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Editorial

The preparation of this issue — the second in the 
up to now short history of our Journal - started al­
most concurently with the first one.

We try here to continue in presenting to the readers 
some interesting views on the field of ncurocomputing 
and neuroscience. We also would like to have here 
a certain balance between the contributions from East 
and West, and also between theory and applications.

We continue in the series of Tutorials with the se­
cond part of J. Horejs’s paper on paradigm develop­
ment. We present here the record of the Panel discus­
sion given at the International Symposium on Neural

Networks and Neurocomputing NEURONET'90 and 
we devote also the corresponding space to informa­
tion on new books and recently published papers. We 
inform the reader about some interesting meetings, 
seminars, symposiums, conferences and exhibitions. 
In the section Neurocomputer Companies“ we intro­
duce a survey of neuro-oriented companies which 
were present at the CeBIT fair, Hannover (Germany), 
March 13-20, 1991.

Mirko Novâk 
Editor in Chief

UNCERTAINTY AND INFORMATION: 
THE EMERGING PARADIGMS

M. M. Gupta*)

Abstract:
In this paper, we describe some aspects of informati­

on and its cognate the uncertainty from the design of 
perspectives of intelligent systems. The discussion is 
centered around statistical uncertainty and cognitive un­
certainty, an important class of uncertainty that arises 
from human thinking and cognition process. Also, we 
discuss how these two uncertainties can help us in the 
design of new class of sensors and intelligent systems.

1. Introduction

The world around us is full of uncertainties: for 
example, the uncertainties caused by natural weather 
patterns and the uncertainties in world peace caused 
by power hungry politicians. In weather patterns, we 
have a fairly well defined deterministic morphology at 
the ultra-macroscopic level in terms of what we will 
face in the winter or summer months, however, the 
weather is almost uncertain and difficult to predict at 
the microscopic level. So is the uncertain situation in 
the Gulf crisis at the writing of these lines. One will al-

*) Madan M. Gupta
Inteligent Systems Research Laboratory
(Center for Excellence on Neuro-Vision Research)
College of Engineering
University of Saskatchewan
Saskatoon, Saskatchewan
Canada S7N 0W0

so notice the uncertainty embodied in the random tur­
bulence of the blood flow of our own cardio-vascular 
system, in the excitation patterns of nervous cells, or 
in the chaotic behaviour of neural cells in the brain. 
The uncertainty in the random vibrations of a musical 
string creates music which can resonate the neurons in 
one’s brain or the uncertainty in the random loud noi­
se in our living environment creates annoyance and 
can damage our hearing.

We humans are shrouded in uncertainties arising 
from our own thinking, mentation, cognition and per­
ception process as well. Here, we present a few exam­
ples of uncertainties arising from our thinking and 
cognition process: this is a beautiful spring rose full oj 
pleasant fragrance, you are very kind to me; music is ve­
rv pleasant; summers are pleasant and winters are extre­
mely cold in Saskatchewan, and so on, so forth,

Uncertainty is a blanket which tightly shrouds our 
environment and our thinking process. We humans 
are capable of, to a certain extent, perceiving and un­
certain phenomenon, extracting some useful informa­
tion, and attaching a meaning to this information. The 
perception of this information is very useful. For 
example, in the case of some perceiving of danger, we 
attempt to take a defensive action. As we grow, with 
experience, we develop our own cognitive faculty to 
extract useful information from the uncertainties in 
our environment, and make use of this information in 
our future actions and decision making tasks.
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Uncertainty is an inherent phenomenon in out- 
universe and in our lives which stands conti­
nuously open to our gaze. To some, it may be­
come a cause o f anxiety, but to scientists, it 
becomes a chapter full o f challenges. Scientists 
attempt to comprehend the language o f this 
uncertainty through the mathematical tools, 
but still these mathematical tools are incomple­
te.

To some scientists, uncertainty evokes the notion of 
probability; that is the very reason morphology of un­
certainty has been very dull and dry. The theory of 
probability is unable to describe the beauty of music 
emating from the random vibrations of a string, or of 
the scene of a snow clad mountain or the fragrance of 
a spring rose. The morphology of uncertainty in the 
random vibrations of a string is probabilistic, howe­
ver, the uncertainty associated with the perception of 
its sound is not probabilistic.

Thus, uncertainty may arise from physical pheno­
mena which, in general, are governed by physical laws 
such as the laws of electromagnetics, laws of motion, 
and laws of electrical current flows. Also, uncertainty 
may arise through the process of human cognition 
and perception; this red spring rose is beautiful and full 
o f pleasing fragrance. This cognitive uncertainty is as­
sociated with human perception and with the minds 
of other intelligent biological species. This is the un­
certainty which we can fell, but which does not have 
any shapes or bounds. But the strength of this amor­
phous uncertainty lies in that it can interact with our 
cognitive process during intelligent decision making 
tasks. During the past, to mathematicians and scien­
tists, uncertainty has always evoked the throughts of 
a probabilistic type of uncertainty and they have dis­
dained the challenges of understanding the amor­
phous (cognitive) uncertainty. It is only recently that 
with an increasing interest in the development of intel­
ligent autonomous systems, scientists and mathemati­
cians have directed their efforts to devise theories to 
give some understanding to this amorphous uncertain­
ty.

The mathematics of cognitive uncertainty formali­
zes the structure of uncertainty arising from the pro­
cess of thinking, mentation, and perception. There is 
one important idealization involved; unlike probabili­
stic uncertainty, cognitive uncertainty does not have 
absolute measurements, rather, it is relative and con­
text dependant. “Today, the weather is warm "evokes 
two different temperatures in our minds for the 
months of January and June in Saskatoon, or for two 
different places, (Saskatoon and New Delhi, for 
example) but in the same month (January, for exam­
ple). The new mathematics of cognitive uncertainty 
may play an important role in the development of au­
tonomous intelligent systems, just as the mathematics 
of probability theory has played an important role in 
the understanding of some natural phenomena associ­
ated with quantum mechanics, turbulent water flow,

and in forecasting of the uncertain weather patterns or 
random changes in the stock market.

There are emerging paradigms for uncertainty and 
information. Perhaps, the most convincing arguement 
in favor of the study of cognitive uncertainty lies in 
the extraction of amount of information that is em­
bedded in this type of uncertainty.

2. Probabilistic and Cognitive Uncertainties

There are various classes of uncertainties, however, 
for the discussion purposes, here we classify these un­
certainties into two broad categories: the probabilistic 
and the cognitive uncertainties.

The probabilistic type of uncertainty deals with the 
information or phenomena which arise from the ran­
dom behaviour of physical systems. The pervasiveness 
of this type of uncertainty can be witnessed in the ran­
dom vibrations of a machine, randomness of a messa­
ge, random fluctuations of electrons in a magnetic fi­
eld, diffusion of gases in a thermal field, random elec­
trical activities of the cardiac muscles, uncertain fluc­
tuations in the weather pattern and the turbulent 
blood flow through a damaged cardiac valve. The pro­
babilistic type of uncertainty has been studied for cen­
turies, and we have a very rich statistical theory to 
characterize such random phenomena. The calculus 
of mean and variance is very rich in this respect, and 
is being used very widely.

The cognitive uncertainty, unlike the probabilistic 
one, is the uncertainty that deals with phenomena ari­
sing from human thinking, reasoning, cognition and 
perception processes, or cognitive information in ge­
neral. This is subject which has been either neglected 
or taken very lightly. The cognition and perception of 
the physical environment through our natural sensors 
(eyes, ears, nose, etc.), the perception of pain and 
other similar biological events through our nervous 
system and neural networks deserve special attention. 
The “perception phenomenon” associated with these 
processes are full of “uncertainties" and cannot be 
characterized by conventional statistical theory. We 
can feel pain: “the back is very painful'', but this pain 
can be neither measured nor characterized using statisti­
cal theory. Similarly, we express our perception linguisti­
cally, “this red flower is just beautiful and is full o f plea­
sing fragrance". This corresponds to the “perception" 
of our physical environment where “red" and “beauti­
ful" describe the visual perception, whereas “pleasing 
fragrance" describes the perception of smell. Again, 
we cannot characterize these perceptions using the 
strength of the statistical theory.

The cognitive uncertainty and its cognate, the cog­
nitive information, involve the activities of the natural 
neural networks. To non-scientists, it may seem stran­
ge that such “familiar” notions have recently become 
the focus of intense research. But it is the “ignorance” 
of these notions, and their possible technological ap­
plications in intelligent man-made systems, and not
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“familiarity” with them which has forced scientists to 
conduct research in the field of cognitive uncertainty 
and cognitive information.

The development of the human cognitive process 
and the perception of his environment starts taking 
shape with the development of imaginative power in 
a baby’s brain, A baby in the cradle can recognize the 
human face long before it is conscious of any visual 
physical attributes of humans or its environment.

In spite of the richness of conventional statistical 
mathematical methods, they are very often thought to 
be dry and cold. One reason lies in this inability to 
describe the beauty of white mountains, blue lakes, 
the rising sun, the full moon, or the richness of the fra­
grance of a spring flower. No doubt, one can estimate 
the volume of snow or the heights of the mountains, 
or the frequencies of vibrating musical strings, but the 
conventional mathematical methods cannot be used 
to narrate logically the feelings and the emotions asso­
ciated with their perceptions.

The study of such formless uncertainties provides 
us with a scientific challenge. Scientists have started 
now to think of giving a morphology to this amor­
phous soft uncertainty. In the past, mathematicians 
have disdained this challenge and have increasingly 
chosen to flee from natural mentation by devising the­
ories unrelated to human perception, feelings and 
emotions.

It was in 1965 when Lotfi A. Zadeh published his 
first celebrated paper on Fuzzy Sets and it is now al­
most twenty-two years since he first introduced to me 
this new type of information and uncertainty at the 
breakfast table in August, 1968 at the I FAC Symposi­
um held at Dubrovnik, Yugoslavia. He showed me the 
path which leads to somewhat beautiful gardens full 
of immortal and ever increasing fragrance. Though 
I was taught the notions of cognition and perception 
at shool, I was very ignorant about uncertainty and its 
pervasiveness around these notions. Indeed, this un­
certainty has been disdained by scientists and mathe­
maticians.

No one had seen the beauty of these Fuzzy Sets be­
fore Professor Lotfi Zadeh, and it was he who showed 
promise of consolidating this beauty into an organi­
zed field with rich theories and promising applicati­
ons.

Professor Zadeh coined the word Fuzzy Sets. Fuzzy 
Sets deal with sets of objects or phenomena which are 
vague and have only soft boundaries. The calculus of 
fuzzy sets and soft logic is a very promising tool for 
dealing with cognitive uncertainty (just as statistical 
theory deals with the probabilistic uncertainty). In­
deed, the applications of these fuzzy sets, which once 
were thought to be dull and dry, can be found in ma­
ny scientific and scholarly works. It is true that Boole 
introduced the beautiful notion of binary logic which 
is so pervasive in our digital world, however, this 
beauty is naked and without any adornment. Boolean 
logic is unable to model the human cognition and 
thinking process. This is the very reason that no one

today is indifferent to the soft logic of fuzzy sets. In 
fact, many view their first encounter with the fuzzy lo­
gic as a totally new and exciting experience in their 
scientific life.

From the purely mathematical view point, the evo­
lution of the theory of soft (fuzzy) logic is very exci­
ting but complex. Many scientific theories start by 
borrowing notions from the already developed areas 
of mathematics, but in this case, Professor Zadeh in­
troduced the basic notion of “vagueness” having no 
sharp morphology and which is so common in human 
thought processes, and this notion of vagueness is mo­
delled using the notion of graded membership.

Indeed, Professor Zadeh laid the foundation of fuz­
zy mathematics on a very robust rock. It now serves 
the needs of many existing scientific desciplines, but 
equally important is that many new disciplines, such 
as the study of fuzzy neural networks, and fuzzy cha­
os, have started arising around these mathematics. 
Thus, these mathematics have united several noble 
(both old and new) narrow streams of scientific disci­
plines into one while, at the same time, instilling life 
into several other streams that have been dormant.

Ever since Aristotle, the science of logic has follo­
wed a narrow and abstract path through a wilderness 
of irrelevances and paradoxes incompatible with hu­
man logic. Real world is far away from binary logic; 
computers are asked to solve human-like real world 
problems but the computer logic is too artificial to 
handle such problems. A cognitive machine that can 
appreciate the hedges of truth will appreciate the hu­
man-like soft logic. There have been several attempts 
to use fuzzy logic in the design of such a cognitive ma­
chine.

3. Mentation, Cognition and Soft (Fuzzy) 
Logic

In biomedical engineering, we apply the principles 
of the natural sciences and engineering to the benefit 
of the health sciences. Here, we shall take an inverse 
biomedical engineering [(biomedical engineering) '] 
approach and shall try to apply the biological princi­
ples to the solution of some engineering problems. In 
particular, engineers are investigating the problem of 
creating intelligence in a robotic system. The thought 
of the creation of intelligence on a silicon chip (ma­
chine) creates some strange feelings in our minds.

Intelligence implies the ability to think, reason, le­
arn and memorize, or, in general, it refers to the hu­
man mentation and cognition process. One of the 
most important frontiers of science, is understanding 
the biological basis of mentation and cognition: how 
we think, reason, learn, remember, perceive and act. 
I still cannot understand how the brain can perceive 
the dangerous driving situation and act instantaneou­
sly while it might take several seconds to multiply two 
three-digit numbers. How do the genes contribute to
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the process of mentation and cognition and how do 
they develop with the environment?

Here, we have two computational tools: the carbon 
based organic brain which has existed in humans and 
animals for several billions of years, and the silicon 
based modern computers which have evolved only 
over the last three decades. Recent technological ad­
vances in computer hardware have made it possible to 
carry a very powerful computer in a briefcase which is 
ultra fast and efficient for numerical computations. 
However, the “cognitive information ”, the information 
which our natural sensors acquire, is not numerical, 
but the “mentation process” can process such infor­
mation very efficiently and act upon it accordingly. 
The modern day computers fail to process such cogni­
tive information.

The fact that the human mentation and cognition 
process is so marvelously efficient and effective, poses 
a question for scientists and engineers: Can some of 
the functions and attributes o f the human sensory .sy­
stem, mentation and cognitive processor, and motor neu­
rons be emulated in a robotic system ?

For such an emulation process, it is necessary to un­
derstand the biological and physiological functions of 
the brain. It is a difficult question to answer. Howe­
ver, it is felt that if we examine some of the “mathe­
matical aspects” of our thinking process and “hard­
ware aspects ' of the “neurons”, the principle element 
of the brain, we may succeed to some extent in our 
emulation process.

The mentation and cognitive activity of the brain, 
unlike the computational function of the binary com­
puter, is based upon the relative grades of information 
acquired by the natural sensory system. The conventi­
onal mathematical tools, whether deterministic or pro­
babilistic, are based upon some absolute measure of 
the information. Our natural sensors acquire informa­
tion in the form of relative grades rather than in abso­
lute numbers. The perception and “action” of the cog­
nitive process also appear in the form of relative gra­
des. While driving on an icy road, for example, we 
perceive the driving environment in a relatively gra­
ded sense and act accordingly.

The mentation and cognitive process thus acts upon 
the graded information. Information may appear in 
a numerical form (temperature of the body is 38.4 °C), 
however, during the process of cognition, we perceive 
this temperature as near normal, in the form of relati­
ve grades. Thus, the cognitive process acts upon the 
different forms of information and this leads to “for­
mless ’ uncertainty: temperature is near normal.

The theory of fuzzy logic is based upon the notion 
of relative graded membership and so is the function 
of the mentation and cognitive process. In the past, 
studies of cognitive uncertainty and its cognate, the 
cognitive information, were hindered by the lack of 
suitable tools for modeling such information. Howe­
ver, with the introduction of the theory of fuzzy logic, 
it is possible now to expand studies in this important

field of cognitive information, neural networks, and 
cognitive-neural computing tools.

My own laboratory is heavily committed to studies 
in the field of cognitive information processing, cogni­
tive vision fields, vision perception, neuro-vision rese­
arch, cognitive-neural computing tools, and cognitive 
feedback controllers with promising applications to 
intelligent robotic systems and medical imaging.

4 , Biological Basis for Cognition

The genetic control, sensory, cognitive and percepti­
on capabilities of biological systems provide an intere­
sting challenge to both engineers and physical scien­
tists in order to learn from these processes and emula­
te their robust behavior on computers for their engi­
neering and medical applications. For example, the 
information processing and information extraction ca­
pabilities of natural sensors such as vision, tactile, ol­
factory and auditory along with the cognitive and per­
ception capabilities of the brain provide many chal­
lenging examples for the development of intelligent 
sensors and devices.

The information extraction of our natural sensors 
and the cognitive functions of the brain are based 
upon, as well known, on some aggregate properties of 
attributes in a sensory field. For example, the various 
attributes associated with the vision such as color, 
depth, edges, gray-levels, create a vision field. In par­
ticular, the attribute color creates a color field with 
a continuous distribution of color with various inten­
sity levels. Similar is the case with depth and gray-in­
tensity fields. The vision sensory system (consisting of 
retinal receptors and neural networks at various le­
vels) interacts with these fields in an aggregate man­
ner and extracts information regarding colors, depths, 
or edges. It must be emphasized here, however, that 
the perception of these attributes is not in an absolute 
sense.

The most powerful binary computer of today, ho­
wever, cannot process the cognitive vision fields or 
cognitive information, which reflect the qualitative in­
formation that arises from human thinking, cognition 
and perception.

The fact that the natural sensors and mentation and 
cognitive processes are marvelously so efficient and 
effective poses a question for scientists and engineers: 
“can some of the function and attributes of the human 
sensory system, mentation and the cognitive process 
as well as that of the motor neurons be emulated on 
a machine?”. This is a difficult questions to answer. 
However, it is felt that if we examine some of the ma­
thematical aspects of the natural sensory system, hu­
man thinking process, and “hardware aspects” of the 
“neurons” which are the principle computing element 
in the brain, we may succeed to some extent in the 
emulation process of these marvelous attributes.

The mentation and cognitive activity of the brain, 
unlike the computational functions of the binary com-
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puter, is based upon the notions of aggregation and 
relative grades of information that is acquired by the 
natural sensory system. The perception and action of 
these cognitive processes also appear to be in the form 
of relative grades. The physical attributes of a vision 
field may be measured precisely using physical me­
ans, however, during the process of perception, it ap­
pears in the form of relative grades, i.e., “the color is 
yellowish”. This introduces a type of uncertainty that 
can be called a “formless uncertainty”. However, we 
humans are able to convey a message at a greater 
speed and efficiency using this type of formless uncer­
tainty as a formal basis. Recently, scientists have star­
ted to give a morphology to this amorphous uncertain­
ty. In the past, the mathematicians have looked with 
disdain at this challenge and have chosen to avoid the 
modelling of mentation by devising theories that are 
unrelated to human perception and cognitive proces­
ses.

The advances in the framework of neural networks 
and the mathematics of fuzzy logic will lead toward 
the development of intelligent sensors and systems for 
engineering and medical applications. They will also 
lead to new studies in the important fields of cognitive 
information, neural networks, and cognitive-neural 
computing tools.

If we want to emulate some of the cognitive functi­
ons (learning, remembering, reasoning, intelligence 
and perceiving, etc.) of humans in a machine, we must 
generalize the definition of information and develop 
new mathematical tools and hardwares.

Indeed, biological processes have much to offer to 
system scientists and mathematicians to solve many 
practical problems in the world we live in today.

5. Perspectives

Recent progress in information-based technology 
has significantly broadened the capabilities and appli­
cation of computers. Today’s computers are merely 
being used for the storage and processing of numeri­
cal data (hard uncertainty and hard information). 
Should we not re-examine the functions of these com­
puting tools in view of the increasing interests in sub­
jects such as knowledge-based systems, expert systems 
and intelligent robotic systems and for solving pro­
blems related to decision and control? Human menta­
tion acts upon cognitive information and the cognitive 
information is characterized by using relative grades: 
“Although it is snowing, it is not very cold". Human 
mentation and cognition function by using fresh infor­
mation (acquired from the environment by our natural 
sensors) and the information (experience, knowledge­
base) stored in the biological memory.

Shannon’s definition of “information” was based 
upon certain physical measurements of random activi­
ties in systems, in particular, in communication chan­
nels. This definition of information was restricted

only to a class of information arising from physical sy­
stems.

