an input or hidden 
neuron.

The weight we focus now on is w, and we first try to 
establish BE/Bw, when a selected one member of the 
training set T[l] is examined and the error for this case 
corresponding the inner sum in (6 ) should be diminis­
hed. We take the following formula for BE/Bw, and 
thus for the simple adaptive action:

BE/Bwj = BE/Bx . dx/dg  , B^/Bw, (18)

[For further purposes, let us denote 5, = BEX 
Bx. dx/d<g speaking about error for neuron A]

This awfully looking formula only expresses the ru­
le for derivation of composite functions [the chain ru­
le] and because all involved functions have nice for­
mal properties (being linear sums and differentiable
S), you can remember the mnemonic rule about dea­
ling with fractions and see in this way why the left- 
hand side of (18) equals to the right-hand side. Note 
only that, while x -  S(B) so that dx/dgm  x, ( I - x) as 
was stated in (8 ). Also Bg/Bw, brings no troubles; as 
£ = A WjXj is a linear function of w’„ Bg/Bw, = x r [See 
(1 lab)]. If there is some problem, it is in computing of 
BE/Bx. When A is an output neuron, xis what we for­
merly denoted as y ' for some i, j  and according to the 
definition (6 ) or its inner sum when y-th member of the 
training set is submitted, we easily calculate (perhaps 
up to a multiplicative constant)

(19) which is the difference between expected and ac­
tual value of neuron /(l < i < n) for the pattern j. If, 
on the other hand, the considered neuron Bis somew­
here inside the net, we calculate BE/Bx as the sum

BE/Bx = S BE/Bx' . dx'/dg‘ . Bg'/Bx (20)

where the sum is taken over all neurons in the upper 
layer, summing thus all error driven changes for 
which upper layer neurons are responsible. It is again 
easy to see that dx ' 'dc' x' . ( l  -  x') and that Bg'/ 
Bx = wu' (g= wu'x + . . . [sum of contributions along 
the dotted lines, where x does not occur]). What re­
mains is to establish BE/Bx ' for all / (for all neurons in 
the upper layer, the number of which has not been de­
noted).

But even this last step is not too difficult to solve; 
actually it has already been solved! Provided that we 
started the whole process from the topmost (output) 
layer, for which it was solved by (19), we can now as­
sume in this top-down (recursive) computation that 
actually we at the present state already know the valu­
es of BE/Bx1 and can substitute them into (20). This 
completes the formal derivations behind the BP,

Sometimes the successive changes of w " w(t) [so 
that Aw= w(t + 1) -  M /)] can lead to faster and 
smoother convergence if we add the ,,momentum“ 
term and replace (17) by

w(t + l) = w(t) -  ? 7 • BE I Bw + a • (w(t) -  w(t — 1)) for
a, 0  < a < 1, (2 1 )

so that the difference Aw in one step is smoothed by 
the same difference one step before.

In section 8 we give a general account on possible 
applications of BP driven CMN adaptation. Because 
some readers may wish to try small experiments along 
that line and because it is not so trivial to pass from 
the theoretical description to the development of 
a practical numerical algorithm, we present first 
a summary of the BP algorithm and in sect. 7 A the co­
re of corresponding program in Pascal. That section 
can be omitted without any consequence for further 
reading; it was however postponed after sect. 7, be­
cause there are further needed concepts introduced.

Summary of the basic BP algorithm.

0. Initialize weights wO (including thresholds) to 
small random numbers and the parameters //, or (say // 
about 0,3, a about 0.7).

1.1 or a chosen pair of patterns [x, y] e / compute 
y = y?w0(x), so that the difference between expected 
and actual value y — y should be for next weight vec­
tor w! [and then generally and recursively, the vector 
w,] possibly diminished. To do so:

2. For a weight w,, leading from some neuron j  to 
a neuron i set

BE! Bx = y  \ -  y\ (19)
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where 5, is the error for i and x, is either output from j
or /-th coordinate of the input vector \, and A is com­
puted as follows:
5, = v, • (1 -  y,) ■ (y, - v,) if the neuron i is an output 
one

5, = Xj • (1 -  x,) ■ V<jL ■ Wki otherwise;

the sum is taken over all neurons in the layer immedi­
ately above neuron i. In this way you obtain w,H from 
w,.

If you like, you can introduce A =
= - // ■ 5,x; 4 a ■ A ' , where A' is the difference bet­
ween two successive previous values of wy (according 
to (2 1 ).

3. Choose another pair from T and repeat 2 until 
you exhaust T according to a chosen training strategy.

4. Repeat from 2 until for all pairs [x', v'] € 7, f/Xx1) is 
sufficiently close to y', i.e. E„ is small enough.

7. Comments and analogies on BP |a continua­
tion!

Note that during the calculation of new weights we 
need to know what are the values of x, g, etc. These 
were of course computed during the predecessing acti­
ve mode. In the described case thus both modes ol 
work are interleaved: for an input vector from T, the 
active mode is performed, followed by the adaptation 
mode, i.e. by the calculations of dE/dw for each we­
ight and consequent modification of w.