If we want to emulate some of the cognitive functi­
ons (learning, remembering, reasoning, intelligence 
and perceiving, etc.) of humans in a machine, we have 
to generalize the definition of information and to de­
velop new mathematical tools and hardware. These 
new mathematical tools and hardware must deal with 
the simulation and processing of cognitive informati­
on and soft logic.

Some of the nebulous attributes of the vision field, 
for example, can be emulated using the theory based 
upon fuzzy mathematics and fuzzy neurons. Many 
new notions, although still at an early stage, are sprin­
ging up around the mathematics of fuzzy neural net­
works and, hopefully, we will be able to nurture some 
interesting studies in the not too distant future.
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PATTERN RECOGNITION WITH HOMOGENEOUS 
AND SPACE-VARIANT NEURAL LAYERS**)

H. Mark

Abstract:
In the present article an attempt is made to under­

stand pattern recognition of simple symbols (e.g. alpha- 
numerical letters) by use of a system of homogeneous 
layers constructed in accordance with known properties 
of the visual system.

a Darwinian sense, where development is performed 
by (he selection process. However, evolution theory 
shows that optimal or nearly optimal conditions de­
velop as a consequence of survival.

Nevertheless, the biological constraints of such an 
optimization have to be maintained. Those are for the 
present problem mainly:

1. Introduction

As a mathematical too! to describe signal trans­
mission and signal processing in layered neuronal sys­
tems a “System Theory of Homogeneous Layers” was 
developed by the author (Marko, 1969). Since then 
this theory has been applied to the human visual sys­
tem to investigate signal detection for various stimulus 
patterns (Marko, 1981) and also for more technical 
problems of picture processing and pattern recogni­
tion (Platzer and Etschberger, 1972; Marko and Gie- 
bel, 1970).

In the case of multidimensional linear systems 
a considerable insight into system behaviour can be 
reached through the use of Fourier Transformation 
methods leading to multidimensional spectra. Nonli­
near systems such as neural assemblies with thresh­
olds can also be treated with this theory if for instance 
they have linear and homogeneous subpart receptive 
fields.

Recently the author proposed this theory to investi­
gate stability conditions in layered systems with re­
verberating pathways leading to multistable states 
suitable for classifying perceptual sensations (Marko, 
1984). This led to a space variant system formed by 
a learning process which again could be decomposed 
in a number of homogeneous systems.

In biological cybernetics the concept of modelling 
systems by a computable model or by the way of si­
mulation plays an important role. To solve a certain 
task such as pattern recognition this model has to be 
optimized or best adapted to this task. This teleologi­
cal aim seems to be controversial with biology in

*) Prof. Dr. Hans Marko, Ing. E.h.
Lehrstuhl f. Nachrichtentechnik
Institut f. Informationtechnik, TU München
Postfach 202420
D-8000 München 2, BRD

**) Presented at: Process in Structures for Perception and Action 
DFG Deutsche Forschungsgemeinschaft, 1988

1. the system is to be composed of neurons, i.e. ele­
ments capable of summation of signals with an ef­
fect of thresholding;

2. the initial (hereditary) construction information for 
the system should be reasonably small (this is done 
by the structural and functional regularity of neu­
ron layers mostly found and leading to the quality 
of homogeneity);

3. the system has to be adaptive to environmental ex­
perience in the sense of unsupervised learning or 
self-organization. In other words: there is no teach­
er or instructor to optimize the system for a specifi­
ed task.

To our present knowledge the third condition is 
realized in a neuronal system by a simple mechanism 
proposed by Hebb already in 1949. The logical table 
of this mechanism is shown in Fig, 1 together with 
a slightly modified version by Singer (see page 5 in 
this book).

The size of synaptic modification A is relevant for 
the plasticity of the system. Especially in more peri­
pheral layers A has a finite value only for a certain 
adult age and then drops to zero with the result that 
the learned connections are irreversibly maintained.

A c M

1 1 +A

0 1 0

1 0 0

0 0 0

a

A c M

1 1 +A

0 1 -A

1 0 0

0 0 0

b
Fig. I. Logical table o f
a) Hebb’s mechanism, and (b) its modified version by Singer;
A: afferent signal (1 present, 0 absent), C: state o f the neuron cell (1 
firing, 0 silent), M: modification o f synaptic transmission by a small 

amount o f A (+ A increasing, ™ A decreasing, 0 no change).
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2. A General Scheme for Neuronal Signal 
Processing

Before concentrating on the problem of pattern re­
cognition a hypothetical scheme of neuronal perform­
ance as a whole should be considered (see Fig. 2).

S EN SO RS

SEN SO RY

PROJECT IONS
ASS O C IAT IO N

EFFEC TO RS MOTORIC

PRO JECT IO NS

affe ren t : information reduction

■"*---efferent : effector control

re flex

Internal feedback

Fig, 2, Scheme of neuronal performance as a whole showing the affer- 
eni and efferent pathway and the internal interconnections (10s bit/s: 
estimate o f sensory information flow mainly determined for the human 

visual system, 50 bit/s: upper limit of conscious information flow).

Of course, this scheme does not aim to explain the 
rather complicated neuronal connection scheme in de­
tail and any layer shown here is only a representative 
of many parallel or cascaded neuronal areas.

However, some general considerations about the 
principal functioning of the system can be stated us­
ing this scheme:

1. The phylogenetic development proceeded from the 
left to the right, i.e. the receptors/effectors and the 
midbrain projections developed first before the cor­
tical layers were added. This, of course, implies 
a further important constraint for the whole system. 
In other words: in biological systems a bottom up 
rather than a top down algorithm is realized.

2. The connection of the afferent to the efferent path­
way is multifold. It includes direct and reverberat­
ing connections as well.

3. The sensory projection layers act as feature detec­
tors (preserving retinotopy in the visual system). 
They are formed by experience using Hebb’s condi­
tioning algorithm. A possible structure for this per­
formance will be discussed in the next section.

4. In order that the cortical layers may interpret the 
sensory signals correctly the proliferation process of 
the more peripheral layers should be completed be­
fore the beginning of a similar process within the 
cortical layers. Thus the establishment of learned 
specification (proliferation of the afferent branch) 
proceeds from the left to the right.

5. The plasticity or the ability to produce an irreversi­
ble (or long lasting) change in the interconnecting 
scheme is controlled by an unspecific instance (e.g.,

reticular system or amygdala and hippocampus to 
recent findings. This causes to change the size of A 
according to Fig. 1. The central control of learning 
was omitted in Fig, 2).

6. There are reverberating connections especially in 
the cortical area which can lead to instabilities or 
maintained oscillations. The preferred spatio-tem­
poral patterns of such oscillations will be produced 
by neuronal assemblies strongly interconnected due 
to Hebb’s principle and more or less correlated to 
specific sensory signals.

7. Consequently, the perception process is not purely 
passive (or causal) but partly active. This means 
that the corresponding areas are not only excited by 
the sensory signals but also by the reverberating 
processes. This self-reflexive action of the brain is 
also supported by the finding that only 1 % of the 
cortical connections are thalamic (sensory) affer­
ents, while the larger part issues from other cortical 
regions (Braitenberg, 1978).

8. As a whole the system is likely to produce a sto­
chastic process which tends to predict the incoming 
sensory signals, so that the incoming information 
(the prediction error) is minimized. Such a perform­
ance would highly increase the survival chance in 
a varying environment.

9. The information produced and delivered within the 
efferent pathway is partly supplied by the internal 
reverberating process and partly by the incoming 
sensory signals. This corresponds, in terms of infor­
mation theory, to a dependent information source 
(Marko, 1966, 1983).

3. The Formation of Sensory Layers as 
Feature Detectors

In a pattern recognition system the first processing 
stage consists of feature detectors. Feature detectors 
are used to extract relevant information from the sen­
sory signal suitable for the next stage, the classifier. In 
the visual system of vertebrates feature detectors are 
found in the striate cortex (area 17, 18, 19).

The main functional units are directional and/or 
orientational filters found by Hubei and Wiesel (1962) 
and arranged in a columnar structure (see also Sing­
er’s contribution to this book). They are to be found in 
area 17 below and above the input layer (layer 4). 
From psychophysical detection experiments the exis­
tence of orientationally selective filters is also evident. 
They are described by elliptical receptive fields (Mar­
ko, 1981). The eccentricity parameter e of these fields 
is suspected to be in the order of 2 to 8 (see Eisner, in 
this book). More complex feature detectors (complex 
cells) and motion sensitive cells have been found in 
the higher stages of striate cortex. A very important 
constraint expressing some functional and structural 
regularity that has always been observed, namely the 
retinotopy, must be considered. This means that cells 
having equal functional properties are arranged as
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a homogeneous system coupled to the original picture 
or the retinal excitation respectively. Cells within the 
same neuronal layer but with different functional pro­
perties are arranged in an interleaving fashion, there­
fore leading to the columnar structure. The distance 
of such columns, with the same functional property, is 
about 0,8 mm or the cortex surface (the cortex having 
a thickness of about 2,5 mm). Consequently, a “hyper­
column” which includes all functional properties 
forms a cylinder with a diameter of 0,8 mm and 
a height of 2,5 mm, having a volume of about 1 mm3. 
It contains about 105 neurons with about 2. 108 syn­
apses.

According to Braitenberg (1978 and personal mes­
sage) the mean lengts of inhibitory connections corre­
spond to a radius of 0,2 mm (estimated) and that of 
excitatory connections to a much larger radius of 
about 1 mm. It should be noted that 3 A of the cortical 
neurons are pyramidal cells and 'A are stellate cells, 
the latter probably being responsible for the inhibition 
of the pyramidal cells. The lateral inhibition found 
within a small area and the excitatory connections ex­
tending over a much larger area lead the author to 
propose the NIFE structure (NIFE: near inhibition, 
far excitation) as a model to explain the columnar arid 
retinotopic arrangement of neurons with the same 
functional property within the cortex.

Given a strong circular inhibition between adjacent 
neurons, then, according to Fig, 3, only sufficiently 
distant neurons could be excited simultaneously. They 
form a regular hexagonal pattern. The intermediate 
neurons are inhibited and stay inactive despite some 
excitation from outside. For an unspecific or diffused 
excitation of the whole layer it is by hazard which of 
the interleaved hexagonal patterns of neurons may be 
excited. The the whole layer forms a multistable sys­
tem (a “multiflop”), the states being characterized by 
the common excited neurons in a regular structure. 
Assuming now that the excitatory coupling between 
commonly excited neurons (that means over a larger 
area) is modified by a learning process using Hebb's 
lagorithm, this class of neurons may act as feature de­
tectors. For instance, if lines of a certain orientation 
are presented, the First (by chance) excited class will 
establish supporting connections within this orienta­
tion. Subsequently they will more likely to be excited 
in all case where patterns containing lines or edges are 
presented. If the Hebb-Singer algorithm is used (see 
Fig. 1) the excitatory connections perpendicular to the 
orientations presented will diminish. This leads to the 
formation of an elliptical receptive field needed for 
orientational filters.*)

If lines or edges of different orientations are pre­
sented next, another neuronal population (with its ori­
ginal circular receptive field) will be preferred and

*) It might be noted that the spatial bandpass characteristic of the visual 
channel is necessary for this feature forming process because the spatial 
differentiation assumes the simultaneous excitation only along a line if an 
edge is presented.

Fig. J. NIFE — structure of neuron layers (NIFE: near inhibition, far 
excitation); a) space variant layer with double space periodic)’ (a com­
monly excited substructure forming a hexagonal pattern is indicated), 
(b) decomposition o f the neuronal layer shown in (a) into a number of 

homogeneous layers after completion o f the learning process.

excited and adapted with the learning algorithm to the 
new orientation. In this way the functional specifica­
tion of the interleaved neuron populations is formed 
by experience. As the number of different populations 
is limited, only the most frequently occuring patterns 
have a chance to be learned. These seem to be lines or 
edges (which are also transformed to lines via spatial 
differentiation in the afferent sensory channel).

It should be noted that the number of homogeneous 
substructures depends on the area of the strong inhibi­
tion. For Fig. 3 it was assumed that only the adjacent 
neurons were strongly inhibited leading to a number 
of 4 substructures. If the inhibition area extends to the 
next adjacent neurons 7 structures are possible and so 
on.

A calculation by Neumann (1981) shows that the 
NIFE structure is very resistant to parameter varia­
tions. Fig. 4 shows the distance between commonly ex­
citable neurons assuming Gaussian inhibition a . g(x) 
with radius and strength a and common uniform ex­
citation with strength E.

Activity A of any neuron within the layer is as­
sumed to be.

A = A if E -  LI > S 
Gif E ~ 1 / < S

where S  is a threshold and LI is the sum of inhibition 
potentials of the other active neurons. The inhibitory 
potential of one active neuron to another neuron with 
distance x is assumed to be

/ = A . a . g(x) with g(x) -- e A"

Selfinhibition is not admitted, i.e,, g(x) = 0 for x =
0. The initial unlearned state is considered to be with­
out any excitatory connections. The maximum dis­
tance in Fig. 4 corresponds to a condition in which an 
intermediate neuron cannot be excited due to inhibi­
tion of the neighbouring excited neurons. The mini­
mum distance corresponds to a condition in which the
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Fig. 4. NIFE-structure. Distance o f commonly excitable neurons in 
a homogeneous layer structure with a Gaussian inhibitory surround­

ing.

mutual inhibition of commonly active neurons is 
smaller than the excitation.

Obviously the distance AX  between commonly ex­
citable neurons (or the diameter of the hypercolumn) 
is very stable against parameter variations.**)

After the interleaved hexagonal units are organized 
by creation or modification of excitatory connections 
according to a learning process, the layer as a whole is 
no longer homogeneous. The learning process has al­
tered the original homogeneous structure into a space- 
variant structure with a double-periodic space var­
iance. This, however, can be decomposed into a num­
ber of again homogeneous layers as shown in Fig. J, 
now having different receptive fields. (For a mathe­
matical treatment the excitation function which is 
present only at discrete points has to be smoothed 
over the whole area according to the spatial sampling 
theorem.)

From the feature extracting process about 500 
single points belonging to all layers (except the pic­
ture plane) are finally obtained. In the learning phase 
of the system only those points exceeding threshold 
are further regarded. With the incremental learning 
procedure the coupling coefficients to the correspond­
ing output layer in the last stage were raised, and to 
the other layers they were lowered in small steps until 
the right classification was obtained with a certain 
security margin. This procedure converged after about 
! 000 presented patterns written by about 20 persons. 
This means that a complete separability of the used 
pattern set was achieved. More detailed information 
on the system design can be found in Marko and Gie- 
bei (1970) and Giebel (1975).

The recognition process runs as follows: The input 
is provided by writing with a light pen or by a scan­
ning process of the handprinted letter. Next the pic­
ture is framed with 16x24 picture elements. Then fil­
tering in four directions (horizontal, vertical, and two 
diagonal directions) is performed. Only elementary 
points with a signal above the threshold are indicated. 
Higher features like angles, curvatures, and endpoints 
or crossing points and branching points are extracted. 
For these higher features, the framme might be much 
broader than for the directional filters. Finally, 
weighting according to the learned scheme is done 
and the result is indicated.

The performance of this system may be judged by 
the improvement of the error rate due to the multis­
tage operation of the system. First it should be stated 
that the error rate for the set of handwritten characters 
used in the learning phase of the system was zero; i.e., 
the learning process converged totally, leading to 
complete separability. When another set of handwrit­
ten characters not used in the learning phase but writ­
ten by the same writers was presented, a recognition

4. The Recognition of Simple Patterns with 
a Homogeneous Layer System

Recognition means classification of a set of differ­
ent patterns into a number of specified classes. Here 
we used handprinted letters and figures (alphanumer­
ic characters) written by many people in a highly vari­
ed manner (a total of 36 classes). As a processing sys­
tem we used a system of homogeneous layers with 
feature detectors according to those found in the visu­
al system. The scheme is shown in Fig. 5. In the first 
stage four orientational filters have been used. In 
a successive stage more complex features are formed, 
such as crossing points, branching points, end points 
etc.

**) It might be of interest that a similar hexagonal array for the structural 
growth (in constrast to the function) has been obtained by Meinhardt 
(1982, 1986) using lateral inhibition accomplished by a diffusion process. 
It seems that the same mathematical scheme of a homogeneous coupled 
layer is valid.
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Fig. 5. System of homogeneous layers used in pattern recognition for 
the classification o f hand-printed characters.
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error of 3 percent was found. The same character set 
would lead to an error of 20 percent with one-stage 
operation only, which corresponds to the Bayesian 
classifier applied to the image plane. With four direc­
tional filters the error rate would drop to 10 percent, 
and finally to 3 percent with all the features used. It 
seems therefore that the hierarchical structure of the 
homogeneous layer system is especially suitable for 
recognizing new patterns not used in the learning pro­
cess. This ability of generalization common to living 
creatures seems to be an advantage of the biological 
approach, which uses features similar to those en­
countered in the nervous system.

The contribution of the different features to the fi­
nal quantity to be maximized by the learning proce­
dure was measured by the average product of the ab­
solute weights and the frequency of using the corre­
sponding features. The result is as follows: 21 percent 
for the horizontal direction, 20 percent for the vertical 
direction, 9 percent for the positive diagonal slope, 14 
percent for the negative diagonal slope, 4 percent for 
the curvatures, 11 percent for ending points, 8 percent 
for right angles, 1 percent for intersection, and 19 per­
cent for other topological features. These figures are 
mean values taken over all 36 pattern classes.

In order to evaluate the sensitivity of the system to 
pattern variations the rotation of patterns has been in­
vestigated by Tilgner (1982). His results are shown in 
the appendix.

The comparison between man and this system of 
the sensitivity under rotations reveals similarity. As 
compared to the Bayes-classification applied to the 
pixels of the image plane without feature layers the 
homogeneous system shows a considerable improve­
ment. It might be concluded that a homogeneous sys­
tem using many feature filters in parallel provides the 
invariance capability necessary to recognize highly 
variable patterns.

5, Discussion

The system described above is of course a simplifi­
ed version of the pattern recognition abilities of the 
visual system. Firstly, in reality there are many more 
feature filters than those used in the simulation. For 
instance, in the striate cortex not only orientational fil­
ters but also receptive fields of different size leading 
to feature filters of different spatial frequencies were 
found. According to psychophysical findings different 
orientational filters with different spatial frequencies 
have to be assumed (see Eisner, page 79). Secondly, 
more stages are certainly involved, especially if word 
recognition is required. They could work principally 
in the same manner, using the NIFE structure with its 
learning capabilities. Thirdly, the technical recogni­
tion system described here works not sequentially but 
in a parallel mode. Time is only needed to build up 
the excitations but not provide a sequence of different 
excitations.

In the real system a time sequence is generated as a 
consequence of reverberating connections shown in 
Fig. 2. It is a spatio-temporal pattern of excited neu­
ron assemblies, correlated with the sensory input or its 
extracted features, respectively. This correlation is es­
tablished by learning based on Heblvs principle. In 
this way the process will predict the most probable in­
put even if the real input fails to exist, or if the senso­
ry signals are disturbed or partly omitted. Perception 
is then an active process synchronized by sensory sig­
nals. Synchronization here is equivalent to the recall 
of information in an associative memory.

Generally, perception is an internal process corre­
lated with the outer world in a variable way. The de­
gree of this correlation or synchronization may deter­
mine whether the process is more perceptive (recep­
tion of information) or more reflective (production of 
information). Thus, a meaningful information ex­
change between the living being and its environment 
is possible due to the highly intereonected layers of 
the adaptive neo-cortex.

APPENDIX

MAN-MACHINE COMPARISON OF 
ROTATIONAL INVARIANT 
CHARACTER RECOGNITION

Ralph D. Tilgner*)

1. Introduction

In recent years, automatic pattern recognition has 
reached a high level in the field of character recogni­
tion. Problems due to pattern variations by projective 
transformations (size, translation or rotation) still re­
main, even though a variety of preprocessing tech­
niques were developed to improve recognition per­
formance under these transformations (Nagy and Tu- 
ong, 1970; Marko, 1973; Giidesen, 1976).

This contrasts to the high capability for invariant re­
cognition of the human visual system. In the follow­
ing, a recognition system which was proposed in earli­
er works as an analog model to some structures of the 
human visual system (Marko and Giebel, 1970; Mar­
ko, 1974) is inspected to study the effect of pattern ro­
tation.