As already mentioned, it is also possible to use in­
homogeneous CMN with nonlinear transfer functions 
S h where A depends on particular neurons. Moreover, 
it can change during the adaptation and the change 
can be aimed to further accelerate and/or enable the 
convergence process seeking the best suitable w*, for 
which Ew* would reach a low acceptable value. Our 
experience [Pelikan used it many times] with this mo­
dification is generally good. It starts from formal deri­
vation of dE/dk by only a slightly more difficult calcu­
lations than those above. Then you extract from this 
derivation the adaptation process for A, interleaving 
(for the still fixed neuron, for which w and A are consi­
dered) adaptation of w with adaptation of A. The re­
sulting modification of BP may be called GABP [Gain 
Adapting BP]. Details will appear in an independent 
contribution in this journal.

Most implementations of BP allow to require that 
few of the weights remain fixed during the adaptati­
on; for these we simply set Aw = 0. In this way we can 
apply BP also to not complete multilayered nets (fi­
xing some weights to 0 ). Also you can prescribe some 
constrains on the weight vectors (e.g. requiring that se­
lected weights assume always equal values). Because 
in such (relatively rare) cases the high connectivity is 
as a rule preserved, or the constrains are not formally 
too strong, we shall not treat them separately.

Note that there are some formal similarities bet­
ween active and adaptive dynamics (you always com­
pute sums of certain contributions passed to adjacent 
layer). For an original treatment of BP see Hecht-Ni- 
elsen monograph mentioned in the introduction.

The above derivations concern adaptation of every 
weight, but for one training pair only. We can howe­
ver use also cumulative errors cither for observing the 
adaptation process or for accumulating errors in seve­
ral active passes before we start adaptation, not to 
overload the program with many recomputations of 
w's, which are rather time-consuming. For example, 
sometimes we may be interested in responses of only 
some of the output neurons, the others belonging to 
a don't care area. Often we are interested in the layer 
error, summing up the (squared) differences between 
expected (desired) and actual outputs over all neurons 
in the output top layer, but for one training pair from 
T only.

However the most useful form of cumulative error 
is the global error, summing up errors for all output 
neurons and all the pairs from T actually used in trai­
ning. This may incorporate either one input pair from 
T just once [following thus directly (6 )] or other trai­
ning strategies as well. A usual training strategy repe­
ats every training pair from T several times (for some 
number of iterations) and only then goes to another 
pair; only after exhausting the whole set T we start 
another cycle of repeating T. It is also recomended to 
compute and display the plain (nonsquared) differen­
ce between the actual and expected value for the 
worst case output neuron /  pattern pair, for example 
each iteration, or perhaps cycle if the computation is 
quick enough.

In some strategies, random decisions are involved, 
assuming that after a specified epoch every training 
pair will get the same chance for its intervention (the 
random generator should uniformly cover the set 7). 
The results of adaptation convergence may look diffe­
rent for different strategies then.

The various error measures do not always preserve 
the nice theoretical property that the error function 
steadily diminishes. First, numerical approximations 
may cause e.g. that with too big value of i) from (17) 
or (21) BP skips over some minimum. Second, due to 
the fact that we at the same time try to adapt the con­
sidered weight w as to diminish the overall error for 
all output neuron/pattern pairs, the adaptation pro­
cess may happen to „prefer“ some particular pairs di­
minishing their errors, while others, less aggressive, 
pay for n m such a way that the global error (or other 
error measures) increases.

Giving up the cases when E„ starts to persistently 
climb up or to oscillate, we often meet the curve of 
Fig. 19, giving the dependency of global error on time 
(as the adaptation process proceeds). For many cases, 
in which we are not satisfied with the shape of global 
error curve, some remedies are known one of which is 
the increase of the number of hidden neurons, giving 
thus the net more “degrees of freedom".
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The frequent behavior of Ew from Fig. 19, far from 
being the only possible, admits again a human-orien­
ted metaphor.

When we meet a task to solve, we first start with 
a more less arbitrary weight vector wO, far from a rea­
sonable one. From the very beginning we are over­
whelmed by complexity of the task and the error in­
creases (A). Then we start to look around to under­
stand better our task and try to see some promising 
ways out. We wander over the landscape which looks 
flat (B,B’) until we get some idea which deserves fur­
ther attention and elaboration; this enables us to quic­
kly proceed and improve the idea (C,C).

Concerning dependency of the error function on 
the choice of the training strategy, there is again an 
analogy: if you have to read a textbook consisting of p 
chapters, you may prefer to read every chapter r times 
and only then proceed to the next one. Or you prefer 
to read the whole book from the beginning to the very 
end and repeat the complete reading p . r times. In 
both cases you read the same number of pages, but 
(depending on your memorizing and generalization 
abilities) the result of understanding may be some­
what different. You may also occasionally return to 
the most difficult parts (pages, chapters) as you feel 
appropriate. Similar choices of the training strategy 
project in the adaptation of a NN.