2, Data Base

Patterns were drawn from a standard data base 
which provides 36 classes of unnormalized alphanum-

*) Presented on 6th ICPR
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eric handprinted characters, about 3 500 each class, 
quantized to 32x40 binary elements (Krause and 
Bleichrodt, 1973; Suen, 1980). For our investigation 
the number of classes was reduced to 10 (only numer­
als), each class containing 2 000 numerals, whereby 
the first 1 000 of each class represents the training set 
and the second 1 000, the test set. To focus on rotation 
as a source of classification errors, heavily degraded 
numerals were eliminated.

In a second step the numerals were rotated by vary­
ing a test angle R, . Test angles R, were determined 
with an increment of 5° within a rotation range RR by 
means of an equally distributed pseudo random se­
quence. Rotations were performed around the center 
of gravity. To avoid pattern degradations the used 
sin/cos transformation was calculated with floating 
point precision within the 32x40 quantization of the 
original data base. The rotated numerals then were re­
duced to 16x16 binary elements with a best fit nor­
malization of size (see Fig. A.! for examples).

Fig. A.l. Sample o f numerals o f data set RR60 (upper row), examples 
o f form ambiguities after normalization by second-order moments

(lower row).

In this way 4 versions of training and test sets with 
the following embedded ranges of rotations were esta­
blished:

RR0: R, = 0° RR30: -30° < R, < +30°
RR60: -60° < R, < +60° RR90: -90° < R, < +90°

In all cases writer-specific pattern orientations were 
left unconsidered.

3. Recognition Processes

A. Bayesian Classifier

N N

-  X  St ,0§ (pKD) + Z  0 -  si) lQg 0  “ p-O))
im\ I i = I

p-(l) denotes the conditional probability for the i-th 
component of 5 to be equal to 1 if s is a member of 
class c. An unknown pattern 5 is then assigned to 
a class c according to the maximum of e1 (Ullman, 
1973). Four different estimations of p{l) were calcu­
lated from the learning portion of the 4 versions of ro­
tated data sets described in 2.

B. Homogeneous Layer System

Fig. A.2 shows a scheme of the simulated system de­
signed for character recognition. The input activity of 
the sensor layer in stage 0, representing the quantized 
input pattern s(x, y), is directed to the first processing 
stage. This stage provides four independent direction­
al Filters extracting horizontal, vertical and oblique 
line elements. These directional Filter processes are 
performed by homogeneous spatial convolutions with 
masks of 3x3 elements shown in Fig. A.2. A subse­
quent threshold operation reduces the continuous 
convolution result to binary values.

-1 -1 -1 A 3 -1 -1 -1 3 3 -1 -1

3 3 3 -1 3 -1 -1 3 -1 -1 3 -1

A A -1 3 -1 3 -1 1 -1 3

Fig. A.2. Structure o f the hierarchical layer system and 3x3  convolu­
tion masks applied for line fdtering in stage I (used threshold: 4).

As a statistical reference a well known simple Baye­
sian decision criterion was used. Sampling a pattern 
six, y) with a spatial quantization of 16x16 elements 
leads to a pattern vector 3 in signal space with N = 
dim (s) = 256 components. If components of 3 are as­
sumed: I.) to be binary, and II.) to be statistically in­
dependent (whereby the latter obviously is not true for 
patterns like numerals), the following decision criteri­
on ? can be derived:

By logically combining 4 neighboured line elements 
to 1 element within each layer, the quantization is re­
duced by a factor 4. The resulting elements then are 
interpreted as components of the feature vector f \ .  
Hereby the number of components o f /I  equals that 
of the sensor layer, but components of / I  are influ­
enced by an area of 4x4  elements of the sensor layer.

The activity of the following stage 2 is calculated in 
a similar way by homogeneous Filtering of the output
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of stage 1. In our application 5 filter processes lead to 
features representing curvatures, right angles and end­
ings of 3 different orientations. Again by logically 
combining 4 neighboured elements to 1 within each 
layer the dimension of the resulting feature vector f l  
is reduced to dim (f l s ) = 5/4 dim (/1), whereby one 
component now covers an area of 12x12 elements of 
the sensor layer. Finally, the activity of stage 3 is de­
rived by combining angular features of stage 2 to 6 
different types of intersections. Combinations of end­
ings and these intersections without any regard to 
their local position yield some global features.

With respect to the 16x16 quantization of the used 
data sets, a combined feature vector / composed of the 
features J3 consists of dim(/) 256 + 80 + 56

= 392 elements.

To categorize an unknown pattern, the last stage 
provides a set of class-specific layers which represents 
weights W for every component of /  A decision crite­
rion e‘ can be derived by the dot product:

el = wc . f

The unknown pattern then is assumed as member 
of class c according to the maximum of e‘. Weight 
vectors vi" were determined during the training phase 
by an iterative fixed increment procedure with dead 
zones (Ullman, 1973; Rosenblatt, 1962).

This system with a slightly increased quantization 
of the input stage (16x24) leading to a feature vector 
of dim(/) = 579 components, yields recognition per­
formance comparable to other systems (Krause and 
Bleichrodt, 1973; Suen, 1980). Tab. A.I lists substitu- 
tion rates for the 10 class (numerals) and 36 class (al- 
phanumerics) problem obtained for the original data 
base described in 2. Training sets consist of 2 000 
characters each class, test sets of 1 000/class. An 
implementation on a PDF 1 1/45 minicomputer, main­
ly written in FORTRAN (only the convolutions of 
stage 1 and the dot products of the last stage were 
written in machine language), requires about 9 sec to 
recognize one character.

Table A.I. Substitution rates o f the homogeneous layer system, no 
rejection was permitted.

data set substitution rate/'1« 10 classes36 classes

training set 1.9 .09
test set 3.1 .7

C. Normalization of Rotation by Second-order Mo­
ments

Higher moments of a given pattern six, y) were pro­
posed for mapping this pattern into a normalized 
form (Hu, 1962; Amari, 1978; Teague, 1980). To 
compensate an assumed misorientation of s(x, y) sec­

ond-order moments yield the orientation of the princi­
pal axis of s(x. y), which can be used as a compensa­
tive angle R„ to rotate six, y) into a normalized posi­
tion;

with gn = J' j  s(x, y)xy dxdy, 
g„: ^ j  J six. v)y dxdy, g20 -  j  (' six, yj.f dxdy 

follows: Rn ' / 2 tan (2gu'/{g2l)- g i)2))

To prove the efficiency of this rotation normaliza­
tion done by a preprocess in signal space, new ver­
sions of 4 data sets with rotate (by R,) and then rota- 
tionnormalized numerals were calculated and then 
processed by the layer system. First test angles were 
applied within the ranges R R 0, RRM), RR60 and 
RR90 and then compensated by R„. Rotations by R, 
and by -  R„ were performed with floating point preci­
sion within the 32x40 quantized signal space. Result­
ing patterns then were reduced to 16x16 quantization 
constituting the rotation compensated data sets.

1). Human Visual System

To obtain comparable information about the per­
formance of the human visual system, recognition ex­
periments with 3 subjects were accomplished. In 4 ses­
sions subsets of the 4 rotated data sets described in 2. 
had to be classified. Of course, subsets were extracted 
from the test set portion, each subset containing 3 000 
numerals (300/class). Numerals were presented in 
a random sequence at the center of a HP 1310A dis­
play with a size of 2.5x2.5 cm. Presentation time was 
600 msec, viewing distance 1.5 m, subject’s head was 
fixed in vertical position bv a headrest.

4, Comparison of Recognition Performance

Fig. A.3a compares substition rates p obtained for 
the test set portion of the 4 rotated data sets.

Performance of the Bayesian classifier is strongly 
dependent on pattern rotation with a nearly linear in­
crease of errors starting with ps(RR0) = 4.39% to 
p (R R 90) -  24. 8%. The layer system copes much bet­
ter with rotation and approaches the performance of 
the human visual system, though substitution rates of 
the subjects are better for all examined rotations.

The layer system combined with the normalization 
preprocess using second-order moments achieves 
even better results than the subjects, if R, varies within 
RR30, RR60 and RR 90, but for small rotations (R R 0, 
only writer specific variations) the normalization pro­
cess leads to an increase of errors. This is mainly 
caused by a weak correlation between the calculated 
orientation of the principal axis and the actual vertical 
position of numerals 1, 4, 6, 9 (see examples in Fig. 
A.I). In Fig. A.3b the fraction of performance related 
to each stage of the layer system is studied. If classifi­
cation is carried out in signal space, dependence on 
rotation comes near to that of the Bayesian classifier,
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Fig. A3. Substitution rates ps a function o f rotation range, no rejection 
was permitted (missing values: a) ps( \ , RR.90) = 25.4%, b) pfx, RR90)

-  27.9"»).

though a little better results are given for RRO ^ RR60 
but worse for RR90. Using the line features of stage I, 
an evident increase of performance for every rotation 
range can be achieved. Including the features of stage 
2, substitution rates once more can be reduced for 
RR30— RR90\ the performance comes near to that of 
the complete system except for RR9Q. Of course, in 
this study separate learning procedures were per­
formed for every subsystem.

5. Conclusions

In contrast to the Bayesian classifier which neglects 
statistical dependencies of neighboured pixels, step- 
wise linear combinations of neighboured pixels, as

done by the applied convolutions of the layer system, 
followed by a subsequent threshold operation transfer 
these dependencies into feature space. This concept 
leads to good results compared to those of subjects 
and verifies in some respects the hierarchical layer 
system as an analog model for the visual recognition 
process.

The inspected normalization process yields an im­
provement only for large rotations. Additional errors 
must be taken into account for small variations of ro­
tation. Thus, to approach rotational-invariant recogni­
tion such a normalization in signal space cannot be 
assumed as a general preprocess.
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Neurocomputer Companies

Artificial neural networks extend in last few years from 
laboratories into commerce and industry. At present there 
are known several tenths of companies producing and seling 
the neuro-software and/or -hardware tools and services. In 
this section of our Journal we shall inform the readers sub­
stantially about the adresses of some of these companies.

Ab Tech Corporation
700 Harris Street 
Charlestonville VA 22901 
Tel.: (804) 977 0686

Abbot, Foster & Hauserniann
44 Montgomery, Fifth Floor 
San Francisco CA 94014, USA 
Tel.: (415) 955-271

AI Ware, Inc,
11000 Cedar Ave. , Suite 212 
Cleveland OH 44106, USA 
Tel.: (216) 421-2380

American Interface Corporation P. O. Box 297
Zurich 8027, Switzerland

California Scientific Software
160 East Montecito, Suite E 
Sierra Madre CA 91204, USA

Cognitive Software, Inc.
703 East 30th St.
Indianapolis IN 46205, USA

DAIR Computer Systems 
3440 Kenneth Dr.
Paolo Alto CA 94303, USA

Excalibur Technologies
2300 Buena Vista SE 
Albuquerque NM 87106, USA

Micro Devices
5695 Beggs Rd.
Orlando FL 32810, USA

Nestor, Inc.
1 Richmond Sq.
Providence R1 02906, USA

Neural Systems Incorporated
2827 West 43rd Avenue
Vancouver, British Columbia V6N 3H9, Canada 
Fax: (604) 263-3667

NeuralWare, Inc.
103 Buckskin Court 
Sewickley PA 15143, USA

Neurix, Inc.
1 Kendall Sq. , Suite 2200 
Cambridge MA 02139, USA

Olmsted & Watkins
2411 East Valley Pkwy. , Suite 294 
Escondido CA 92025, USA

Oxford Computer
39 Old Good Hill Rd.
Oxford C'T 06483, USA

SAIC
Mall Stop 71, 10260 Campus Point Drive 
San Diego CA 92121, USA

Syntonics Systems, Inc.
20790 Northwest Quail Hollow Dr.
Portland OR 97229, USA 
Tel.: (503) 293-8167

TRW Military Electronics & Avionics Div.
One Rancho Carmel 
San Diego CA 92128, USA 
Tel.: (619) 592-3482

In this section we present a short overlook on the compa­
nies which were present at the CeBIT’9 1 Hannover fair, 
March 13 — 20, 1991 and which have expressed their activi­
ty in neurocomputing and neurocomputers. These are:

Adaptive Solutions
USA, Beaverton, OR 970006

adcomp Datensysteme
Germany, D-W 8025, Unterhaching
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AGFA-GEVAERT
Germany, D-W 5090, Leverkusen 1

Apple Computer
Germany, D-W 8000, Muenchen 45

Atlantic Money Systems
USA, Miami,Florida 33169

BCT
Germany, D-W 7990, Friedrichshafen 1 
Berthold
Germany, D-W 1000, Berlin 46

CIRRUS TECHNOLOGY
USA, 21046 Columbia,MD

debis Systemhaus
Germany, D-W 7000, Stuttgart 80

DIGITHRUST
Germany, D-W 8500, Nuernberg

DSM Computer Systeme
Germany, D-W 8000, Muenchen 2

Elettronica San Giorgio
Italy, 1-16154, Genova

Expert Informatik, GmbH
Germany, D-W 7770, Ueberlingen,Hafenstrasse 10

heddier electronic
Germany, D-W 4420, Coesfeld 2

Hewlett-Packard
Germany, D-W 6380, Bad Homburg v.d.H.

Image Recognition (I.R.I.S.)
Belgium, B-1348, Louvain la Neuve

Industronics
Germany, D-W 6980, Wertheim 

INTEGRATA
Germany, D-W7400, Tuebingen am Neckar 1, Schleif- 
muehleweg 68

I.T.C.
Germany, D-W 8050, Freising

Kleindienst Datentechnik
Germany, D-W 8900, Augsburg 11

Kleindienst Datatechnik AB
Sweden, 161 02 Bromma, Aplvaegen 10,Box 20117

KPMG Deutsche Treuhand Gruppe
Germany, D-W 6000, Frankfurt am Main 26

Lincoln, A J .
USA. Concord MA 01742 

LSI LOGIC, GmbH
Germany, D-W 8000, Muenchen 81, Arabellstrasse 33

Mannesmann Scangraphic GmbH
Germany, D-W 2000, Wedel /  Holst.

MDS-Deutschland
Germany, D-W 5000, Koeln 30

MICROTEK Electronics Europe
Germany, D-W 4000, Duesseldorf 1 1

NEOS International
Germany, D-W 2000, Hamburg 26

Neuro Informatik
Geselschaft fuer Entwicklung und Anwendung Neuronaler 
Netze mbH
Germany, D-W 1000, Berlin 41, Roennebergstrasse 5 A

NIKEX TRADING
Hungary, H-1809, Budapest

OPTO-TECH
Germany, D-W 8122, Penzberg 

PARSYTEC
Germany, D-W 5100, Aachen, Juelicher Strasse 338 

Peters
Germany, D-W 2000, Hamburg 50

PE-VON
Taiwan, Taipei

PROFILE
Germany, D-W 6200, Wiesbaden 

Rexroth electronic
Germany, D-W 8770, Lohr am Main

Siemens Nixdorf
Germany, D-W 4790, Paderborn

Symbolics
Germany, D-W 6236, Eschborn/Taunus, Mergenthalerallee 
77-81

SYSTEM CONSULT
Germany, D-W 1000, Berlin 38

SZKI RECOGNITA AG
Hungary,H-!251, Budapest

Technische Fachhochschule Berlin
Germany, D-W 1000, Berlin 65

Technische Universitaet Braunschweig
Germany, D-W 3300, Braunschweig

Universitaet Erlangen-Nuernberg
Germany, D-W 8520, Erlangen

Victor Technologies GmbH
Germany, D-W 6070, Langen

Xionics
Great Britain, London N3 1HG
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NEURAL NETWORK LEARNING WITH RESPECT TO 
SENSITIVITY TO WEIGHT ERRORS

P. Růžička *)

Abstract
Th is paper deals with the problem of neural network 

learning to get the most convenient “configuration“. By 
the configuration is meant the vector of synaptic weights 
and thresholds of formal neurons creating the network. 
In the configuration design, we respect the complexity 
of technical realization of the network and we consider 
both the possible errors in keeping precise the designed 
configuration during the realization and fluctuations of 
the configuration during the net exploitation. To 
achieve this we introduce a cumulative loss function of 
the network which expresses the loss evoked by unpre- 
cise learning. The network learns through the optimiza­
tion of sensitivity of the cumulative loss to large 
changes of configuration, the sensitivity to large 
changes being constructed on the basis of differentiat­
ing linear integral parametric operators of derivatives 
estimation. The possibilities of such an approach are de­
monstrated by an example.

I. Introduction

The modeling of biological neural networks and the 
design of artificial neural networks have, up till now, 
been based on the nominal values of their parameters 
(synaptic weights, neuron activity thresholds, etc. ), 
which we will call the configuration. However, both in 
the learning procedure and in the activation period of 
a neural network’s operation, many deviations of the 
actual configuration parameters values appear. These 
deviations are caused by the influence of the network 
environment activity, by the network aging, and, in ar­
tificial neural networks, also by manufacturing imper­
fections. The negative results of all these deviations 
consist in changes of the network’s functional propert­
ies, leading in certain cases to their total degradation.

In the methods developed up till now for neural ne­
tworks analysis and synthesis, the problems of confi­
guration parameters and structure deviations have not 
been taken into account systematically. Though re­
search in this respect is important for the modeling of 
various pathological stages of biological neural ne­
tworks (epileptic situations, memory degeneration), it 
is especially important for the design of artificial neu-

*) Dr. Pavel Růžička
Institute of Computer and Information Science, Czechoslovak Academy of 
Sciences, 182 07 Prague, Czechoslovakia

ral networks where the influence of technology imper­
fections, material aging and environmental changes 
cause unpredictable deviations of parameters values 
from the nominal configuration calculated in the pro­
cess of the design, resulting in a decrease of produc­
tion yield and reliability. Recently some attempts have 
appeared for evaluating the sensitivity of the neural 
network functions to changes of configuration par­
ameters for the preliminary neural network design 
(see Davis, 1989, Stevenson, 1990). It is possible to at­
tack these problems more fundamentally by exploit­
ing the theory of system tolerances and sensitivity. We 
show how the negative results of deviations of confi­
guration parameters can be limited or excluded by re­
specting these deviations in the synthesis procedure of 
the neural network. To do this we minimize the sensi­
tivity of the input-output function realized by the neu­
ral network to the changes of the configuration par­
ameter values using convenient learning methods.

The methods of optimal tolerancing and sensitivity 
minimization were developed for electronic circuits 
design, e. g. Bandler, 1980, Bode, 1951, Buttler, 1971, 
Director, 1977 and 1978, Géher, 1971, Opalski, 1979, 
Strazs, 1980, Thach, 1988, but they also seem to be 
very useful for neural net configuration analysis and 
synthesis. They deal with the design of parameters of 
systems to assure an optimal performance of the sys­
tems. It is supposed that the behavior of the system is 
described by a vector of system functions

/':.//' ,RV (1)

defined on the r-dimensional real space .R' of system 
parameters x. The demands on the system behavior are 
expressed by the system of inequalities

fU ) < 0, (2)

When solving this system of inequalities we obtain an
acceptable vector of parameters xeeRr. The set of all 
the acceptable vectors of parameters, for which the 
system fulfills the demands, is called a region o f ac­
ceptability

Ra = { x ^ r \ f { x )  < 0}. (3)

We are usually riot satisfied with an arbitrary accept­
able solution xeRa and we are therefore looking for 
a vector of parameters that is the „most convenient“
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in some respect. The following min-max problem is 
often solved to find some optimal solution

min max /< (x)
ve.yř’ ve v

(v will be used for a set of positive integers up through 
v, v — {1, 2, . . ., v}). However, if the system func­
tions are not convex this task has generally not a un­
ique solution and we can put more conditions on the 
„convenient“ solution. If we need to consider the ef­
fect of possible deviations of parameters we can incor­
porate demands on the sensitivity of system perform­
ance to these deviations into the task of system design. 
The concept of sensitivity in this sense was first for­
malized because of needs in electronic circuits design. 
If the changes of parameters are small one works with 
a differential sensitivity o f system function that is sim­
ply defined as the first partial derivatives of the sys­
tem function with respect to the parameters or alterna­
tively, a relative first order differential sensitivity o f the 
function f  is used (see Bode, 1951 or Gêher 1971)

I s d \n f(x )  _ x f f f x )
' fin  v, /'(x) rx,

for / e f, 5 e v. The differential sensitivies of higher or­
ders are defined analogicaly by using derivatives of 
higher orders. Then some conveniently constructed 
scalar measure of the first order differential sensitivi­
ties is minimized for one to get an advantageous vec­
tor of parameters. Very often, respect to sizable fluctu­
ation of parameters shall be taken into account and 
the tools of differential sensitivities, which deal only 
with local changes of system functions, are insuffi­
cient. Therefore several authors introduced a sensitivi­
ty o f system functions to large changes o f parameters ( e. 
g. Buttler 1971) but their constructions were mostly 
very tightly bound with a concrete algorithm of sys­
tem design. Moreover all the approaches have had 
a bottle-neck in the assumption of differentiability of 
system functions.