The problems of generalization has already been 
discussed; for simple functions it reminds the mathe­
matical questions of interpolation (by polynomials, 
Taylor or Fourier series etc). NNs mappings are speci­
fic in this respect in that they handle multivariable 
mappings, coordinates of input/output vectors may 
have different meanings and actually (though not for­
mally) be of different types. Moreover, CM Ns compo­
se rather wild mixture of linear and nonlinear map­
pings, and — above all — BP finds these mixtures in 
the process of adaptation automatically, according to 
the task given and training strategy chosen. No won­
der that NNs often provide better interpolation /  ge­
neralization solutions than known tools with a structu­
re fixed before. And no wonder they find many appli­
cations, provided that hidden neurons choice, initial 
weight setting, training strategy and the parameters 77, 
a  and perhaps A, k  are well chosen. [To find appropri­
ate values of the parameters reminds tuning a Tv set 
with several potentiometers.]

7A. A Pascal program for BP.

The program below follows the algorithm, notation 
and terminology from above sections as closely as 
possible. All neurons are however denoted by * [with 
appropriate indices], input and expected output valu­
es of patterns from T are generally read out from the 
file ’PATTERNS’, their coordinates forming vectors 
InPatt and OutPatt, respectively. The file starts by the 
indication of number of patterns (number of members 
in 7) NoinT. The training pairs are successively copi­
ed into pattern — independent vectors Input and Out 
Expect, respectively. Notice that the sigmoid has been 
replaced out of the interval [-30,30] by constants, be­
cause the differences are then so small, that an under­
flow could occur.

The procedure InitNetwork chooses initial weights 
and all parameters referred to (77 — eta, a alpha: 
the momentum term is included, while adaptation of 
GABP is not) are as recommended above in the Sum­
mary and number of iterations Iters and cycles Cycles 
arbitrarily as 15 and 40, respectively. In this way the 
adaptation process is limited by exhausting the speci­
fied number of cycles no matter what the global error 
is at the end. More experienced programmers can ea­
sily adapt this criterion, stopping the learning only af­
ter this error is less then some constant, e say.

In form of “comments” (between [and]) it 
also creates the file for solving a specific problem: 
in this case the CMN 4-2-4 is taught on identity 
of 4-dimensional input vectors-patterns (yJ ~ x 1) for 
a set of T, consisting of 5 pairs (although 11 out of 16 
possible pairs could be principally possible to trans­
mit over the net, the training time would be much lar­
ger to achieve approximately the same accuracy). No­
te the structure of the file ’PATTERNS’, so that you 
can taylor it for another tasks. Appropriate informati­
on is included in “true” comments {!...!}, while your 
choices depend on manipulating with „program” 
comments j 1 . . .  1} and ]2  . . .  2 ], which you can remo­
ve or retain according to your wish (by a Pascal editor, 
which is then followed by compilation and run).

Two possibilities are offered to you; if you let the 
program as it is, fixed (although initially random) we­
ights are introduced and the behavior of the network 
is fully deterministic to give you the possibility to re­
peat the same experiment many times. If you prefer to 
try your luck (with the random choice of weights eve­
ry next run), just cross out the first pair of program 
parenthesis. Omitting the second pair of program pa­
renthesis you should create your own file of PAT­
TERNS. Modifying other information in the procedu­
re InitNetwork, you can solve any problem you wish; 
section 8 will give you some suggestions.

Summarizing, removing strings [2 and 2], you have 
your program ready to solve the identity problem with 
fixed weights; to pass to another task, you let the pro­
gram parenthesis as they are and (a) modify the only 
task dependent procedure InitNetwork (parameters 
and the number of iterations and cycles and perhaps
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the topology of the net), (b) create your own file ’PAT­
TERNS’ and let the rest of program untouched as far 
as you will stay within the ranges of constant definiti­
ons and fixed initial weights.

If you first try the built-in example, you will first 
see on the screen the copy of the training set, then you 
will be continually informed about progress in the 
processing. Allow about 4 minutes computation [on 
an IBM PC AT without numeric coprocessor] before 
you can check the results (the set T as well as all 
checks should remain within the screen). [Also, note 
that after the first run the file PATTERNS has been 
created and you can avoid creating it again and again 
restoring the parenthesizes ¡2 . . . 2 ], saving thus ano­
ther minute]. Observe good memorizing, but poor ge­
neralization ability (only 5 out of possible 16 members 
of 7 were used!). If you need more accuracy and/or 
add some other patterns, the number of cycles will ha­
ve to be larger and the time would considerably incre­
ase.
program BackPropagation;

const MaxLayer = 5 ;  {  max. number of la y e r s  >
MaxNeuron = 15; {  max. number of neurons in  one la y e r  }
MaxPattern = 50; {  max. number of p a t te r n s  >

type Layers = 0 , . MaxLayer; t  a v a i l a b l e  la y e r s  >
Neurons = 1. .MaxNeuron; {  a v a i l a b l e  neurons >
NeurThrs = 0 . .MaxNeuron; {  neurons i n c l u d i n g  th r e s h o ld s  source }
P a tte rn s  = 1 . .M axP attern ;  {  usab le  p a t t e r n s  }
Weights = a r ra y  [L a y e r s ,N e u r T h r s ,N e u r o n s ]  of  r e a l ;