We will concentrate on neural networks with 
a fixed function that are first learning to perform the 
correct function and then are put into use. Neural ne­
tworks with fixed functions have many meaningful 
applications that require hardware implementation. 
Before realizing this technically, it is necessary to look 
for the configuration (i. e. thresholds of neuron activi­
ty, strengths of neuron connections, etc. ) by compu­
ter. In doing so, we take into account the technologi­
cal impossibility of maintaining precisely the designed 
configuration in the process of realization and poten­
tial deviations of parameters caused by material aging 
and environmental changes. Therefore, the correct 
function of the net shall be ensured both for this con­
figuration and for a relatively large area surrounding 
it in the configuration space. We get such a „stable“ 
solution by minimizing the „sensitivity“ of neural net 
behavior to large changes of the configuration.

In section II. , we will show the possibility to teach 
a neural network through a loss function minimiza­
tion. The loss functions express the loss resulting from 
imperfect learning to input samples and they can 
serve as system functions (1) in the design process of 
the network configuration, in section III. , we will 
mention averaging linear integral parametric opera­
tors (LIPOs) and differentiating LIPOs of derivative 
estimation that serve lo estimate values of functions 
and their derivatives as an alternative to difference 
formulas, namely in the case when the values of func­
tions cannot be evaluated precisely. In section IV. , we 
will prove some properties of these LIPOs that are im­
portant for the construction of the sensitivity of sys­
tem functions to large changes of parameters. In sec­
tion V, this enables us to construct this sensitivity in 
a mathematically correct way by utilizing the differen­
tiating LIPOs of gradient estimation even for a system 
described by system functions which are not differen­
tiable but only e. g. locally integrable. In section VI, 
we will give an example of teaching a three-layer feed­
forward network on the basis of this sensitivity opti­
mization.

II. Learning via optimization

For a great deal of the neural net models we can 
find a function which is being minimized in the pro­
cess of learning. We are always able to transform this 
function in such a way that it represents the loss re­
sulting from imperfect learning. Let us consider the 
existence of such a non-negative loss function f  as 
a measure of the net behavior correctness and let this 
loss function fulfill the following.

Assumption 1.
Let the loss function

/  : e/{rx.-J < 0, + oo)

be at least lower semi-continuous on the configuration 
space (r— dimensional real space consisting of all 
possible vectors of weights and thresholds) for each 
input a € and at least continuous on the input space 

(environment) for each configuration vector x e  ?Rr
U

Continuity is necessary for the net to be able to gen­
eralize, in other words, to guess the behavior of the in­
put space .V from a small amount of input samples.

Ideal learning could then be viewed as the global 
minimization of the cumulative loss

min F(x) (4)
X&XcziJ/lr

m  = n /M i, (5)

where ||. || is some convenient norm on a space of func-
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tions that are defined and at least continuous on the 
input space .?/. The lower semi-continuity ensures the 
existence of a minimum for problem (4) on a bounded 
subset Xcz.JJ}r, where X  represents e, g. the range in 
which the values of configuration parameters may 
change. The more we can suppose about the smooth­
ness of functions forming this space, the faster is the 
learning. See e. g. Poggio, 1990.

If we have the cumulative loss function that is mini­
mized in the process of adaptation common for the 
neural network model, any adaptation method that is 
able to minimize it is applicable for us to teach the ne­
twork. The principal criterion for the selection of 
a convenient method is its ability to converge to 
a „good“ global minimum of the cumulative loss func­
tion.

II. 1. The case of supervised learning

In the case of supervised learning the input-output 
function y  realized by the network

>'(.x;.): .«/-►#

should approximate an unknown map

d:.'/ -* M

from the input space .</ into the output space The 
cumulative loss function is then

F{x) = ||y(x,.) — ✓ (*,.) ||.

rithm as an example not only because its applicability 
to solving problem (8) above but also because we will 
formulate learning as a task of sensitivity measure mi­
nimization in section V, the task being a stochastic op­
timization problem, and we will use a stochastic ap­
proximation algorithm to solve the network design 
problem in section VI.

Generally, if we have a simple stochastic optimizati­
on problem to find a minimum of mean value of 
a function g(vr. to) (we use a symbol co to emphasize 
that g(.Y, co) is a random variable)

min g(x),
x e .rf'

,g(A) ■= E(g(x, to)), g(x, co) = g(x) + y(co), E{y(co)) = 0

and if we can only obtain realizations of random vari­
ables g(.Y, co) and not the mean values g(x) then we can 
employ the following stochastic approximation algo­
rithm to find a local minimum of the problem above

Xn + 1 Xn Clii Dg^Xn, Cn), (9)

where {a„}n f is a sequence of positive step lengths, 
and ( is also a sequence of positive real num­
bers used for stochastic gradient estimates of the fun­
ction g(,A „ is the set of all the nonnegative integers). 
The members of this sequence can be step lengths for 
differences computations or the averaging parameters 
of differentiating operators which will be introduced 
in the next section. The sequences must fulfill

Usually a finite set of patterns a W  and the corre­
sponding set of prescribed outputs H e.V, sev, are giv­
en and thus our theoretical cumulative loss function 
can be estimated as

F(x) = || {|| d* — y(x, as) ||,} , || 2, (6)

where || . ||, is a norm on M, || . ||2 is some norm on the v- 
dimensional real space cfi 1 and { e s} ’ , is a v-dimensio- 
nal vector with elements es. The learning problem in 
(4) becomes a common task of discrete approximation

min F{x). (7)
xe X cz ¡111

If the behavior of the environment -V is stochastic, 
then we will use the mean value of the approximation 
error as the cumulative loss

F(x) = E{\\d — y(x,a)\\) =
= J II d — y(x, a) || p(a, d) d {a, d) (8)

for a joint probability density function ji  of the vector 
(a,d). In this case, task (4) becomes a stochastic opti­
mization problem and it can be treated by employing 
a stochastic approximation method .

We provide a simple stochastic approximation algo­

OO

L  a" = + oo, lim an = 0, lim c„ = 0,
n =-■ 0 n—* 03 n —* co
QO CO / \ j
^ , ClnCn < + oo, Y. / a" Y—  < + oo.

n * 0 n - co \ Cn I

We suppose the estimate Dg of the gradient V g in the 
form

Dg(Xn, c„) = V g(x„) + y»(X,I, Cn) + f„(CO)

in each step n e ,ArQ. Let the random vector f„ have ze­
ro mean and let there be valid (x„, c„) = o(c ) for
the deterministic error of the gradient approximation. 
Under some noise condition on the sequence 
{F’hte.A (e- 8- i f the sequence is a martingale) the itera­
tions x„ either converge to a local minimum of the fun­
ction g almost surely (i. e. with probability one) or 
they are unbounded (see Ermoljev, 1976, Katkovnik, 
1976, Kushner, 1978 or see Hornik, 1990 for applicati­
ons in neural networks learning).

II. 2. The case of unsupervised learning

If we also consider a finite set of patterns a' e.V 
used by the network to learn, the network must then
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search for the corresponding outputs dr e s e ^ to ­
gether with the configuration x e Mr during the lear­
ning. It means that the optimization problem (4) is 
solved on a larger space in the case of unsupervised 
learning. The deterministic supervised learning case 
(7) has its analogy here in the problem

min C(x, d 1, d 2, . . d ’)
X  £  X

d \ d 2, . . d v e &

where the parameters d \  d 2, . . ., d ' of cumulative loss 
function (6) are realized as other variables

F ( x , d \ d \ . . . , d ' )  = || {Il a ')  I!,];. 1 2'

The loss function can often be derived from the 
adaptation rules because they should be related to the 
gradient of the loss function.

Irrespective of the difficulty of finding a global mi­
nimum of Tin (4), we know nothing about the quality 
of the solution obtained by the learning according to 
(4). Practically, we need not perfect learning. We ac­
cept the configuration for which the value of the cu­
mulative loss function is less than some small selected 
number e as the solution searched. The set of all such 
almost optimal configurations we will call the region 
of acceptability Ra in correspondence with (3)

Ra = { r e l '  I F(x) < č}. (10)
If the region of acceptability is nonempty, then by sol­
ving problem (4) we will reach a point from this regi­
on. Unfortunately such a solution can be located so­
mewhere near the boundary of the region If we 
construct hardware equipment on the base of this so­
lution, there is a great probability that it will perform 
incorrectly due to the facts mentioned in the introduc­
tion. These facts may cause a shift of the original con­
figuration outwards from the region of acceptability 
during the realization process or during hardware uti­
lization. In order to afford the possibility of imprecise 
realization of the computed configuration, we would 
like the configuration to be in the „center“ of region 
Ra. This is also the way how to construct highly relia­
ble hardware which is a problem dealt with by the to­
lerances and sensitivity theory.

III. Linear integral parametric operators 
(LIPO) of averaging and differentiation

/(x, c) = J h(u) f ( x  — cu) du.
mr

( 11)

Definition 1.
Operator (11) is called the averaging operator o f de­

gree 3, 3 > 0, with the kernel h9 if the norm condition 
(12) is valid

J h (u ) du = 1,
and if .rf

J h(u) Ml Ur du = 0

(12)

(13)
.r

holds true for all the .v, € ,Afm which fulfill

/■
0 <  z  s, < .9, s, > 0.

/= i

Condition (13) implies that q(x, c) = q(x)fox any poly­
nomial q of degree maximally 3 and an arbitrary c>0.

We will always use a carat sign to denote the result 
f(. , c) of averaging operator application to a function 
f  The function f(. , c) will be called an averaged functi­
on f

Katkovnik introduced LIPO of differentiation by 
the expression

/ . (/) , (x. c) = c - 1 J d u . I, (« )/(x  -  cu) du, (14)
l\ ■ ■ r ,yr■ n

where /, are nonnegative integers, he>A i e f, and

/ -  Z  t

We use the symbol Df(x) for the derivative of / of or­
der /

D f(x )= D [  ,/(x ) = d f{x)
ôx. . . . d x l

I r

Definition 2.
Operator (14) is called the differentiating operator o f 
the l-th derivative { D [ ,/r/(x) ) estimation o f degree 
3 with the kernel d) / for 3 > / if the moment condi-‘I • ■ * *r
tions

J i//t. .. /r ( M) U\ . . . Ur du = 0, (15)

are valid for any s, e ,Jf0, i e f, fulfilling

r

0 <  X  v, <  3, Si >  0 ,i'G r,
i = i

With the aim of effective estimating values and deri­
vatives of functions, Katkovnik in (Katkovnik, 1976) 
introduced linear integral parametric operators (LI­
PO) with a real parameter c > 0 defined on the class
of Lipschitz continuous real functions in the form of and it there holds true 
convolution with a kernel h
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J £//,.. ,/r(w) Ml . . .  Urdu  -  { - ! ) '  ¡1 (/,)!. (16)
1 = 1

* ■

Operator (14) transforms polynomials q of degree 
less or equal to 8 into their exact derivatives
D\ . . . ,rq

qi,(/) i, (x, c)
d q{x)

rs 1 I r\OX, . . . OX

due to the validity of (15) and (16).
We will always use a tilda sign to denote the result

//,{l.\i, 0, c) of the transformation of a function /  by 
a differentiating operator of the /-th derivate D { //
estimation.

The parameter c is called an averaging parameter. It 
determines a measure of distance between the func*
tion f(., c) or f ] , c) and the original function /o r
its derivative D \ , / respectively, and alternatively it
determines a measure of “averaging” (smoothing; of 
the original function by considering its behavior in 
a smaller or larger area surrounding the point x in es­
timate of f(x) or D[ ,J ( x ) respectively.

An important property of some differentiating op­
erators is their potentiality.

Definition 3,
The differentiating operator of the /-th derivative es­

timation is called potential if an averaged function 
/(., c) can be always found for any function /  any par­
ameter c > 0, any integer /, 0 < t < /, and all the 
x e eAr so that

(T  c) D< c)

is valid.

In some sense, potentiality renders it possible to 
neglect a systematic error of function and derivatives 
values estimates (11) and (14). E. g ., if we use a poten­
tial operator of gradient estimate with a fixed parame­
ter c > 0 to search for a minimum of function/we will 
actually find a minimum of function /(., c). Because 
the averaging removes only sudden local changes in 
the shape of the function /and  because it can preserve 
the global properties substantial for the solved prob­
lem ( concretely, it removes only shallow local mini­
ma ) the systematic error appears to be rather positive.

Values of generally complex and multidimensional 
integral transformations (11) and (14) can be estimat­
ed by employing a Monte Carlo method. We select 
a convenient probability density function p which is 
positive on the support of the kernel h or dit ir respec­
tively and we will generate L random samples

u e M s e L, according to this probability density 
function. We will then estimate the value /(x, c), and 
thus also the value /x), by using the parametric esti­
mate

/(x, c, L) = Y  X  cu ) (17)

and value (x, c), and thus D | ;/(x), by using the
parametric estimate

C  , w ‘’. o  = - j -  :
C L  s

1 sr dt. i, (u )
p i "  )

A X -  cu ).

(18)

We introduce an artificial randomness into the esti­
mates in such a way. We can use either the same prob­
ability density function for estimating both function 
values (17) and derivatives (18) „in parallel” using the 
same function values j{x-cus) calculated for the same 
samples x-cu\ s € L, or we could select various proba­
bility density functions in the expressions (17) and 
(18) to achieve optimal variance of these estimates.

To express the quality of estimates of function va­
lue fix) or derivative D'f(x) above we use the mean 
value of the square of the total error of the estimate

V  = A] = £ ( ( /( x ,c ,  ) =

- (/(■*, c) -  /(* )): + £></(*, c, (19)
or

¿ 0 . . , ,  = E((fp,(x,c,L)-

= (/;" , (x, c) -  D[, /(X))2 + D (p ” , (x, c, L)).
(20)

This measure of error consists of the deterministic 
part, the square of systematic error of the estimate of 
function or derivative value for the particular operator 
(11) or (14), and the variance (denoted by D) of ran­
dom part, the randomness being the result of Monte 
Carlo method (17) or (18) application.

The deterministic part, concretely the systematic er­
ror, is analyzed by Katkovnik in detail. If the function 
/  has Lipschitz continuous derivatives up to and in­
cluding the order a and if />0, i9>/, « >  / and if we 
denote 8* = min {a, 8}, then the systematic error of 
the estimate of 1-th derivative (including / = 0) using 
an operator (11) or (14) of order 8 is

0(c"'+'- ' ) .  (21)

Obtained approximations / ( . ,  c) or /  /  /; (., c) are 
smooth functions if the kernel of used integral trans­
formation (11) or (14) is smooth.

We will briefly touch the random component of er­
ror for the case when we can only obtain noise cor-

NNW 2/91, 81-96 Růžička; Neural Network Learning Sensitivity 85



rupted values/,, co) of the function/with the variance 
of noise a , i. e.

A x )  = E(f(x, co)),

a 2 = D ifix, co)) = e ( (f(x) - f(x , co))2). (22)

parameters {c,,} , to converge to zero. Thus we can
reach the maximal order of asymptotic convergence of 
stochastic approximation algorithms (see Kushner, 
1978).

This situation occurs by learning in random environ­
ment (8) when the network shall approximate an un­
known map wdiich cannot be evaluated exactly.

Then the variance of the estimate of derivative
D/t i,f(x), including the case / = 0, is

(X, C, co, L) < + C) {c 1

if the function / is  at least continuously differentiable 
in a neighborhood of the point x (see Katkovnik, 
1976). The number

IV, Properties of LIPOs of averaging and dif­
ferentiating in estimating values and deriva­
tives of nondifferentiable functions

Katkovnik in (Katkovnik, 1976) introduced the op­
erators (11) and (14) on the space of Lipschitz contin­
uous functions and functions with Lipschitz continu­
ous derivatives up to order / respectively. However, 
kernels of these operators belong practically in the 
space of quickly decreasing functions. It means that 
the operators can be defined on a broader class of 
functions.

T  t = J («0
p(u) du (24)

is called an index o f exactness of the averaging or dif­
ferentiating operator. Thus the random noise is sup­
pressed if the averaging parameter is large and the 
index of exactness is small.

Let us summarize some advantages of the above 
way of estimation of function values and derivatives.

If an analytical expression for calculation of deriva­
tives of a function is not known, or if the analytical 
expression is to complex, one usually uses some dif­
ference formula to estimate the necessary derivative. 
If the function values are corrupted by a random 
noise then, e. g. by estimating the first partial deriva­
tives using a difference formula, the variance of ran­
dom error of the estimate is indirectly proportional to 
the square of the step used for difference calculation. 
However, kernels of differentiating operators with 
a small index of exactness can be constructed for one 
to achieve less variance of noise (24) lor the corre­
sponding integral operator as compared with the dif­
ference formula when both the same systematic (de­
terministic) error and the same number of function 
values L used for the estimate are required. While the 
necessary number of function values L, used in a dif­
ference formula for the first partial derivative estimate 
with given systematic error, increases linearly with the 
dimension of problem r, it can stay approximately 
constant in the case of integral operators (14) with 
a convenient kernel (see Example 1 in Mathematical 
Appendix),

If the differentiating operator (14) is potential we 
can neglect the systematic error of derivative estimate 
in a certain range due to smoothing properties of the 
corresponding averaging operator. The averaging par­
ameter c may stay relatively large which positively af­
fects the value of noise (23) of the estimate (18).

If we use a potential differentiating operator of gra­
dient estimate when solving a stochastic optimization 
problem (9) we need not the sequence of averaging

Definition 4,
Linear space 2 of all the smooth functions (i. e. 

functions having all the derivatives) ¥/ such that the
functions £>i,.../r lf'(x) q(x) are bounded on Mr for 
any polynomial q and an arbitrary /-th derivative of W,

r

where / = /,, /, e ,A'0, i e r, will be called a space o f
I - i

quickly decreasing functions on pRr.
Linear space 2’ of all the measurable functions/for 

which a polynomial q exists such that |/(x)| < |^(x)| 
almost everywhere on ,JRX will be called a space o f slow­
ly increasing functions on -‘/P.

If kernels of transformations (11) and (14) are from 
the space 2 then these transformations have sense, i. e. 
they exist, for any slowly increasing function /  € 2’. 
The resulting outputs of the transformations are then
smooth functions /(., c) and f l) (., c) respectively and 
the following theorems are valid.

Theorem I,

Let a kernel h of averaging operator (11) be quickly 
decreasing, h e 2, and the function /b e  a slowly in­
creasing function continuous at the point x  Then the 
following limit holds true for the averaging operator 
( 11)

lim fix , c) = f ix )
c — 0 +

Theorem 2.
Let the kernel gof potential differentiating operator 

of gradient estimation (14) be a quickly decreasing 
function, g e 2. L et/be  a slowly increasing function 
and let the gradient of this function V/exist almost 
everywhere and be continuous at the point x  Then the 
differentiating operator of gradient estimate (14) ful­
fills
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If the function /is  convex then we have at any pointlim Vf(x, c) -  Vf(x).
c -* 0 *

■
Let us note that g = (d\ ... o,., d o .. 1).
Most generally, the LIPOs of averaging and differ­

entiation could be considered on the space of general­
ized slowly decreasing functions, see Antosik, 1973 for 
the definition of this space.

We will briefly concentrate on an important case 
when the function/is locally Lipschitz, i. e. when there 
exists a constant U > 0 for any bounded subset of ' 
that the inequality

[fix) - /0>) | < U\\x-y\\

x

lim V /(.x, c) = /
c 0

where t  e D/(x) is an element of the subgradient o f /  
at the point x(D/(x) is the generalized gradient intro­
duced for convex functions, which equals Clarke’s 
generalized gradient).

If the differentiating LIPO of gradient estimation is 
potential and if the kernel of the corresponding LIPO 
of averaging h is a nonnegative function then there 
exists an averaging parameter c0 > 0 for any positive 
number rj > 0 and for any point x so that

is valid for any points x, y from this subset. Then the 
gradient of function/exists almost everywhere in .W1 
and a generalization of gradient can be introduced at 
the points where the classical gradient does not exist. 
We utilize Clarke’s generalization of the gradient 
(Clarke, 1983).

If a function/is Lipschitz in the neighborhood of 
a point x  then a generalized directional derivative of 
/  in a direction v € aW can be defined in several ways. 
Clarke did it by using the expression

f ° ( x ;  v) = lim sup
y *x
t —»0+

A y  + tv) -  f{y )
t

and then he defined the generalized gradient as the set

D /(x ) = {/ c .A ' | f °  (x\ v) > <£ v) for an arbitrary 
v e .f  r}.

Basic properties of the generalized gradient are for­
mulated in Theorem 6. in Mathematical Appendix.

We know that the averaged function ?(., c) defined 
according to (11) converges uniformly to the original 
function /  when c 0 + , because /  is locally Lips­
chitz (Katkovnik, 1976) . We would like to know more 
about the behavior of the gradient estimate V /(., c). 
We state the results concerning the gradient estimate 
convergence in the following theorem.

Theorem 3.
Let a function/be locally Lipschitz with a constant 

U > 0 and let g be a kernel of differentiating LIPO of 
gradient estimation for which a constant M exists such 
that

J ||g(u)|| ||u|| du < M < +oo. (25)
■‘M ’

If the gradient of function / exists at the point x then 
the following limit holds

lim V/(x, c) = V/(x).
c -> 04

V/(x, c) = “  J g( u ) f i x . c m )  du =
c j? '

= J h(u) V/(x -  c m )  du e D/(x) + B((), //), 

(where B(0, //) = {y e .‘R ' | || v)|<r;} ) for an arbitrary
c, 0  < C <  Co.

If we solve a stochastic optimization problem (e. g. 
learning task in a stochastic environment (8) ) where 
the goal function is only locally Lipschitz (e. g. due to 
using the maximum norm in (5)) and if we apply the 
stochastic approximation algorithm (9) we must esti­
mate the gradient of the nondifferentiable function by 
using a potential differentiating LIPO of the gradient 
estimation. We can use the sequence of averaging par­
ameters {c,/!£ ( which does not converge to zero then
the claim of this theorem assures the almost sure con­
vergence of the algorithm (9) to an approximate solu­
tion of the problem.

V, Differentiating LIPO of gradient estima­
tion as a sensitivity of system functions to 
large changes of parameters

V, 1. Construction of the sensitivity to large changes of 
parameters

The result of transformation of a function /  by an 
averaging LIPO is. a more or less smoothed course of 
this function, the smoothing depending on the value 
of the averaging parameter c. In other words, the va­
lue of averaged function/(x, c) represents an average 
behavior of the function / in  an area surrounding the 
point x. Moreover, if we have a potential differentiat­
ing LIPO of gradient estimation with the kernel 
g = V/i then the property

V/(x, c) = V/(x, c),

NNW 2/91, 81—96 Růžička: Neural Network Learning Sensitivity



(which means that the smoothed (“average“) gradient 
of the original function equals to the gradient of the 
averaged function f) leads us to introduce a sensitivity 
of behavior of a system described by a vector of sys­
tem functions ( l ) / : M > .'A' to large changes of pa­
rameters by employing this potential differentiating 
LIFO of gradient estimation,

Now we have a basis for construction of various 
vector functions which can characterize a sensitivity 
of system functions to changes of parameters. We can 
hardly find a unique general construction of sensitivi­
ty of system functions to large changes of system par­
ameters which would be simple enough for numerical 
evaluation. A reasonable way for us to avoid the anta­
gonism between simplicity of numerical calculation of 
sensitivity and a universality of the construction of 
sensitivity is to concentrate on some concrete, but 
wide enough, class of system functions. We can then 
also consider more concrete demands on the design of 
a system.

We will pay our attention to a neural network de­
sign. Thus the system functions are the loss functions 
fs = /(., a-), s e  v. They are nonnegative, which is im­
portant for our construction. The simplest way to con­
struct the sensitivity of these system functions to large
changes of parameters at the point x e M ’ is by using 
a LIFO

VF(t  0  = VF(x, t) = t 1 J g(u) F(x-?w) du, (26)

where the function Fis constructed as a norm of the 
vector of system functions f s, s e v (compare with (5)). 
We use the maximum norm which allows us to con­
centrate on the worst fulfilled demands on the system

F(x) = max/s(x), f = diag(t), t e $ r, g -  Vh. (27)
s e /

The matrix i is the diagonal matrix with the diagonal 
formed by the vector t. In this case, the large changes 
sensitivity is the gradient of averaged maximum of 
particular system functions with vector averaging par­
ameter t and, at the same time, it is a „mean“ value of 
the gradient of maximum of the system functions if 
the system functions are differentiable almost every­
where.

On the basis of results of section IV. we can state 
the following;

If the kernel of corresponding averaging LIPO is 
a quickly decreasing function h e  3, g = V h, and if 
the system functions are slowly increasing ( or e. g. át 
least locally integrable) then the function F(., t), and 
thus also the function VF(., /), are smooth. Moreover, 
if the system functions /,, v e v, are continuously dif­
ferentiable then the function F is locally Lipschitz and 
the sensitivity VF(„ /) converges to VF almost every­
where, when ||/|| —* 0. Concretely, it converges to 
VF(x) at the points where only one system function is 
active, i. e. where F(x) = / ,  (x) for just one s e v. At 
other points, VF(x, /) converges to the generalized

gradient DF(x), which equals to the convex hull of 
gradients of the system functions that are active at the 
point x (see Clarke, 1983)

DF(x) = co {V/; (x) | se v , F(x) = /lx )} ,

if h>  0. Thus the large changes sensitivity becomes the 
differential sensitivity (the sensitivity to small 
changes) when ||/|| —> 0, which is natural and desired.

We need to construct a scalar measure of the large 
changes sensitivity which we want to minimize in or­
der to find a convenient design of system. A norm of 
large changes sensitivity is usually taken as the mea­
sure

SAx) = y llV  F(x, Oil2,

w'here ||.|| can be the Euclidean norm. We find a con­
venient design of the system by minimizing this sensi­
tivity measure for a fixed vector averaging parameter
tecjRr

min Sf(x ).
X  € .'/> '

Such a task as above is sometimes called design cen­
tering because we move the design into a „center“ of 
the region of acceptability.

From the numerical point of view, it would be eas­
ier to solve the problem of minimization of the aver­
aged maximum of system functions

min F(x, t) (29)
x  e .?P'

then task (28). We shall formulate the relationship be­
tween these two tasks in the following theorem.

Theorem 4.

Each local minimum x* of problem (29) is also 
a global minimum of problem (28).

Each minimum x* of problem (28) is a local mini­
mum of problem (29) whenever the Hessian of the 
function F(., t) (the matrix of second partial deriva­
tives) Hf (x*, t) is positive definite.

The proof of the theorem simply follows from the 
necessary conditions of optimality.

Thus task (29) can be solved instead of task (28) 
and, in this sense, the averaged function F(„ t) can be 
used instead of the measure of large changes sensitivi­
ty (26).

If the system functions/„ s e v, are continuously dif­
ferentiable and || /|| —> 0 then task (29) becomes the 
classical MIN-MAX problem mentioned in the intro­
duction

min max/Ax).
x  e .it ' s e *
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It is more necessary to watch after the area in which 
the loss in (5) caused by imprecise learning might be 
unacceptable than after that area where the loss is 
very near to zero. Also, the near-to-zero values of loss 
in acceptable areas could unpleasantly compensate 
the behavior of loss in some more critical parts of the 
parameter space eft ' in integral (11), Therefore the fol­
lowing construction of large changes sensitivity is 
sometimes more practical

F,(x. t) = f h(u) F (x fu) du, (30)
T(.v) -  max | v ) , . . ../,(*)]. e > 0,

where £is appropriately selected and its value can be 
controlled during the design optimization.

It is also often convenient to solve a problem of 
minimization of the cost of realization under the con­
dition that the value of the scalar measure of the large 
changes sensitivity shall be small instead of the large 
changes sensitivity measure minimization problem 
(28) or (29)

min c(a , t) under the condition F (x\ t) < 0, (31)
-V € , f t r

t e X (0, +co)
i = 1

where c( a , t) is a cost function decreasing in the var­
iables th i 6 ř. The larger will be the optimal values of 
elements of the vector t the larger will be the area 
where the system is little sensitive to changes of par­
ameters and thus the more stable will be the system in 
the area surrounding the designed parameters.

V, 2. Construction of sensitivity to large changes re­
specting the real distribution of errors

The definitions of LIPOs (11) and (14) allow us to 
consider a random dispersion of parameters arising in 
the technological process of the system production in 
the process of system design. We can incorporate our 
knowledge about this dispersion into the construction 
of the kernel h of the operator (11).

Let />(., ¿¿,X) be a probability density function de­
fined on .‘ft ' for which a mean value u and a covariance 
matrix X = X (0 exist. The vector t is e. g. a techno­
logical parameter representing prescribed precision of 
production. If integral (32) exists (e. g. if F is bounded 
and measurable)

F(x, 0 = J p(u, 0, X(l)) F (x - lu )  du (32)

it represents the value of the averaged function F{x, i) 
with vector averaging parameter (according to Defini­
tion I. The vector 1 = (1, 1,. . ., 1). So-constructed op­
erator has the order <9=1.

Theorem 5.
Let the gradient Vup(u,ju, X) of p with respect to

u exist for almost all u and for any u, I. Let the func­
tions || Vw/dl and || VMp\11| w|| be integrable as functions 
the vector u. Then VUp(u, 0, E) is the kernel of LI- 
PO of gradient estimation (14) and this operator is 
potential, of

■
Therefore the introduced large changes sensitivity 

with an appropriately constructed kernel can respect 
the real distribution of errors.

V. 3, The relationship of sensitivity optimization and 
optimal design of tolerances

When constructing the large change sensitivity by 
applying the LIPOs with a kernel derived from the 
density probability function of deviations of system 
parameters from prescribed values, we easily find the 
relationship of sensitivity optimization problems to 
problems solved in the theory of tolerances (e. g. Ban- 
dler, 1980, Director, 1977 and 1978, Geher, 1971, 
Opalski, 1979, Strazs, 1980, Thach, 1988).

Let Xr„ be the characteristic function of the region of 
acceptability

Ra = j,x 6 ,^ ' | max /I (a) = F{x) < 0 j ,

r 1 for V e R„

XrA x ) =
t 0 for v i  R„

and let p(., x, X (0) be the probability density func­
tion of a random vector v with the mean value a* and 
with the covariance matrix X(0 describing the distrib­
ution of values of parameters of produced systems 
v around the (prescribed) nominal design a  when the 
tolerances of parameters t are prescribed. Assume that 
this probability density function is differentiable al­
most everywhere, i. e. that the assumptions of The­
orem 5 are valid. If we use the transformation 
v = a + X (0 u then we obtain a random vector u with 
a probability density function /?(., 0, X (1 ))• We can 
calculate the theoretical yield of production, i. e, the 
probability that a produced system will be acceptable

Y(x, t) = J p(v, a, X(0)TK„O) dv =
.y?'

= I p{u, 0, X (1)) X r„ U  -7 m) du = X r„ (t  0,

which is actually the averaged characteristic function 
X r„. Thus the problem of minimization of abortions 
(which is equivalent to the yield maximization)

min Z(a, (),
V e . ‘R  1

Z(a , t) -= J p(u, 0, X (0) X iRa A  ” fw) du

(33)
(n  Rlt is the complement of Ra to-‘R1) is evidently an an-' 
alog of the problem (29). Problems (33) and (29) be-
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long to tasks of so called design centering. The con­
cept of the center of the region of acceptability may 
naturally vary case to case. Both problems are tasks of 
stochastic programming because the functions being 
minimized are not given exactly. We can only evaluate 
random estimates of their values in some algorithmic 
way. All the functions /'(., /), VF(., t), Y(.,t) and 
V Y(.,t) must be generally estimated by employing 
a Monte Carlo method. The same numerical method 
is thus applicable for solving problems (29) and (33).

VI. Example of the optimal configuration de­
sign

We will be looking for the optimal configuration of 
the three layer feedforward net (perceptron) for the bi­
nary symmetry recognition, i. e. for the recognition of 
the following relation among the input vector ele­
ments

a, = as-, i /, j = 1,2---- - [N/2].

The input space consists of all binary vectors of di­
mension N, The topology of the net is as follows. 
There are five input neurons 1G - 5, three hidden lay­
er neurons 11 = 3 and one output neuron h = 1. The 
first neurons in the first and hidden layers are utilized 
to set the thresholds of the neurons from the higher 
layers. The net should learn all possible input patterns 
from .?/ when N = 4, thus v== 16. We request the net to 
indicate the validity of the symmetry relation by value 
1 on its output and the case of nonsymmetry by value 
0. Thus the requested net outputs for the inputs a' are
ct e  {0, 1) ,  s =  1,. . ., 16.

The three layer PERCEPTRON for the binary symmetry recogni­
tion

Fig, 1

The active dynamics of the net are described by the
expression

i '  + ,) = 0  ( ZTfip )(34) 
/= 0

(see Rumelhart, 1986), where

Z(i)zl is the state of the y-th neuron in the 
layer i,

0 is the neuron transfer (activation) fun­
ction of the sigmoid type 
0{z) = 1/(1 + exp (-z))

■ i) Xjk is the weight of the connection between 
the /-th neuron in the layer i and A:-th 
neuron in the layer ( i + 1), / = 0, 1,
J -  0, 1........./,.

n3II for the imput layer, j  — 1...... /„,
(i) , Zo = 1 for i = 0. 1,
/ , (2) y(x, a) = zi is the net output for our case

The optimal design of the weights was found sol­
ving the following optimization problem of the same 
type as (31), instead of the classical back-propagation 
algorithm

min c(.\\ t) 
x  e nc

t e (0, +■ oo)'
Fi x, t) < £,

where the cost c is given by

13 1
c(x, t) = X  ~T

,..... i P

and the sensitivity measure F is defined as the avera­
ged cumulative loss function (6) according to Theo­
rem 5

F(x, t) = J h(u, 0,r(l)) F (x -  tu) du =
= J h(u, x, t(0 ) F(u) du.

The function

F(x) = max \ y ( x , d ) - d ' \
,v= 1....16

is used as the cumulative loss function. The kernel of 
the averaging L1PO h(u. x, r(l)) is the probability den­
sity function of the Gaussian distribution without cor­
relations, with the vector of mean values x and with 
the standard deviations

r,(/) = J ___

îooyT
ti I Xi I.

Thus the L.IPO used here is the same as that given in 
Example 1 in Mathematical Appendix. The vector / is 
the vector of tolerances, which will be prescribed for 
the realization of the net. The numbers ds, 5=1, 2, . .  ., 
16, are the requested outputs for the inputs as. The 
symbol Yk k = 1, 2, in Table 1

Ta -  Yk(x, t) -  J h(u, x, t ( t) )  du
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l*x*/\ 00, i = 1,2,. ... 13,
S o l u t i o n

w e i g h t

(t h r e s o p t i m a l o p t i m a l c o m p a r â t .
h o l d ) n o m i n a l t o l e r a n c e t o l e r a n e e

v a l u e [“° ] [*]

x <°>01 - 3 9 2 7 16. 0 20 . 0
(o ) 

X 11 - 2 1 4 6 2 10. 0 12 0
x (°)
21 - 1 0 3 0 9 15. 0 18 0
(o)

X 31 10 7 7 0 15. 0 18 0
„ ( 0 )
X 41 19. 9 0 2 10. 0 12 0
(o ) 

X 02 -7. 7 6 6 15. 0 18 0
(o)
12 23 6 6 7 10. 0 12 0
(o)

X 22 13 1 0 5 13. 0 16 0

x (o)32 -11. 6 4 1 14. 0 17 0
(o ) 
4 2 -23. 2 1 5 10. 0 12 0

x  U ) 
01 11. 6 5 9 16. 0 2 0 0

x (1)X 11 -23. 0 1 6 16. 0 2 0 0

X ( D  x 2 1 -22. 1 0 1 16. 0 20 0

c o s t 0 , 9 9 8 4 0 8 2 1 3
Y 1 0 . 9 0 6 2 0 7 8 0 8
Y 2 0 . 9 4 9 7 0 8 6 2 8
F 0 . 0 5 0 2 0 1 3 4 2

The optimal design of the three layer PERCEPTRON 
for the binary symmetry recognition

Tab, I

is used to denote the yield (the relative number of the 
acceptable net realizations) for the regions of accepta­
bility Rtli, k = 1,2

Rin = {a:€ 13 I F(x) < a} , Fa -  0.05. r = 0.4.

The yield is one of the possible measures of the design 
quality.

The exact penalty method (see Ermoljev, 1976) was 
used to transform the problem to an unconstrained 
optimization problem and then stochastic approxima­
tion algorithm (9) was employed to get the solution. 
The number of the net output evaluations to get the 
optimal solution in Table 1 was approximately 5, 000. 
I he tolerances in the second column of Table I are in­
troduced only for comparison with those optimal 
ones.

We can roughly conclude that the errors arising in 
the process of this net realization will not cause an in­
correct behavior of the realized hardware with a pro­
bability greater then Yh if they are in the range

around the optimal nominal values x* for the optimal 
vector of tolerances t*.

The solution that we get by solving problem (31) 
possesses other interesting properties. If we calculate 
the gradient of the cumulative loss function according 
to the weights and compare it with the gradient accor­
ding to the net inputs we will see that if the former is 
near to zero then the later is also near to zero. Thus 
the solution that is little sensitive to weight changes is 
also little sensitive to changes of input values. We can
teach the net using precise samples a e V, ,v e v, de­
spite the fact that the actual inputs from . f  activating 
the net in the process of an exploitation may be noise 
corrupted.

VII. CONCLUSION

Thus the potential differentiating operators of gra­
dient estimation and corresponding averaging opera­
tors allow us to introduce simple criteria of sensitivity 
of a system to changes of its parameters and corre­
sponding scalar measures of this sensitivity and to 
consider this sensitivity only with respect to selected 
parameters and selected system functions. This con­
struction of sensitivity both suits the technical de­
mands for design and fits with a natural idea of using 
a mean value of gradients of active system functions 
in a neighborhood of the nominal design and of utili­
zing the distribution of parameters that corresponds 
to the production technology when keeping the pres­
cribed nominal parameters values and their toleran­
ces. Also, the necessary range of parameters determi­
ned by the tolerances and correlations among parame­
ters can be respected by this construction. Numerical 
calculations of the sensitivity and the sensitivity mea­
sure can be performed simply and also in parallel if it 
is necessary. If we are optimizing the sensitivity of sy­
stem whose system functions are given stochastically, 
the construction based on LIPOs suppresses the ran­
dom noise by which the values of system functions are 
corrupted. The so-constructed sensitivity to large 
changes of parameters converges, when the range of 
changes goes to zero, to the differential sensitivity. 
The sensitivity and the measure of sensitivity are 
smooth functions of parameters and generally, depen­
ding on the kernel of the used operator, they are more 
smooth then the original system functions due to the 
regularization property of the operators (1 1) and (14). 
The construction of sensitivity can be correctly used 
even if the system function are nondifferentiable in 
comparison to other approaches.