{  W e i g h t s l i , j , k ]  : >
{  i f  j>0 . . .  weight from neuron j in  la y e r  i to  >
{  neuron k in  la y e r  i+1 )
{  i f  j=0  ___ t h r e s h o ld  of neuron k in  la y e r  i+1 }

v a r  w, wold : W eights; {  v a lu e s  of w eights  in  time t and t - 1  )
x : a r r a y  [ L a y e r s ,N e u r T h r s ]  of r e a l ;

{  x [ i , j ]  : }
{  i f  j*0 . . .  output v a lu e  of neuron j in  la y e r  i >
{  i f  j=0 . . .  va lu e  -1 used as a t h r e s h o ld  source >

D e lta  : a r r a y  [L a y e rs ,N e u ro n s ]  of r e a l ;
{  D e l t a [ i , j ]  = see remark a f t e r  E q . ( 1 8 ) ,  co n ce rn in g  now neuron j in  la y e r  i > 

NoofL : L a y e r s ;  {  la y e r s  = 0 [b o t t o m ] . .NoofL [ to p ]  >
NoofN : a r r a y  [La y e rs ]  of Neurons; {  number of neurons in  each la y e r  }  
NoinT : P a tte r n s ;  {  number of le a r n in g  p a t te r n s  }
I n P a t t ,  O u tP a tt  : a r r a y  [P a tt e rn s ,N e u ro n s ]  of  r e a l ;

{  a l l  in p u t  and expected output p a t t e r n s  from T > 
I n p u t ,  OutExpect : a r r a y  [Neurons] of r e a l ;

{  in p u t and expected o u tp u t  p a t t e r n  f o r  one chosen p a i r  from T > 
e t a ,  alpha : r e a l ;  {  parameters of the a l g o r i t h m  -  see E q , ( 2 1 )  >
I t e r s  : i n t e g e r ;  {  number of i t e r a t i o n s  >
C ycles  : i n t e g e r ;  {  number of  c y c le s  >

f u n c t io n  S (  K s i : r e a L  ) : r e a l ;  {  neuron s igm oid t r a n s f e r  f u n c t io n  >
const lambda = 1 ;  < s igm oid  g a in  >

RB = 30;  {  where to  e x t r a p o la t e  the s igm oid by a con stant )
va r  inp : r e a l ;  
be gin  inp := la m b d a * K si ;

i f  inp>30 then S;=1
e ls e  i f  inp < -3 0  then S:=0

e l s e  S := 1 / ( 1 + e x p ( - i n p ) ) ;
end;

procedure S ta te ;  {  new s t a t e  of the network >
va r  Layer : L a y e rs ;

j : N e u rTh rs ;
k : Neurons;
Ksi : r e a l ;  {  neuron p o t e n t i a l  >

be gin  f o r  j := 1  to  NoofN[0 ]  do
xtO ,  j ]  : = I n p u t t j ] ; {  se t  bottom la y e r  in p u ts  >

f o r  Layer:= 1  to  NoofL do 
f o r  k; = 1 to  Noo fNlLayer]  do 

b e g in  K s i := Q ;
f o r  j : = 0  to  N o o f N [L a y e r -1] do

K s i : =Ksi + w [ L a y e r - 1 , j , k ] * x [ L a y e r - 1 , j ] ; {  neuron p o t e n t i a l  }
x [ L a y e r , k ] : = S ( K s i )  {  neuron o u tp u t  }

end
end; {  x [N o o f L ,k ]  i s  an a c t u a l  output of the network >

procedure ChangeWeights ( L a y e r :L a y e r s  ) ;  {  new w eights  f o r  one la y e r  >
v a r  j : N eu rTh rs ;

k : Neurons;
saveW : r e a l ;

be gin  f o r  k : - 1  to  Noo fN[Layer+1] do
f o r  j : = 0  to  NoofNlLayer]  do

be gin  s a v e W : = w [ L a y e r , j , k ] ;
w [ L a y e r , j , k ] : = w [ L a y e r , j , k ] -

e t a * D e l t a [ L a y e r + 1 , k ] * x [ L a y e r , j ]  + 
a l p h a * ( w [ L a y e r , j , k ] - W o l d [ L a y e r , j , k ] ) ;  

W o ld lL a y e r ,  j , k ]  : = saveW;
end;

end;

procedure MakeOelta ( L a y e r :L a y e r s  ) ;  {  new D e l t a ' s  f o r  one la y e r  }
var j ,  k ; Neurons;

CunulEr  : r e a l ;  {  c u m u la t ive  e r r o r  over neurons in  a la y e r  }
begin f o r  j :  = 1 to  NoofNELayer] do

begin i f  Layer=NoofL < top la y e r  }
then C u m u l E r := x [ N o o f L , j ] - O u t E x p e c t [ j ]
e lse  b e g in  C u m u lE r :“ 0 ;  (  c a l c u l a t e  from p r e v io u s  la y e r  }

for  k:*1 to  N o o fN [Lay er+1] do
C u m u lE r := C u n u lE r + D e lta [L a y e r + 1 , k ] * w [ L a y e r , j , k] ;

end;
D e l t a [ L a y e r , j ] : = x [ L a y e r , j ] * ( 1 - x [ L a y e r , j ] ) * C u m u t E r

end
end;

procedure NewWeights; {  network new w eights >
var  Lay er  : L a y e rs ;
be gin  f o r  L a y e r := N o o fL -1  downto 0 do

be gin  M a keO e lta (La ye r+ 1 ) ;  {  set up D e l t a ' s  in  upper la y e r  >
C h a n g e W e ig h ts (L a ye r ) ;  {  c a l c u l a t e  w eights i n  t h i s  la y e r  }

end
end;

f u n c t io n  G l o b a l E r r o r  ; r e a l ;  {  g lo b a l  e r r o r  over a l l  la y e r s  of the network > 
v a r  p a t t  : P a t t e r n s ;

j : Neurons;
E r  ; r e a l ;

be gin  E r : = 0 ;
fo r  p a t t := 1  to  NoinT do

be gin  f o r  j := 1  to  NoofN[0] do I n p u t [ j ] : = I n P a t t [ p a t t , j ] ;
fo r  j := 1  to  NoofN[N oofL] do O u t E x p e c t [ j ] : = 0 u t P a t t [ p a t t , j ] ; 
S t a t e ;
f o r  j := 1  to NoofN[N oofL] do

E r ; - E r + S q r ( x [ N o o f L , j ] - O u t E x p e c t [ j ] ) ;
end;

G l o b a l E r r o r : = E r ;
end;

procedure T r a i n i n g ;  C p r o v id e s  [e a r n in g  of the p a t te r n s  >
va r  p a t t  : P a t t e r n s ;  

j : Neurons;
E r r o r  : r e a l ;  C c u m u la t ive  e r r o r  f o r  one i t e r a t i o n  }
i t e r ,  c y c l e  : i n t e g e r ;

begi n
w r i t e l n ;  C format f o r  p r i n t e d  in fo r m a t io n  >
w r i t e l n ( ' I t e r a t i o n  L a y e r E r r o r  P a t t e r n  C y c le  G l o b a l E r r o r ' ) ;  
f o r  c y e le := 1  to  C yc le s  do

b e g in  w r i t e ( c h r ( 1 3 ) , c y c l e : 3 8 , G l o b a l E r r o r : 1 4 : 5 ) ;  < p r i n t s  of va lue s >
f o r  p a t t := 1  to  NoinT do

b e g in  w r i t e ( c h r ( 1 3 ) , p a t t : 2 9 ) ;
f o r  j := 1  to  NoofN[0] do I n p u t [ j ] : = I n P a t t [ p a t t , j ] ; 
fo r  j :=1 to  NoofN[NoofL] do O u tE x p e c t [ j ] : = 0 u t P a t t [ p a t t , j ] ; 
f o r  i t e r : = 1  to  I t e r s  do 

be g in  S t a t e ;
E r r o r : = 0 ;
fo r  j := 1  to NoofN [NoofL]  do 

E r r o r : = E r r o r + S q r ( x [ N o o f L , j ] - O u t E x p e c t [ j ] ) ;  
NewWeights;
wri  t e ( c h r ( 1 3 ) , i t e r : 5 , E r r o r : 1 6 : 5 ) ;

end;
end;

end;
w r i t e l n ( e h r ( 1 3 ) , G l o b a l E r r o r : 52:5  >; 

end;

procedure T e s t i n g ;  {  you can t r y  how w e ll  the network i s  le a rn e d ,  >
f s p e c i f y i n g  on the request one or more in p u t v e c t o r s  >

var  i : Neurons;
c : c h a r ;  

be gin  w r i t e l n ;
repeat w r i t e f ' E n t e r  network in p u ts  ( ' .N o o fN [ 0 ] , '  v a l u e s )  : ' ) ;

f o r  i := 1  to  NoofN[0 ]  do r e a d < I n p u t [ i ] ) ;  
r e a d In ;
S t a t e ;
w r i t e ( ' O u t p u t  of the network i s ' , ' : ' : 9 ) ;