By using a potential averaging LIPO to construct 
the sensitivity measure of cumulative loss function (5), 
we take off non-characteristic local minima of the cu­
mulative loss function F which make the teaching of 
the net by solving the problem in (4) very difficult. In
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other words, using the sensitivity measure F (., t), in­
stead of the cumulative loss function F\ we easily re­
ach the global solution of the problem given by (4) 
and we avoid the local minima of Fat which the net 
does not generate the correct outputs. The problem of 
existence of such points is very serious and unavoida­
ble because of the necessity for the net function as 
a function of configuration, to have a complex and 
quickly changing shape to be able to approximate 
a fairly wide class of functions.
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MATHEMATICAL APPENDIX

Example 1:

By employing Hermitte polynomials //’, p), ie  r, 
with the weights p,

p,(u,) = exp(-nr/2), -oo < w < Too, ie r ,
i i

p ’ (ui) = (2/7) 4, p) (Ui) -  (2/7) AUi,p2i(w) =

= (8/7) 4 (u 2,-- l)

and by applying the method of local approximation 
designed by Katkovnik, 1976, we get the averaging 
operators with the kernels

//'(if) = h’(u ) = (2/7) "2e ""llV2, (35)

h2(u) = l:(u ) = ( l j h »  (36)

and the corresponding differentiating operators of 
First derivatives estimation with the kernels

g\{u) = gl(u) = — Uih°(u), i e r, (37)

g/(w) = £ ' ( l/) = (2  + y  -  —y -  j  g! (u) =

= -- Hi ^ 2  -f y  -  JLy- j  h° (u), i e r, (38)

and, finally, the corresponding differentiating opera­
tors of second order derivatives estimation with the 
kernels

wlj(u) =  Wi,(u) =  Ui lij h° (u),  i ¥= j,

wu(u) = Wii(u) = (ui -  l )  h°(u), (39)
for i, j  G r

Wij(u) = Wij(u) = Ui Uj
u

h °  ( u ) ,

i

wi, ( u) = W'ii( u)
r 1

,3 + y -
u

(ui - 0 + 1 h°(u)

for i, je  r. (40)

The upper index by the kerne! denotation is the order 
i9of the resulting operator and thus the maximal order 
of polynomials for which the operators give the exact 
values or the exact derivatives. Although the method 
of local approximation does not generally guarantee
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the constructed differentiating operators to be potenti­
al, in this case, the operators with kernels (37) to (40) 
are potential.

If the probability density function p of normal dis­
tribution is used for generating vectors m , i. e.

P(u)  =  (2/7 ) - |/2e '........ y

then we obtain the following parametric estimates of 
values and derivatives of a function / with the aid of 
its values at L points u\ s  e L, generated using the pro­
bability density function p

I 1
'/(*, C, L ) = -y X /(* + cu' X (41 )

^  s = I

Let us compare the accuracy of estimates (43) to 
(46) and the estimates based on the symmetric diffe­
rence formulas when the first and second derivatives 
are estimated in parallel and the function / is given 
stochastically, i. e. we can only obtain its values in 
a form corrupted by a random noise with a variance a. 
The symmetric difference formulas for
/ ' ( a , c, co) = ~  [ / ( a  + ce', co) -  / ( A  -  ce1, co)], (47)

fn  (.V, c, co) =  — —  [ f ( a +  ce' +  ce', co)
4 c"

-  / ( a +  ce' -  ce\ co) -

-  / ( a  — ce' +  ce\ co) +  / ( a  -  ce' -  ce', co) (48)

7 (  a , c, L  ) =  —  Z

^ j = i

2V / ( a , c, L  )

1 +

( -  1)

r n
2 2

L

/ ( a +  c m ' ), (42)

cL X  t/'/(x+ CMS), (43)
V /

V O ,  c, L )=  / / -
,v = I

u

/ (  A+ cm' ) , (44)

7 ij (x, c, L ) Z Ui U j f ( x +  c u ) ,  l / / ,

7« (*, d £ )

c L  .v - i 
h j  e r  

L

(45)

c L s
Z  [ U ) 2- l  ] / ( *  + c u  ) ,

7 ij ( X, c, L )
c L ,? =

Z u  i Uj 3 + M

/ ( a + c k ) ,  i ^ j , i , j e r (46)

7 » (*, c, L) = Z
c L

( U ) 2-  0  + 1

3 + y - j "  «’"2

/ U  +  c m ' )  .

The left upper index denotes the order. The indexes of 
exactness of the particular operators (see (24)) are in 
Table 2.

require the function / to  be calculated at 2 r 2 +  2 r  +  I  

points.
Let there exist derivatives of the function /  up to 

and including the fourth order and let them be boun­
ded. The mean values of the square of the errors (19), 
(20) for the estimates (47), (48) are

7 + * ( c  ■) ,
2 c 

4c

where the members o,(c/) and o„,(c6) represent the 
square of systematic error (21). On the other hand, if 
we use the parametric estimates (43) to (46) for 
L = 2(r+r) we have the mean value of the square of 
the error for (43)

A2i = oi (cJ ) + 

A2 II — On I (c ) +

A, — o\ i (c ) + 

for (44)

Ä  = ^ ,(c 8) +

(7

2(r + r)c

(t  ; 2 ) /
2 (r" + r) c

7  + 012 (c ’)

+ 0 22(0  1 )

for (45)

A l = 03! (c4) + CJ
2(r" + r)c

+  032 ( c  3 ) , 1 + j,

Estimate (41) (42) (43) (44) (45) 
i *3

(45)
i=j

(46)
i*j

(46)
i=j

Index of 
exactness

1 r1+-2 1 r2+—2 1 2 r3+—2 7 + r

Tab. 2

An — 041 (c ) + <7

(r  + r)c  

and finally for estimate (46)

+ 042 (c )

A]j — 051 (c8) +
CT + 3

2 (r  + r) c
+ 052 (c ")
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At Oři ( c ) +
a  (r + 7 )

2 (V + r) c4
+ 062 (c 3)

We can conclude that the use of estimates (43) to 
(46) is evidently more advantageous in the case of 
small values of the averaging parameter cthan the use 
of the estimates based on symmetric difference formu­
las. When the parametric estimate of gradient (43) is 
used the required number of values of the function /  
necessary for us to reach a demanded value of the va­
riance of the estimate error (20) does not grow with 
the dimension of the problem r. Although it grows li­
nearly with the dimension r when the difference for­
mula (47) is applied.

J  I h(u)\  |f i x -  cm) | d u <

J I h(u) | \ f ( x ) \d u < ~
,1tr -  B(0, R) 3

due to the existence of these integrals over the whole 
space Mr. Owing to the continuity of the function / at 
the point x, a number <5>0 can be found so that

I A x ) - f ( y ) \  <

for any y e || x -  y\\ < 8. If we set c< 5/R we obtain

■ |/(x, c ) - /(x ) | < J \h(u)\ \f(x  — cu) — f(x ) \ du +
Theorem 6. (Clarke , 1983) fí(0’
Let a function /b e  Lipschitz in a neighborhood of + J 1h( u)| Ifx — cu) | du +

a point x with a constant U. Then .nr -  B(0, )
1) D f  x) is nonempty, convex and closed subset of ,Rr + J \h(u)\ |/(x) | du < 8.
and .nr g(0, R)

II #11 < Ufor any #e Df{x).

2) The equation

f °  (x ; v) = max < #, v >
f e Df(x)

is valid for any v e ^ f.

3) If the function/is locally Lipschitz in Mr then the 
point-to-set map Df is an upper semi-continuous 
map from a? Onto the system of all the subsets of ¡W
i. e.

(Vi’ > 0) (35 > 0) (Vy, || x -  y\\ < 5)

DJIy) c Df{x) + B(0, e),

where

B(0, e) = {ye cR' | ||y|| < e}.
m

Proof of Theorem 1 ;
Because h e 2 and / e  #  integral (11) exists and 

a constant K > 0 can be found so that

{ | h(u) | du < K < + oo.
.nr

According to Definition 1 we have

/(x, c) -  /(x) = J h(u) ( f (x -  cu) -  f i x ) )  du,
.nr

Because s was arbitrary the theorem is proved.
■

Proof of Theorem 2:
Because the differentiating LIPO of gradient esti­

mation is potential and the kernel of the correspon­
ding averaging operator is h, where g = V h , we can 
proceed in the same way as in the proof of Theorem 1 
with

V/(x, c) -  V/(x) = J h(u) V/(x -  c m ) du.
. n r

Proof of Theorem 3 :

If the gradient V/(x) at the point, x e cR' exists we 
can write according to Definition 2

lim V/(x, c) -  lim — J g(u) f ( x  -  cm) du =
c —* 0 r  — * 0 + C r

r , x f(x) - f i x -  CU) ,
= -  lim J g{u) -------- —---------du. (49)

Because the function / i s  Lipschitz the inequality

I f ix)  - f i x  -  cu)) I < U\\u\\ (50)

holds true. Due to the regularity of / (the existence of 
V/(x)) at the point x, the existence of classical first 
derivatives f(x;u ) of /  at the point x in any direction
m  € fRr is assured

If we have a ball B(0, R) with the center at the ori­
gin and with a great enough radius R in relation to the
preselected ¿’>0 then

lim f i x ; u) Vf ( x ) Tu.

(51)
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According to Lebesgue’s theorem and due to the exis- We obtain a contradiction therefore Lemma 2 must be 
tence of majorant (25), we can change the limit and valid, 
the integration in (49). Then we have

lim V/(x, c) = -  f g(u) V f ( x )1 u du = V f ( x )
f—*0+ ,fir

(52)

by utilizing (15) and (16).
The limit (51) does not generally exist at the points 

where the function/is nondifferentiable. But e. g. the 
convexity of / in  a neighborhood of the point jc is suf­
ficient for the existence of it because

lim
r—* o +

f i x )  - f i x  -  CU) f ( x \ u )  = £ u.

where gis an element of the subgradient o f/a t  the po­
int x

We want to prove a weaker result for the nonconvex 
case that claims that V/(x, c) approximates a point 
from the generalized gradient Df(x) if the averaging 
parameter c is small enough. We will use the following 
two lemmas.

Lemma I: Separability of convex sets ( Clarke, 
1983,Ermoljev, 1976)

Let 5 be a closed convex subset of ,R'. Then for 
each y e S a vector a e - R a  #  0, and a number e > 0 
exist such that

< «, x > < < a, v > - e  (53)

for an arbitrary xe S.

Lemma 2.
Let h :.R'~ +.R be a nonnegative function and let

Evidently, there exists a ball with the center at the 
point 0 and with a radius K> 0 so that

J h(u) du ~ C> 1 -  e.
fl(0. K )

In the opposite case, the sequence {//}, K„~* oo, could 
be constructed so that the inequality

h i u)  du < \ — e
B(0. K„)

is valid and then we would obtain a contradiction.

1 = J hiu) du = lim J hiu) du < 1 -1 £,
■ #> n— bo B(0, K„)

Due to the upper semi-continuity of the generalized 
gradient Df  there exists a number 6<  0 for which

(V v, || x -  y  || < 8) Df i y ) c  Df(x)  + B(0, e)

holds true.
Let us set c< 8 /  max |1,K}. Then

Vf(x-cu)  e Df(x)+ B(0, e) for almost all the 
u e B{0, K). Because Df(x)+ B(0, s) is a convex, clo­
sed and bounded set Lemma 2 is valid and thus

1 rJ h(u) V/(x -  c m )  du e Df(x) + B(0, e).
X B(0, K)

(54)

J h(u) du = 1.
.itr

Then for an arbitrary vector function f:.R  r-*S, where 
S  is a convex, closed and bounded subset of -JR ' the fol­
lowing

J h ( u ) f ( u ) d u e S
.‘Rr

is valid.

Since /  is locally Lipschitz || V / ( y) || < U holds true 
for all the y e .Rr (see Theorem 5), Therefore we have

|| J h (u ) V/(x -  c m )  du || <e U
- B(0, K)

and also

J h(u) V/( x -  c m ) du e D f (x)  + Bi0, e(l + U+ e))
B(Ot K)

Proof of Lemma 2: which give

Let us denote
y =  J hi u ) f ( u )  du

.Rr
and let y£  S. Claim (53) of Lemma 1. can be em­
ployed. Thus we have

< a, y > = J hiu)a f {u )  du< J h(u) ( a ry  - c)
•M r .R r

du= < a, y > -£ .

V/( x, c) e D/(x) + 5(0, ei \  + 2U+ e) ).

Thus we can find ij according to the statement of this 
theorem.

Let us note that the nonexistence of V/(x + c m )  on 
the set of zero Lebesgue’s measure does not effect the 
existence of integral (54) and its value.
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Proof of Theorem 5 :
According to the assumptions of the theorem, we

have

The gradient and the limits of expressions (56) and 
(57) are then performed in the generalized sense be­
cause the scalar product is the regular operation, see 
Antosik, 1973.

¿P = p ( u + ^g',0,Z) ~ p(u, 0, I )
du,  / J ? ,  A (55)

almost everywhere and also, because p is a density 
probability function, we have

p(u  + Ae,  0, X) = p(u,  -  A e, £ ) ,

Example 2,
Let us consider the density probability function of 

the uniform distribution

/ ) ~ V n  [ 0 ( 0  1 ) - e 1)],/ 2 j = i
X, 0, y

and therefore (56) and (57) holds true

J p ( u +  A e'» °» l )  ~  P(

p(u + Ae,0 , 1 )J uj-----------T“~------ du =
Jf r A

(7e .9?nr' is the unit matrix). Then we obtain the kernel 
of potential LIPO of gradient estimation with i-th

du -  0, (56) component

- 1 for i — j
(57) 8 í v. 0. 1 / ) (  j i0 for ; # / \ 3 / 2 1,

The limit A-^0 + in expressions (56) and (57) can be 
performed because the conditions of Lebesgue’s theo­
rem are valid. Thus we proved the conditions of Defi- w3iere 
nition 2. The potentiality of the constructed operator 
is evident.

[<5(x, + 1 ) -  ô(xi -  1 )],

© (x, )
{ 0 for .v, < 0 

1 for xj > 0

Theorem 5 is also applicable when LIFOs are con­
structed on the basis of generalized function theory.

and <5(xy) is the Dirack's 5 — function.
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1989, 401 pp., ISBN 0-262-01 110-7.

Neural Networks — Computers with Intuition. S. Brunak, B. 
Lautrup. -London, Academic Press 1990. 180 pp.

Both specialists and laymen will enjoy reading this book. 
Using a lively, non-technical style and images from every­

day life, the authors present the basic principles behind 
computing and computers. The focus is on those aspects of 
computation that concern networks of numerous small com­
putational units, be they biological neural networks or artifi- 
cal electronic devices.

Naturally Intelligent Systems, M. Caudill, C. Butler. -Cam­
bridge, MA: MIT Press, 1989, 304 pp. ISBN 0-262-03156-6.

The book is divided into three parts. After the introducto­
ry chapters, the first part deals with associative memories, 
the second with learning and memory, and the third with 
multilayered networks. A final set of chapters describes 
some implementations and applications.

Neurobiology of Learning and Memory — Reprint Volume.
Ed. G. Shaw, J. McGaugh and S. Rose. -London, World 
Scientific 1990. 850 pp.

New Developments in Neural Computing. J. G. Taylor, C. L. 
T. Mannion. -Bristol, Adam Hilger, 1989, 264 pp., ISBN
0-85274-193-6.

New Developments in Neural Computing presents new 
information from researchers from all over the world, en­
abling workers to have access to the most up-to-date results.

Recursive Neural Networks for Asociative Memory. Y. Kamp, 
M. Hasler. -London, John Wiley & Sons, 1990, 216 pp., 
ISBN 0-47192-866-6.

Neural networks have received an upsurge of interest 
from a broad sector of the scientific community ranging 
from neurobiology to electronics and computer science and 
learning to a wealth of engineering applications in speech 
and image processing.
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LIMIT INFORMATIONAL CHARACTERISTICS OF NEURAL 
NETWORKS CAPABLE OF ASSOCIATIVE LEARNING 

BASED ON HEBBIAN PLASTICITY.
A, A. Frolov*)

Abstract:
The capability of associative learning is one of the 

main properties of the brain. We share the idea (Palm, 
1982; Kohonen, 1984) that design of devices modelling 
behavior of some biological organism as a whole can be 
based on associative memory mechanism. This idea is 
related to the one of Pavlov: that adapted animal behav­
ior is based on the conditioning ability. A lot of experi­
mental data on neurophysiology of associative learning 
has been accumulated since Pavlov. Associative memory 
models have been developed simultaneously to general­
ize experimental data and to create the basis for further 
experiments (Rosenblatt, 1959; Konorsky, 1970; Hebb, 
1949; Steinbuch, 1961; Willshaw et al. , 1969; Brien- 
dley, 1969; Marr, 1969, 1970, 1971; Palm, 1981, 1982; 
Kohonen, 1980, 1984; Hopfield, 1982, 1984 etc. ). As 
a result of experimental and theoretical research, the 
following common understanding of learning and mem­
ory problems in the nervous system has been reached.

1. Introduction

It is considered that the activity of the nervous sys­
tem or any part of it may be described by vector A, 
whose components A, are activities of individual neu­
rons. Aj is the characteristic of neuron’s instantaneous 
frequency of action potentials or probability of its ex­
citation. Current activity of each neuron primarily de­
pends on the previous activity of other neurons which 
influence the former through synaptic connections. 
The level of such influence is determined by synaptic 
weights. The activity of the input neurons is also de­
termined by external signals. So, current activity of 
the neural network is determined by its previous activ­
ity history, current weights of synaptic connections 
and current pattern of external signals. Each external 
event is coded by a certain activity vector A or a se­
quence of such vectors, and retrieval of this event 
from the memory corresponds to the setting of ner­
vous system activity pattern close to the storage one. 
Storage in the memory is based on modification of 
plastic elements of the nervous system. Synapses are 
ordinarily considered to be such elements. But in

*) Prof. A. A. Frolov
Institute of Higher Nervous Activity and Neurophysiology USSR Academy
of Sciences
Butlerova 5a
142 292 Moscow, USSR

some of ours papers (Frolov, Murav’ev, 1987, 1988 a, 
b etc. ), as well as in articles by neuron as a whole, 
they are considered to be memory elements. It is sup­
posed that dynamics of the plastic elements modifica­
tion is „localized“ (Braitenberg, 1978), that is, the 
change of each memory element depends only on its 
current plasticity state and the current neural activity 
in its location point (and, possibly, on some signals 
which modulate the general level of the whole ne­
twork’s plasticity). Hebbian plasticity (Hebb, 1949) is 
the most popular for memory modelling among the 
types of synaptic plasticity which satisfy the condition 
of plasticity localization.

According to the Hebbian rule, the synaptic weight 
B7,, between ;-th and y-th neurons depends on the 
correlation between the activities A, and Af of the 
post— and presynaptic neurons. Here we consider 
three types of Hebbian plasticity: one gradual and 
two binary ones. For convenience we introduce a vec­
tor A which we call modification state vector. Each 
component of this vector is definitively related to the 
weight of one of modifiable synapses. For gradual 
Hebbian plasticity we suppose:

A s=cAiAj, (1)

where s is the state of modification of the synapse be­
tween z-th and y-th neurons (initial value of s is as­
sumed to be zero), c is the rate of learning which can 
vary from 0 for unimportant events which need not be 
stored to some maximal value for the most important 
events which must be stored after the single occur­
rence. Here it is assumed that c=(0, 1): c=l for learn­
ing, c=0 for retrieval. For binary plasticity we assume

As = c( 1 -  s) At Aj (2)

where again c=(0, 1), initially 5=0 and neuron’s activi­
ty is assumed to be binary: A,=(0, 1). After the learn­
ing is finished, in the case of gradual plasticity we 
obtain

s = I  AÍ  A j (3)
k= 1, L

where L is the total number of stored events, while in 
the binary case 5 is equal to unity if at least for 
a single stored event the activity of the presynaptic
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neuron has occurred simultaneously with the activity 
of the postsynaptic neuron.

For the binary plasticity we distinguish two types of 
synapses. A synapse with zero weight before modifica­
tion (that is for 5=0) is called the Hebbian synapse. 
A synapse with weight after modification (that is for 
5=1) is called Albus synapse. These definitions origi­
nate from papers by Hebb (1949) and Albus (1972) 
where these types of synapses have been first men­
tioned. Ordinarily the weight of a binary synapse in 
a nonzero state is assumed to be +1 or — 1.

2. Main notions and definitions,

A neural system is called heteroassoeiative memory 
if it performs the following functions:

a) In the learning mode (c= 1) L pairs of vectors (Xk, 
Yk) belonging to X and Y"y where X"v and T"> are vec­
tor sets having dimensions respectively nx and nv, are 
consequently presented to the system to be stored. 
Vectors Xk and Yk are called templates.

b) In the retrieval mode (c=0) any vectors X' e  X ’h 
are consequently presented to the system. All those 
belonging to the given templates vicinities are called 
„familiar“ and others are called „novel“. The system 
recognizes familiar and novel among {AT} by some de­
cision rule. I f  X ’ is recognized as familiar then a vector 
Y' e Yn' is reproduced at the system output. If recogni­
tion is correct, then Y' contains the information I (Yk, Y') 
about the template Yk coupled to X k to which X is 
close.