f o r  i :* 1  to  NoofNINoofL] do w r i t e < x [ N o o f L , i ] : 5 : 2 ) ;  
w r i t e ( '  More t e s t i n g  [ y / n ] ? ' ) ;  
r e a d ( c ) ;

u n t i l  ( c = ' N ' ) o r ( c = ’ n ' ) ;  
wri  t e l n ;

end;

procedure In i t N e t w o r k ;  {  ! !  network parameters i n i t i a l i z a t i o n  r o u t i n e  >
var  i : L a y e r s ;  < t h i s  is  the o n ly  ta sk dependent procedure ! !  >

j : N e u rT h r s ;  
k ; Neurons; 
f : t e x t ;

be gin  N o o fL := 2 ;  { t h e  program w i l l  deal w it h  the 4 - 2 - 4  network >
NoofN [0]  := 4 ;  NoofN [1]  := 2 ;  N o o f N [2 ] := 4 ;
RandSeed: + 3456;

{ !  remove the f o l l o w i n g  b ra c k e ts  numbered 1 i f  you want to  s t a r t  always !> 
{ !  w it h  new random w e ig h ts ;  i f  you wish to  repeat y o u r  experim ents  !>
{ !  always w ith  the same i n i t i a l i z a t i o n  of w e ig h ts ,  l e t  them be th e re  !>

<1 Randomize; 1 }
f o r  i : = 0  to  NoofL-1  do 

f o r  j : = 0  t o  N o o f N [ i ]  do 
fo r  k:=1 to  N o o fN [i+ 1 ]  do 

w t i , j , k ] := 6 * (Random-0 . 5 )/ 1 0 ;
Wold:=w;
e t a : = Q ,3 ;  a lp h a :=  0 . 7 ;  {  c h o ic e  of le a r n in g  parameters >

. I t e r s : -  15; C y c l e s : - 4 0 ;  {  choice  of number of i t e r a t i o n s  and c y c le s  >

{ !  remove b ra ck e ts  2 i f  you do not want to  c r e a te  y our  own f i l e  of p a t t e r n s )  
{ !  a c c o rd in g  to  s i m i l a r  te m p la te .  A f t e r  removing the b ra c k e ts  2 ,  you w i l l  ! )  
{ !  teach the net on i d e n t i t y  of v e r t i c e s  of 4 -d im e n sio n a l  cube as l i s t e d ;  !> 
{ !  note th a t  the f i l e  s t a r t s  w ith  the number of t r a i n i n g  p a i r s .  ! )
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{  copy p a t t e r n s  i n t o  f i l e  PATTERNS >
{ 2  a s s i g n ( f , ' P A T T E R N S ' ) ;  

r e w r i  t e ( f ) ;  
wri  t e l n ( f , 5 ) ;
wri  t e l n ( f , ' 1  1 0  0 1 1 0  O ' ) ;
w r i t e l n ( f , ' Q  0 1 1  0 0 1  1 ' ) ;
wri  t e l n ( f , ' 1  0 1 0  1 0  1 O ' ) ;
w r i t e l n ( f , ' 0  1 0 1  0 1 0  1 ' ) ;
w r i t e l n ( f , ' 0  0 0 0  0 0 0 0 ' ) ;
c l o s e t f ) ;  2>

end;

p ro ce d u re  I n i t P a t t e r n s ;  {  le a r n in g  p a t te r n s  i n i t  r o u t i n e  >
v a r  p a t t  : P a t t e r n s ;

j : Neurons -
f : t e x t ;

b e g in  a s s i g n ( f , 'P A T T E R N S ') ;  r e s e t ( f ) ;  {  us ing  your own f i l e  of t r a i n i n g  s e t )  
r e a d ( f , N o i n T ) ;  w r i t e l n ;  {  number of  p a t te r n s  >
f o r  p a t t := 1  to NoinT do 

be g in  f o r  j := 1  to N oo fN [0] do
b e g in  r e a d t f , I n P a t t [ p a t t , j ] ) ;  {  read in p u ts  from PATTERNS )

w r i t e ( ! n P a t t [ p a t t , j ] : 5 : 2 )  {  and p r i n t  them on screen >
end;

w r i t e ( '  ' ) ;
f o r  j : - 1  to NoofN [NoofLI do

b e g in  r e a d ( f , O u t P a t t [ p a t t , j ]  ) ;  (  read o u tp u ts  from PATTERNS )
w r i t e t O u t P e t t  [ p a t t ,  j ]  : 5 : 2 K  and p r i n t  them on screen >

end;
r e a d l n ( f ) ;  w r i t e l n ;

end;
c l o s e ( f )

end;

p ro ced ure  I n i t l m p l ;  C im plem entation i n i t  r o u t i n e  )
v a r  Lay er  : L ay ers ;
b e g in  f o r  L a y e r := 0  to NoofL-1 do

x [ L a y e r , 0 ] : = - 1 ;  L used as a th r e s h o ld  source f o r  next la y e r  }
end;

b e g in  L main program }
I n i t N e t w o r k ;  I n i t l m p l ;  I n i t P a t t e r n s ;
T r a i n i n g ;
T e s t i n g ;

end. {  main program >

[The program was written by P. Bozovsky]

8, BP and multilayered nets in action.

It is estimated that 95% of NN applications relies 
on back-propagation (BP) paradigm. He, who tried to 
simulate an IQ test, when you have to find (on the ba­
se of a few examples) the „natural“ continuation of 
a given sequence of patterns, he surely admits that the 
generalization abilities of BP are somehow myste­
rious.

We will now present some ideas, how CMN under 
BP adaptive training could be used. They will be more 
schematic than elaborate, although some experience 
in applications will be noticed [those denoted by an 
asterisk * have been tried or developed in the „Czech 
Neurogroup“ and will not be included in the biblio­
graphy; interested people can ask the author]. To be 
frank, almost all these applications concern ,,NN in 
small“, with relatively small number of neurons and 
not too large amount of data. The usual complexity 
barrier known from other areas applies here as well. 
Also, some general remarks will extend discussions of 
preceding sections.

In the following figures, abbreviated forms from 
Fig. 12b will be first used and no concrete dimensions 
of the layers given. Vectors from the input space are 
denoted by oblongs. A piece of information will some­
times be specified by a curve [when we have in mind 
real valued coordinates and the input dimension requ­
ires an appropriate number of input coordinates to co­
ver a possibly continuous input function with good 
approximation], by some 0 ’s and l ’s [indicating binary 
inputs] or simply by an identifier not speaking about

0 1 .....

a)

y \/v w /w w
b)

BP F W CTc)
Fig. 20a, h, c

its form. Cf. Fig. 20abc. The problem of suitable co­
ding of input data will be mentioned in further secti­
ons.

a) Classification /  recognition.

Fig. 21 symbolizes the situation where members [x 
y '] of T are submitted (according to a training strate­
gy) to the input layer and the teacher classifies the in­
puts into two categories (y' = 0  or 1).

A simple example of concrete 6-2-1 net has been al­
ready presented, namely in Fig. 6. It should only be 
added that the weights shown in Fig. 6 were really ob­
tained* (up to a multiplicative constant and approxi­
mate character of the numbers) by a BP training con­
sisting of several hundreds repetitions of all training 
pairs of form [symmetric vector, 1], [nonsymmetric 
vector, ()]. Because the whole set T was exhausted, no 
test set is significant (provided the net was well adap­
ted, as was indeed the case).
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There is however a good reason to think about this 
simple example a bit: there are many sets of weights 
which will perform the classifying task as well due 
to many symmetries involved in any CMN (renumbe­
ring of hidden neurons for example, multiplying the 
weights — and in case of sigmoid transfer function lo­
wering the gain A etc), there are always many solutions 
to the given task, once there is at least one. The whole 
error landscape function reflects this fact (perhaps 
you may imagine it as a disk in which valleys and 
other objects are positioned symmetrically round 
a center and to any satisfactory place you may find 
many others which are as low as the first one). This 
ambiguity is generally an intrinsic property of NNs.

Another net we used* was a 40-17-1 net; the inputs 
were derived from EEG curves so that a window of 40 
positions moved along the curve, multiplying thus the 
number of training pairs without requiring too much 
empirical data. The question was to classify the EEG 
signals into two categories: those in which a specific 
rr-rhythm was present and the rest. For 40 members of 
T (not too much!), the result was impressing. For 50 
questions from an independent Q (taken again from 
reality, so that T and Q were „similar“ and no really 
artificial question was posed — no artifact was pre­
sented to be recognized), the net answered correctly. 
There was the only case of disagreement between an 
expert doctor and the net, in a not quite typical case; 
after a more detailed analysis however it turned out, 
that the net generalized properly and finally got the 
doctor's approval.

A more general system for signal analysis NESP* 
(NEuronal Signal processing) has been developed by 
Honing and Pelikan.

Surprisingly enough, NNs found a broad field of 
applications in (theoretical) chemistry, e.g. in helping 
to suggest a theory for the relation between the sequ­
ence of amino acids in the protein and the spatial ar­
rangement of its polypeptide chain in the native state. 
Blazek, Pancoska, and Keiderling* used a 5-8-180 net 
to generate spectral curves from rentgenostrucural da­
ta and an „inverse“ net 180-8-5 to obtain rentgeno- 
structural data from spectral curves. The results were 
reported remarkable, hardly to reach by other me­
thods.

Gorman and Sejnowski used 60-*-2 net (for * up to 
24) for classification sonar echo signals to determine 
whether the signal came from a rock or a cylindrical 
object. Preprocessing (computing a spectral envelope) 
was needed; as in many similar cases.