A neural system is called autoassociative memory if 
it performs the following functions:

a) In the learning mode (c= 1) ¿vectors Xk e X" are 
consequently represented to the system to be stored.

b) In the retrieval mode (c=0) the system recognizes
familiar and novel among vectors X" e X"' presented to 
it. if some vector X ’ has been recognized as familiar
the system output wall reproduce a vector X ” e X"'. If 
the recognition has been correct, the vector X “ con­
tains the information about the template Xk to which 
X ’ is close. This information is additional to the one 
contained in the input vector X ’. As a rule, I(X",  X ) 
> / (X AY). Then the autoassociative memory 
fulfills the correction of X'. However, if 
I (X k, (X ' , X" )) > /(AY,X ' ),then someadditional infor­
mation about X k can be extracted from X"  any case.

in the following, as a rule (and always for binary 
placticity) it, is assumed that templates are binary vec­
tors belonging to sets B'i’ and B'i', where B" is a set of 
vectors containing / units and n-l nulls. Additionally, 
it is assumed that templates are chosen equiprobably 
and independently of each other.

Heteroassoeiative memory simulates the procedure

of behavioral classical conditioning. Autoassociative 
memory simulates the development of „local condi­
tioned reflexes“, “neural models of stimuli“ or „mem­
ory engrammes“. The recognition function of associa­
tive memory corresponds to the one postulated for the 
nervous system as „novelty detection“ (Vinogradova, 
1975).

For a neural network performing functions of auto­
associative memory input and output layers consist of 
equal numbers of neurons which areequivalent as in­
formational units. Therefore there exist a lot of auto­
associative memory models in which input and output 
layers are combined into a single layer, considered 
either input or output in different moments.

Autoassociative memory may operate in single-step 
or multi-step modes. In the second case its output lay­
er is connected with its input one, and the retrieval of 
the template stored in the memory takes place step- 
by-step in portions. As a rule there exists a stable state 
for each of stored template to which the network ac­
tivity converges as a result of this excitatory reverbera­
tion, and the network may be considered as a dynamic 
system with a lot of stable states (Little, 1974; Hop- 
field, 1982). If the output layer is combined with the 
input one. The network need not any additional con­
nections to reproduce the multi-step mode.

During retrieval each of the stored templates is de­
coded separately, that is, information about other tem­
plates which has been extracted from the memory, is 
not being used. Such decoding is called simple unlike 
the complex one, making use of this information (Du- 
nin-Barkovski, 1978). It will be shown below that one 
of the main sources of information losses in the ne­
tworks performing functions of associative memory is 
the use of simple decoding instead of complex one. 
Changes of the memory elements’ modification states 
caused by the storage of other templates produce 
background noise and prevent retrieval of the given 
template. It is the interference of traces of different 
templates stored that results in information losses.

According to the Shannon theorem, the maximal in­
formation which can be extracted from the network 
using any manner of complex decoding is defined by

I(S, X)  = E P(S, X) Ig (pcs, X )/P{s ) / P ( x )) =
H (H ) -  H(X/S) = H(S)

(4)

for autoassociative memory, while for heteroassocia- 
tive one

/(S, (X.Y)) = I .P(SAX.  n ) lg  
(P(S,(X, Y))/P(S )/P(X,  Y ) )«
= //(X, Y ) - / / (X ,Y /S )= H (S ) ,  (5)

where S  is the modification state vector of the whole 
network, Xand X, Fare full sets of templates and their 
pairs, P is the probability of their joint distribution,
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H(V) = ^ P ( V )  lg P(V)

is the entrophy of a random variable V.
In these equations it is taken into account that for 

rules of modification given by the formulae (1), (2) the 
state of modification is completely determined by the 
stored templates; therefore H(S/X)= H(S/(X, Ÿ))=0.

Maximum of information which may be extracted 
from the network using any manner of simple decod­
ing is defined by /= LJ. where ./is maximal informa­
tion extracted from the network for individual tem­
plate or their pair, that is

I{S, Xl) = Z  P(S, X0  lg(F(S, Xk)/P(Xk)) =
= H(Xk ) -  H(Xk/S ) = H{S/Xk ) (6)

for autoassociative memory, while for heteroassocia- 
tive one

J= n s , ( x k, n ) )  = l  P(.s,(xk, Yk))
lg (P(S,(Xk, Yk))/P(S)/P(Xk, Yk) =

= H(Xk, Yk ) -  H(Xk, Yk/S ) = H (S ) -  H{S/Xk, Yk )
(7)

Here it is assumed that information quantities extract­
ed from the network are equal for all templates, so k is 
an arbitrary template number.

If for one of modification states the plastic synapses 
have zero weights, then the reason of „why does not 
one neuron react to excitation of another one“ cannot 
be established by testing network’s reactivity: it can be 
either due to absence of the connection between them 
or the zero weight of such connection. In this case, ne­
twork testing permits us to learn the structure of ne­
twork connections with nonzero synapses only. There­
fore, to calculate the maximal information, which can 
be extracted from the network by complex or simple 
decoding it is necessary to replace in (4) — (7) vector 
S  by the vector a  which determines modification 
states of nonzero synapses only. The arising uncer­
tainty about the network structure is the second main 
source of information losses. For the gradual plastici­
ty only a small part of modifiable synapses are in the 
zero state, so these information losses may be neglect­
ed. For the binary plasticity they depend on the modi­
fication state in which the synapses have zero weight, 
i. e. , if synapses belong to Hebb or Albus type.

For decoding routines mentioned above, i. e. corre­
sponding to associative memory functioning, the max­
imal information values given by (6), (7) and especial­
ly by (4), (5) cannot be achieved. They must be consid­
ered only as some reference evaluations similar to the 
one for a heat engine efficiency given by the second 
thermodynamics law.

It is evident from equations (4), (5) that information 
which can be extracted from the network by any man­
ner of decoding cannot exceed H(S) and H(X) for au- 
toassociative memory or H(X, Ÿ) for heteroassociative

one. In its turn H(S) cannot exceed lg M where M is 
the total number of different modification states of 
the network. If all memory elements have identical 
properties then lg M= AT g K where Y is the total num­
ber of memory elements and K is the number of modi­
fication states of each element. These limit values give 
reason for definitions of the main information charac­
teristics of a neural network : the efficiency coeffi­
cient

E = / / ( A T g K ) ,  (9)

and quality coefficient

Q= I / H ( X ) o r Q =  I/H(X,Ÿ)(10)

where / is the total information extracted from the 
memory with help of a given decoding routine. A typi­
cal dependence of E and Q on the number of stored 
templates L is shown in Fig. 1. When this number is 
relatively small the information extracted from memo­
ry is equal to the entrophy of the templates, that is, 
this information is sufficient to retrieve the templates 
without any errors or „ideally“ as Dunin-Barkowski 
(1978) put it. When L reaches some critical value, the 
quality coefficient begins to decrease and efficiency 
coefficient passes its maximum. The search of this cri­
tical value of L or of the maximal value of E (which is 
basically the same) is the main goal of the informa­
tional analysis of neural networks performing the 
function of associative memory.

!I

Fig. /. Typical dependence of the main in formational characteristics Q 
and E on the number of stored templates L.

Here we analyze only two-layered networks con­
taining nx neurons in the input layer, nv neurons in the 
output layer and no hidden neurons. This construc­
tion is the simplest for networks, which are able to 
perform the functions of the associative memory. It
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was first analyzed by Steinbuch (1961) for the gradual 
plasticity and by Willshaw et al. (1969) for the binary 
one and is called „correlation matrix“. For autoasso­
ciative memory nv=nx and input and output layers 
may be combined into a single one. Such construction 
of autoassociative memory has been considered by 
Hopfield (1982, 1984) and by a lot of his followers 
(Amit et al. , 1985, 1986, 1987; etc. ). In the following 
it is assumed that each output neuron is connected 
with m input neurons with connection vector //, and 
vectors //, (z= /, /?,) are chosen equiprobably and inde- 
pendentlv of each other and of the templates from the
set B "nx (//„) 1 if the i-th output neuron is connected
with the /-th input one, //„in the opposite case).

1 he analysis given below is restricted to evaluation 
of E from formulae (4)-(7), Therefore we obtain values 
ot this coellicient which can serve as referent ones for 
any natural decoding routine and helps us to under­
stand the nature of the main sources of information 
losses. Calculation of informational characteristics of 
neural networks for a few decoding routines can be 
found in (Frolov, Murav’ev, 1988, a).

3. The case of a single output neuron.

For a well-designed neural network, the informa­
tion capacity must have the order of the sum of infor­
mation capacities of its individual neurons. Thus the 
calculation of a single neuron information capacity 
gives a good estimate for the information capacity of 
the whole network, and, moreover, it enables us to un­
derstand the nature of information losses which occur 
with connection of individual neurons into the inte­
gral network.

Gradual plasticity. In the case of gradual plasticity 
only a small part of synapses are in the zero state. 
Therefore, we may consider vector // to be completely 
known. Then from the formulae (4) and (5)

I(S, (X, Ÿ) )= H(S  ) and I(S, X)  « H(S)

where y  is one of the components of the template Y 
corresponding to the given output neuron, y  is the set 
of components yk and S is the vector of the modifica­
tion state for this neuron. From (3)

sj  =  X  A  / / Ta j =  1------- m ,  (11)A - 1,1
where Ak/(j = 1, . . . , m) are the components of the vec­
tor Xk corresponding to input neurons which are 
linked with the given output neuron. Let components 
of the templates Xk and the variables yk be statistically 
independent and have zero means. Then components 
of vector S  are uncorrelated. Under a sufficiently 
large value of Lone may approximate the distribution 
ol Sj by the normal distribution with zero mean and 
variance D= Ldxd , where dx, dv are variances of Xki and

Ykh ignoring statistical dependence of different com­
ponents of S. Then we may assume

H ( S ) = m His,) = Ig (2 ned, d L), (12)

where we use the well-known formula (Kolesnik, Pol- 
tyrev, 1982) for the entropy of a normally distributed 
variable. To calculate the number of different states of 
one modifiable synapse K we may ignore the exis­
tence of states with absolute values of y which exceed 
D1 2 several times. Therefore, we may assume K to be 
proportional to D1 2. From the formula (1 1) for suffi­
ciently large L

E = m H M H  a  ,
m Ig K

Thus gradual Flebbian plasticity in general may reach 
maximal possible efficiency, But this is true only for 
unreal case of complex decoding.

From the formulae (6), (7), the maximal informa­
tion which can be extracted from the single output 
neuron for any manner of simple decoding is given by 
I~ LJ where

J= H(S)  — H{S/Xa, Yk) or J = H(S)  - H ( S / X a).

But if the template Xk or pair of templates (Xk, Yk) are 
known then from the formulae (11) its contributions 
to vector S are also known therefore //(S / Xk) or H(S/  
(Xk, Yk)) are equal to the entrophy of the vector of 
modification state produced by the storing of the 
other templates. Therefore H(S/Xk) or H(S/(Xk, Ykj) 
are equal to //(UI) where H(L) is given by the formu­
la (12). Then

H(L)  -  H(L -  1) =

= ý m  lg(L/(L “  1) s* m lg e/(2L),

/ = LJ = m lg e/2 (13)

Thus the maximal information which can be extracted 
from one graduel Hebb synapse does not depend on 
the number of its gradation states, i. e. , for the gradu­
al Flebbian placticity the passage from complex to 
simple decoding leads to a substantial decreas of the 
information capacity of the neural net and a corre­
sponding drop in its efficiency coefficient. Threfore in 
the following we use for gradual placticity coefficient 
E ’- I / N  instead of coefficient E determined by the 
formula (9). From the formula (13) we get

E' = 1/m = lg e l l  & 0,72 (14)

Binary plasticity. Vector // is known compleatly. For bi­
nary templates which are considered for binary plasti­
city it is evident that for a single neuron I(S, (X, y)) or 
I(Š, X) are equal to I(S, X) where X  is the set of tem-
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plates Xk which activations at the input layer coincide 
with activations of the given neuron at the output lay­
er. Therefore for the binary plasticity we may restrict 
ourselves to the calculation of I(S. X) and use for it 
formula (4) where we must replace X  by X. Since all 
synapses are statistically identical one may put 
i\S )~  F\k)/ Ckm where k is the number of modified 
synapses of the given neuron, therefore / = / ’+ 1“ 
where

/ ■ - X  n o  ig clr= - X
k k

J: the formula (6) can be rewritten in the following 
form:

J' = I(sh Xj) -  / (sh xj/xkj), (16)

where / ( \ , \ ) are equal to / / (v,) -  h(x) and xki is 
a component of one of the vectors of the set X.
For binary plasticity the state s,  under given k-th tem­
plate or templates pair is compleatly determined only 
if A.s — 0 during its storing. In this case

I ( s h Xj / Xk j )  =  I ( s h X j ) ,  ( 1 7 )

If m => 1 we may approximate the distribution f \ k ) by 
a normal one with mean M(k) - van and some var­
iance D(k) where x is the probability of modification 
of the given synapse after recording of all templates. 
Then

!'■ = -  \g(2jteD(k)).

Using Stirling expansion for Ckm one may put

where U is the set of template components x/ without 
given xjk. i. e. , this information is equal to /?(x’) where 
x ’ i s  the probability of modification of given synapse 
after the storing of L'-1 templates, where L ' is the total 
number of the templates in X. In the opposite case 
these informations are equal to zero. Since Ay = 0 
with the probability 1 -q where q is the probability of 
presynaptic activation during the recording of given 
template of X, then /(y, xmxh;) are equal to 
( ! q) h ( x'). Therefore

/ ’ = z  W im) ylg  (27T/c( 1 k/m)) J ’ -  //(x) — (I — q) /t(x’ ).

Then expanding the expression between the square 
brackets in the Tailor series in the vicinity of k = A7(A) 
and neglecting the terms of the order (1 / m) one may 
put

1 ¡j e 1
I — mhOa) — ----- ------— D (k) —— 1 g (2 jtx (1 x ) m )2 m x ( I -  y,) 2
Then

Since templates are assumed to be statistically inde­
pendent, then

x = 1 (1 q)' and x’ «  I 1 (1 -  q)L

For L ’t> 1 one may put q< 1, then

x 1 exp ( qIJ), J = q\n( \ /x) ,  (18)

, ■ . ,  , 1 „ D t t )  , t , eD(k)
m l{ ) 2 m x ( 1 - x ) ln 2  2 g x(l - x ) m

(15)
This expression reaches its maximum mh{n) for 
D(k ) m nm( \ ~~x), i. e. , when the states of modificai- 
tion of different synapses are statistically independent 
and the distribution P(k) is binomial. But it has been 
shown (Frolov, Murav’ev, 1987) that i f /, « n, then 
D(k) is of m-th order. Therefore, for mt> 1 two last 
terms in formula (15) may be neglected relative to the 
first one and we may put / = m/?(x). Under these con­
ditions one may neglect the presence of statistical de­
pendence of different synapses of a single neuron to 
evaluate its information capacity. For the binary plas­
ticity K - 2  thus from the formula (3) E=  /?(x). For 
x = 1/2 this expression reaches its maximum which is 
equal to !, Thus the efficiency of the binary Hebbian 
plasticity also in general may reach its maximal feasi­
ble value.
To evaluate the information capacity of a single neu­
ron under the simple decoding, let its different syn­
apses be assumed to be statistically independent at 
once. Then one may put J -  mJ’ where J' is the infor­
mation extracted from a single synapse. To calculate

/. - L f  = in (1/(1 -  x)) ln(l/K). (19)

The same result for efficiency coefficient has been ob­
tained in (Frolov, Murav’ev, 1987, 1988, b) more accu­
rately and in (Dunin-Barkowski, 1978). The maximum 
of the efficiency coefficient is reached at x = 0. 5 and 
amounts In 2 Ss 0,69, i. e. , the information capacity of 
the network with binary plasticity is only by 4 per cent 
less then in the case of gradual plasticity. Such equiv­
alency of gradual and binary plasticity has been noted 
many times on the computer simulations.
Hehh and Albus synapses. For these types of synapses 
on decoding not the vector S but the vector ^is known 
such that = 1 if i], = 1 and the corresponding syn­
apse has non-zero weight. In the opposite case C, — 0, 
then one must use in the formulae (4) and (6) vector £ 
instead of S. Let us ignore as in the previous case the 
presence of statistical dependence between different 
synapses of a given neuron. Then for complex decod­
ing we may put 1= n l ’ where

/ ’= / / ( £ ) -  H^j/Xj)

is the information which can be extracted from one
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component of vector //(£,■) = h{xm/n)  for the Hebb 
synapses and H(£f) = h(( \ - x )  m/«) for the Albus 
ones, x m/ n  and ( l - x )m /n  are the probabilities that 
given input and given output are linked by the syn­
apse with non-zero weight. To calclulate H ( ç / x ] ) let 
us introduce the binary variable e which is equal to 
the modification state of the synapse if given input 
and output neurons are linked. For given set xt the va­
lue of e is known. If e = 0 for the Flebb synapses or 
e=  ! for the Albus ones then ^  = 0 in advance and 
we cannot extract any information from this event. In 
the opposite cases this information is equal to h( m/  
n). Therefore for the Hebb synapses

I' = h{xm/n)  -  x h ( m/ n ) 

and for the Albus ones

/ ’ = //(( 1 — x )m / n ) — ( 1 — x) h(m / n).

The same equations have been obtained more accurat- 
ly in (Frolov, Murav’ev, 1987, 1988, b). At m = n for 
both types of synapse we have

/ '  = h(k ) = h( \ - x), E = h(x),

which coincides with formulae obtained for the case 
when vector /; is compleatly known. This is natural 
since for m = n given neuron is linked with all input 
neurons, i. e. the vector // is known in advance. For 
m < n for the Hebb synapses

E - ( m / n ) x  lg(l/x), E = X lg(l/x) (20)

and for the Albus ones

/ ’ = (m/n  ) ( 1 - x ) lg ( 1 /  ( 1 - x )),
E=  ( l -x ) lg ( l / ( l -K )) .  (2 1 )

The maximum E is reached for x = l/e for the Hebb 
synapses and for x =  1 — 1 /e for the Albus ones and 
amounts (lg e) /e& 0,53.
It is easy to show that expressions (16) and (17) also 
remain true for the Hebb and Albus synapses. Then 
for m < n for the Hebb synapses from the formulae 
(2 0 ) one may put

J' = (m/n) (x  lg( 1 / x ) ( 1 -  q)x  lg( \/x ) ) ^
^ q (In ( 1 /k) + x + 1 )

E = nL ’ J' / m = lg ( 1 / ( 1 x ) ) (In ( I /x ) -  x 1 )
(22)

and for the Albus ones

J' = ( m/n  ) ( ( 1 -  k ) lg ( 1 / ( I x ) ) - 
- ( 1  ~ q){\ -  x ) lg( 1 /( 1 - x )  )) ^

^ ( m / n ) q ( 1 — x ) lg 2, E = ( l “ >t)lg(l/(1 x ) ).

The same expressions were obtained more accuratly 
in (Frolov, Murav'ev, 1987, 1988, b).
It is interesting to note that for the Albus case there 
are no information losses on passing from complex to 
simple decoding. For the Hebb case expression (22) 
reaches its maximum for x — 0. 24 which amounts to 
0 . 26, i. e. on passing from complex to simple decod­
ing the efficiency of the Hebb synapses shows more 
than two fold decrease.

4. Two-layer networks

To illustrate the nature of the information losses pro­
duced by the connection of the individual neurons in­
to the integral network we restrict our analysis by the 
case of fully connected networks with gradual synap­
tic plasticity and normally distributed templates with 
zero means. So the information capacity of the ne­
twork which will be calculated below must be com­
pared with the capacity of a single neuron given by 
formula (12). Moreover we consider only autoassocia- 
tive memory which has been thoroughly investigated 
by other methods (Hopfield, 1982, 1984; Amit et al. , 
1985, 1986, 1987). It permits to compare the results of 
different approaches. The analysis of heteroassocia- 
tive memory one can find in (Frolov, Murav'ev, 1988, 
a)
For convenience’ sake we introduce the matrix M in­
stead of vector of modification state S’. From the for­
mula (3) M = XX1 where X is the matrix which co­
lumns are formed by the templates Xh and X ‘ is the 
matrix transposed to X. Since for the autoassociative 
memory nx ~ n, let us denote the number of neurons 
in the both layers by n. Thus matrix M has n rows and 
L columns. The maximal information which can be 
extracted from the network is given by H(M).  It is 
known (Girko, 1980) that for normally distributed Xk 
and L < n

n 1 )/2 7rM/(2d, )\ M l  e
P(M)  = — -—p ;—7---- ppp-------------------------------

(2 d,) h T « L +  1 - k ) / 2 )
k i n

(23)

M is the symmetric positively determined matrix, 
P(M) = 0 in the opposite case. In the formula (23) d  
is the dispersion of the template components, TrM is 
the trace of matrix M and | M\ is its determinant. Then

H(M) = //, I Ih IE f IE

where

//, -= -  nL lg (2cE ) t lg rr

IE X  l g r ( ( L + l  k)/2)
k I. n
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#3 = (L -  n -  1) M {lg I M |}

Ha = T J  M{TrM} = y  Ln

For calculation of //> let T-function be approximated 
by the formula of Stirling (Korn, Korn, 1968) and 
summation be interchanged by integration. Then

H: ^  [«(2L -  «) ln (L/2)/4 -  

-(L -  «)“ In(1 ~ (n/L))/4 -  

-  /?(L -  «)/2 -  n /4 ] Ig e.