Burr constructed a NN for handwritten character 
recognition as well as for spoken numeral recognition.

Kufudaki* applied neural nets to study neural pro­
cesses in the real brain, namely to classicifation of ti­
me series of latent periods in conditioning and „lear­
ning curves” ; a 20—12—2 net was used to solve a pro­
blem in which all tools of traditional analysis failed.

Charvat* et al used back-propagation in some sta­
ges of processing visual information mapping given 
areas of the Earth, taken from planes and satelites.

Jirsik, Kasik* et al used several NNs including BP 
to edge detection under changing light intensities.

Vingralek* used a modified BP in a metod of dithe­
ring grey images.

b) Prediction /  control

Fig. 22 symbolizes a situation, in which a certain 
portion of history of some events (x'j has its continua­
tion (c') registered; for members of T this continuation 
was known and these c'N were duplicated as answers 
to be learned. The training set thus consisted of mem­
bers [x'c', c']. The net was thus learned to make pre­
dictions.

Fig. 22

A concrete example was to forecast a temperature 
in some given system and various training data diffe­
red by the exact place where thermometers were set. 
Again, it worked with about 80% reliability. Success­
ful experiments with weather forecast were reported 
even in simpler second generation models.

An often cited example (not yet tried under situati­
on in this country) is to predict behavior of a customer 
applying for a credit. The training set Tis formed on 
the basis of long term history of the particular bank, 
which stores in its database characteristics of previous 
experience in the form: pertinent data about a custo­
mer [amount required, income history, frequency of 
job changes, minimal and maximal profit from the lo­
ans etc] — decision to grant the money or to reject the
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applicant and/or to predict his/hers next fiscal beha­
vior, In this way the net, which abstracts from such 
objectively hard to estimate input data as the smile of 
an applicant, tries to do more competent prediction of 
his/hers further market success.

Although economic laws are here not vet quite cle­
ar, we are* trying to simulate a simple market and the 
predictive capabilities on a 6-5-3-1 net, which are at 
least amusing; it is unbelievable how many rules is the 
net able to notice and extract from 12 simple exam­
ples similarly as an IQ test asks. We created 30 trai­
ning examples of the form [Company (2 possibilities), 
Customer (4), Product (4), Price (1 real number)],[Ex­
pected success (1 real number, probability of selling P 
made by Co to the Cu at price P)]. increase of price 
generally diminishes the success, but differently 
for different products; e.g. in lower price categories, 
Customer A prefers Company i, is somehow richer 
(can afford more expensive goods) etc. These and 
other “laws” are deducible from the examples ex­
plicitly, but the net (in the role of an advisor) estima­
tes the success of business transaction even in cases 
which bear no direct relationship to the examples; so­
metimes you have to note less apparent dependencies 
to explain the „decision“ of the net.

A specific example of prediction is that of time seri­
es. Weigend, Rumelhart and Huberman applied 
a 12-8-1 net on a (theoretically infinite) sequence of
numbers . . . , x T , 2, x T , ,, x T. ......... v h where the
twelfth inputs from the past were trained to predict 
next member of the sequence until they came to the 
possibility to predict x T. The empirical material was 
drawn out of historically long observations of occur­
rences of sunspots. BP has therefore the ability to dis­
cover well-hidden forms of regularities over a great 
period of time. Again, attempts to predict workers 
productivity etc. has been applied.

Recall Fig. 11 as an example of control.

successful in a development of a net, which well im­
plements to transmit a subset J of the input space, 
especially if there are enough regularities (inner laws) 
that govern membership to such a subset J. Even in 
such cases like natural language, radio or Tv signal 
transmission. If the net happens to find out these re­
gularities and is successfully trained, then the m-di- 
mensional information can pass through less-dimensi­
onal bottleneck of the narrow hidden layer. Fig. 23b 
then shows how the situation can be utilized: Split the 
well learnt net into two parts preserving the weights of 
original net and let the lower part play the role of 
a transmitter, the upper part the role of a receiver, 
which can be in space far away; and connect the hid­
den layer neurons (two in Fig.23b) by lines which 
identify the states of corresponding neurons. The ori­
ginal input information can then be transmitted to 
a distant place using less „wires“ (here F) than will be 
necessary to connect all the m input/output neurons 
directly.

c) Data compression.

Fig. 23a shows a net m-k-m (generally there can be 
other hidden layers involved), where k < m. It is trai­
ned to realize an identity mapping (y' = x'). We alrea­
dy know from sect.5 that not all identity mappings are 
realizable by such a net (cf. Fig. 17 and its explanati­
on). This however does not prevent us to try and to be

“ ) b)
Fig.23ab identita

Cottrell, Munro and Zipser used a 64-16-64 net to 
image compression in which the squares of 8x8  pixels 
were approximated by squares of 4 x 4  pixels, not loo­
sing too much visual information.

(Continuation)
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