For calculation of H ? it may be noted that
I M \ + | XT | = Vn where V„ is the volume of the paral­
lelepiped formed by n vectors-rows /  (/= 1, n) of the 
matrix M in the L-dimensional space (Gantmakher, 
1966). Let Vj be the volume of the parallelepiped 
formed by the first / vectors of Then
K i + Vi\\ b /■ 11! where , is the component of c, , 
which is orthogonal to the space formed by the the 
first / vectors Since all / ,  are statistically independ­
ent then || , ||2 = J v , where j-j , is the random
veriable which has ^-distribution with L-l degrees of 
freedom. Therefore,

M(ln \M\)  = A/j X  ln || £  ||2 j -  «In + F 

where
L

F= Z  1(1), I ( l )=  M ( ln ^ )2.1 = L - n + 1

It is known (Korn, Korn, 1968) that the variable x  has 
the following density function

f o J . -2V2 ~nl2 i f 7 < 0
K l) \  1________1 if 77 > 0

r(A/2)21/2
that is

/ (/) = ——- ../2 J ln ?; 77(l 2)72 c r?/2 drj =
r ( //2 )2 172 0

= <//(//2) + In 2

where ¡//(x) = £/ln r(x)/dx and integral value is ob­
tained by (Gradstein, Ryzhik, 1963). Changing sum­
mation in formula (23) by integration one may get

± -~(L -  «)n In (Ldx /e) -  n)2 lg(1 ~ n/L),
o

// ( M ) ^ lg ( Inedl  L ) + (Ln/4 -  3n / 8 )t ln e +*T
2

+ - - - 4- - -.lg O ~ n / L ) ,  (25)

/T -  à  L  |g(2ned\ L )  -4

- (3/8 - L/ (An)) lg e —

— ^7 (L//7 I ) lg (1 ~ n / L)  .

(26)

The first term in (25) is similar to the expression (12) 
but is two fold less. This term corressponds to the case 
of statistically independent modification states of dif­
ferent synapses. Two fold decreasing is explained by 
the fact that matrix M is symmetrical relative to the 
main diagonal, therefore, only one half of its element 
may be considered as indepentent in principle. The 
same two fold decreasing of efficience coefficient oc- 
cures evidently for heteroassociative memory when its 
output layer is linked with the input one by backward 
connections forming the so called bidirectional mem­
ory. Such linking inproves the dynamical properties of 
the network but dos not enhances its limit information 
capacity.
The expression between square brackets in (26) ref­
lects the influence of statistical dependence between 
the elements of a half of matrix M under or below the 
main diagonal. Dependence of this expression on (L/  n) 
is shown in Fig. 2. It may be seen that this influ­
ence is relatively large only if L ^  n. As one may ex­
pect, this influence results in a slight decrease of effi­
cience coefficient.
As for the case of a single neuron with gradual plasti­
city maximal information, which can be extracted 
from the network about a single template using any 
routine of simple decoding are given by 
./ - //( /. ) //( /. 1 ) where H(L)  is given by (23) and 
H { L - 1) is the entrophy of matrix M formed by stor­
ing of Z>1 templates. Differentiating equation (25) 
with respect to L one can get

J -  (1/2) in + (L -  «) In (1 -  n/L))  lg e. 

Then for simple decoding

F = «In 2+ 2 ln T(L/2) - 2  In F ( ( L ~  «)/2) s* 
s; n ln (L/e) ~ (L ~  «)ln(l  -  n/L).

Thus

M(ln I M\)  ^  « ln(Ldx ) -  (L -  «) ln (1 -  n/L) -  «,

E' = LJ/n = t’ (1 + ( L / n -  1 ) ln(l -  n/L)).2n

Dependence of £ ’on (L/n)  is shown in Fig. 2. For in­
creasing of L coefficient E ’ tends to 0. 36 what is two­
fold less then its limit value given by formula (14). The
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Fig. 2. Efficience coefficient E' for two-layered network performing 
functions o f autoassociative memory 1 -■ E' for simple decoding; 
2 — AE' for complex decoding.

reason of this difference is evidently in the symmetri- 
city of matrix M. But what is realy interesting is the 
excess of the efficience coefficient of a half of matrix 
M under the efficience coefficient of a single neuron. 
Terefore, unlike complex decoding, for simple decod­
ing the efficience coefficient of the whole network 
may exceed this coefficient for a single neuron. Thus 
information losses caused by two different reasons 
(passing from complex to simple decoding and statis­
tical dependence of modification states of different 
synapses) may be partially compensated.
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Computing-Canada, Vol. 16, 1990, No. 1, pp. 37—38

Key words: neural networks; research and development; 
applications; expert systems; parallel processing; artificial 
intelligence.

Abstract: Neural network technology, with its potential 
for creating a computer capable of simulating the learning 
process, holds great potential for research and development 
over the next decade. Unlike expert systems technology, 
which requires a complete set of facts and rules in order to 
function, neural networks can incorporate fuzzy logic and

deal with ambiguous real world situations. As so-called 
’non-algorithmic function learners’, neural networks require 
no mathematical models. They have such properties as dif­
ferentiation capability, generalization, fault tolerance and 
optimization. Essentially a collection of parallel processor 
with each connection having a weight factor, the neural ne­
twork can process raw information and responses, generat­
ing the ’meanings’ associated with learning. They do not 
replace traditional algorithm-based computing, but apply to 
different types of problems.

Grossberg S.: The Second Anniversary of Neural Networks 
(Editorial)
Neural Networks, Vol. 3, 1990, No. 1, pp. 1
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A MODEL OF A NEURAL NETWORK WITH SELECTIVE 
MEMORIZATION AND CHAOTIC BEHAVIOR

Yu. M. Sandler, V. F. Artyushkin*)

Abstract:
In the present paper a generalization of Hopfield 

model is shown, associated with a break of the specific 
invariance of the equations of motion (2). Unlike the 
Hopfield model, the present model can exhibit selectivi­
ty in the process of learning (that is, “ memorizing” only 
the patterns of certain kind) and has quasi-stochastic at­
tractors.

Unlike the Hopfield model, these networks can ex­
hibit selectivity in the process of learning (that is, 
‘memorizing’ only the certain kinds of patterns) and 
have quasi-stochastic attractors (which means that for 
a certain region of the initial states the asymptotic be­
havior of the network is quasi-chaotic).

1. Introduction
Hopfield has demonstrated [1] that a completely in­

terconnected network of N Mc-Culloch-Pitts neurons, 
in which each neuron has two states (‘on’ and ‘off): 
<p, (t) = ±1, (where i is the number of neuron in the 
network, and t is the time), can be described as an Is- 
ing spin glass with the Hamiltonian

H = N
ij (pi <Pj

N
e( (fy)

Ju =

(1)

where C. are the ‘frozen’ variables which assume thel
values of (± 1). If the equations of motion for <pj(t) are 
chosen in the form

q>i (t + 1) = sign ÙH
S(pi(t)

sign X Jij <p/(0
j

(2)

the vectors C,s = (Xj,.. . C, Q turn out to be the sta­
tionary states of the neural network.

By now the behavior of the Hopfield model of neu­
ral network has been studied sufficiently well. The ne­
tworks with nonlinear dependence of Ju on Cf Cj are
considered in [2]; the neural nets with a more general 
Hamiltonian are studied in [3], etc.

In the present paper we are going to show that there 
exists an interesting generalization [4] of the Hopfield 
model, associated with a break of the specific invar­
iance of the equations of motion (2).

*) Dr. Yu M. Sandler 
Dr. V. F. Artyushkin 
Institute for USA and Canada, 
Academy of Sciences of the USSR
Moscow 121814 USSR 
Khlebny per. 2/3
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2. Description of the Model

The equations (2) are invariant with respect to the 
scale transformation: Jn =*> XJn\ A > 0.

This transformation, however, can lead to nontrivial 
implications, if we treat A_as a function of e. Then, the 
equations of motion for ~q> (t) take the form

(p, ( t + 1) = sign A (e) X Jn(pj{t) .
j

(3)

Such systems can be described by the Hamiltonian
N

H = —y

£ = X Jij (p> (pj\
(4)

which leads to the equations of motion similar to (3). 
On the other hand, the learning rules for this model 
will be different from well known Hebbian learning 
rules. If the system learns the pattern ~Ç* over the 
time At, (1 <s At <s 2y N 2/ F y), the matrix of connec­
tions Jjj would change by the value

c.*j) (5)

where — y is the ‘kinetic coefficient’ in the equation 
of motion for the ‘slow’ (in comparison with cp (/)) 
variables — Jtj and F = ëF/Se. Although the form of 
the matrix Jin corresponding to the new learning rule 
(5), is rather similar to (1):

J' ^ J l  + X  F' c] (6)
s

there is a fundamental difference, since in (6) Jhe 
quantities /¿v depend on the entire set of patterns { ¿X}, 
and on the sequence in which they are presented to 
the system (we shall discuss this circumstance in more 
detail in Sect. 3).

In this paper we also assume that N >  1, and 
P /N  < 1 (P/N  —► 0 when N -* oo).
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Jf ■ T > )  -
3, Learning with Selective Memorization

Let, in the process of learning, the system be pre­
sented with a sequence of patterns Ç{]), Ç(2\  . .. Ç(n) 
(it is not required that all patterns in the sequence be 
different). Unlike [5] we assume that in the_process of 
learning the system is ‘frozen’ in the state Ç{k) during 
the time Atk = At  and its matrix of connections J-Xj is 
changed in accordance with (5). Then we have

where /; = / ( ? " > •  T>) - I
/ N  '

After learning, the neural network will practically 
be able to recognize only the image f (l), since the ba­
sin of attractor C, (2) is exponentially small (because of 
the smallness of ()2) [3]. The generalization of this ex­
ample to the more general case is sufficiently obvious 
and does not lead to new results.

Jij(n) = Jij(0)+ £  v(k ) I I

k = 1

(7)

v(n)  = n f
n 1

I  ^M0)C] + I  VW
i * j  k = 1

* l — * \ 2Ç * Ç n\

N1

In the standard Hopfield model / =  1, if any pat­
tern in the sequence is repeated often enough, its ba­
sin of attraction will eventually take over almost the 
entire space of states, displacing all the other images 
from memory [3].

As seen from (7), in our model this effect can easily 
be avoided, if we choose f ( e )  rapidly tending to zero 
with the increasing e (actually, if /(e)  a  0 for e > e#, 
then /¿max ^  ej.  However, a much more intriguing si­
tuation is when in the process of learning the neural 
network will memorize only those images which are 
close to the present patterns, the reference patterns be­
ing not recognized but rather remaining in the ‘sub­
conscious’.

Let us illustrate this with a simple example. Assume 
that

//■( 0) = -??— — 
N

/ (£ )
(8)

Then in the process of relaxation the neural network 
will be unable to recognize a  (because the weight of 
a  is negative and in the process of relaxation the sys­

tem goes to some state, which is orthogonal to cj). 
Now, let us teach the neural network b_y presenting it 
alternately with two patterns Ç(]) and Ç{2), whereas

1
N ( ö- C(n) « i (2)) ^ I

Then after 2n presentations we get

Ja(2n) X(n)
h N2

HT]
X(n)

CTi (Ti

Nz

X(n)  = X(n -  \) + x  {n -  \)\ x ( o )  ~ ~ k î ] < 1 (9)
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4. Pattern Recognition and Quasi-Stochastic 
Attractors

Let us consider the model (4) without learning, and 
with matrix of connections (6), where we have set 
= 0. From (2), and (4) we get for (pfit) (accurate up to 
o (/VA))

(pi ( / + 1) = sign 

1 w
V S = !

/ (  X  / c  rn] ) /  ß s  nis Ç ]

1
Ç'](pi(t) = -jÿ(  Çs ■ cp); (10) 

f i e)  = F\e f i

Note that, if not specified otherwise, in the future 
we assume that we are dealing with the regular ver­
sion of the asynchronous dynamic behavior [1],

If F(e) is a monotonicly increasing function, then 
sign [/(£)] = 1. Obviously, in this case (10) is equiva­
lent to (2), and the process of pattern recognition (re­
laxation of (p (?) for the model (4) is completely 
equivalent to the appropriate process in the standard 
Hopfield model [1]. The qualitative difference in the 
behavior of these models arises in the case of nonmo­
notonic F(s). Of special interest is the situation when 
F{e) has a maximum at a certain £ = £,„.

Depending on the magnitude_of / / /o r  the given pat­
tern  ̂ /Tn we shall have either e{(p = ¿/) < e,m or b ( (p 
= C, q) > sm. If the init/al state of the system is in the 
basin of attraction of then in the former case the 
neural network will go to/he stationary state ms=q - 
1; m s¥, q =  0; ( tp (oo) =_^ £ q —  that is, the system will 
recognize the pattern (fig. 1(1)). In the opposite 
case the behavior of the neural network will depend 
on the type of the dynamics — whether it is synchro­
nous or asynchronous. (In the former case the behav­
ior of networks with different dynamics is practically 
similar).

In the case of synchronous dynamics at £( i q) > em 
the stationary state mss=q = 1, ms ^ q = 0 goes over to 
the cycle with period 2: mq(t + 2) = —mq(t = 1) = 
mq (?); ms # q = 0 — that is, the system performs jumps 
between the image Ip (?) = C,q and its ‘negative’ 
<P 0  + 1) = — Cq- Both the form of oscillations and 
the period dp not depend on the magnitude of the^dif­
ference [6' (  ^q) -  em] and the distance between <p (0) 
and </q) (of course, provided that C (0) is in the basin 
of attraction of £q).
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Clearly, the behavior of the neural network depends 
strongly on the quantity <5,,. For small 8q > 0 the sys­
tem goes to the state with mq = 1 -  Aq{t)\ ms*<, = 
As ( 0 ; (A(t)  < I). In practice, the neural network 
slightly oscillates near the period of oscillations 
being much larger than N. The magnitude of Aq in­
creases with increasing 8q (whereas Ax+q(t) remains 
small), and the behavior of the neural network be­
comes more and more chaotic. This may be seen both 
directly and by watching the correlation function 
c\(r), which quickly decreases with the increase in r 
(Fig. 2 (III, IV)).

Another peculiarity of the asynchronous dynamics 
is associated with the^fact that for small 8q the devia­
tion of <p (t) from depends on the distance be­
tween (p (0) and Al; d<> = Z I <P< (0) -  | (in the Ham-

i
ming metric [4]). The larger c/,„ the larger \A,). For large 
8q > 1 the behavior of the network does not depend 
on d„. A similar situation is observed also with cq (r) 
and csdpq(f). which are substantially different for 
8q <s 1 and are practically the same for 8q > 1, which 
is in accordance with the fact that for large 8q the be­
havior of the system is close to chaotic.

The illustrations of a transition to chaotic behavior 
are shown on a graphic of the power spectra of the 
overlaps m, (t)\

Fig. 1. Dynamics o f the neural networks for N = 100; t;m = 1; 
0 < t < N2 (in these drawings every step on the time axis is equal to N 
steps in the computing simulation), and for different d„ and c ( £i).

a) -  dtl/2N  = 0,06; ' h) -  d„/2N = 0,13
I -  £ ( C'U = 0,5; II -  e (£>) = 2;
III -  /; ( C") -  20; IV -  £(  £' )  = 200.

The black points designate (p, -  / and space the opposite one.

A much more complicated behavior is exhibited by 
the network with asynchronous dynamics. Fig. 1 — 2 
(II—IV) shows the behavior of the neural network and 
its autocorrelation function

Cs(r) = ( ms(r) ms(0)> = lim -jr £  + ri*; ( l  I)
k—> co k ~ 0

X = ms (k) -  lim -J- X m*(\)
L —*co F  / = o

K I i

!II
i

IIIII1IIIiI

III
IIII

Fig. 2. The correlation funcions o f the overlap; cs ( t) =  ( m s (r) ms (Of 
a) for s = q; h) for s #  q
and 0 < T< N2/ 1 0 ;  N = 100; £m = /.
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Fig. 3 Power spectrum of the neural net in a oscilation state.

P(co)= 1 n[ | J ms (t) sin cot dt \2 + | J m,(t)  cos cot dt \

In Fig. 3 we see a typical spectrum of the oscillation 
behavior with frequencies con = ncoin and in Fig. 4 is 
seen that for large e( £q) > £„, there is a chaotic spec­
trum.

It is important that if the neural network has pat­
terns { £s} with different signs of j5, (for instance, 
<5,i > 0, <5,2 < 0), then the attractor £ sl will be quasi- 
chaotic, whereas the attractor will be a common 
stationary point.

As a matter of fact, for discrete cp,{t) and finite N 
the neural network cannot display genuine chaos. 
This derives from the circumstance that in a system 
with a finite number of discrete states such k and t will 
always be found that cp (/) = </?(/ + kN). Since the 
equation of motion for <p are dynamic, it would fol­
low that it is only the cycles that can exist in the sys­
tem. However, with large N and <5, the values of 
k =  k(5s, N) become very large, and the behavior of 
the system for the times A, < kN becomes very close 
to chaotic. (In systems with continuous variables in 
the chaotic region the exact equality X = X ( t+ T) ¡s 
possible only on the set of measure zero, and there­
fore they can display genuine chaos.)

5. Neural Network at Finite Temperatures

As indicated in the Introduction, the effects of 
noise upon the neurons as the random external input 
can be analyzed in terms of statistical mechanical 
treatment of the system with the Hamiltonian (8). The 
probability of the flip </?,—►-</?, is chosen in the form:

P(<pi-+ ~ <Pd = 11 + exp

and an overlap ms in the equlibrium state is 

m, = sp { ( fs !p) P{y))

In the limit N -*■ oo the ms can be calculated exactly. 
This is done most simply by using the method of mo­
lecular field, which for the systems with the long- 
range interaction yields an exact solution (this can be 
proved by calculating m, by the method of the steepest 
descent).

Then, for Ths we gain:

In order to illustrate the difference between our 
present model and the Hopfield model, let us consider 
a simple case with p = 1 and f (e)  = e. Then the condi­
tion of correspondence (14) will take the form

m = th m3j (15)

Hence it follows that there always is a solution m = 0. 
For T < Tt -  (3/4)4 p ^ 0,315// this solution becomes 
metastable, and another solution appears, m =  m(T)  
^  0, whereas = (3/4)3/2 ^  0,66; and
m(T# -  ST) = + o(<57). This means that the
transition to the ordered phase in our model is the 
phase transition of the first order. Note that the criti­
cal noise intensity <5#, which prevents recognition, is 
much lower than in the Hopfield model:

8*/SHopf= 0,56C

Fig. 4 Power spectrum of the neural net ina quasi-chaotic state.

6 . Conclusion

Selective learning and the creation of quasi-chaotic 
attractors exhibits a clear analogy with the properties 
of real nervous systems. In particular, the process of 
selective learning can be interpreted as extracting 
‘knowledge’ from the subconsciousness (compare 
with ‘process of unlearning’ in [6]). On the other hand, 
the inability of a neural network to recognize images 
for which e( £q) > £m can be interpreted as temporary 
amnesia, since by changing £m these images can be 
made comprehensible again.
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Book review

Biological Complexity and Information
Proceedings of a Conference on the Am algation 
of the Eastern and W estern W ays of Thinking

Fuji-Susono, Japan, April 21-24, 1989
Edited by Hiroshi Shimizu 
World Scientific, 1990

The book contains papers presented at a small conference 
attempting an amalgamation of Eastern with Western think­
ing for a better understanding of information processing. To 
enable an interaction of an Eastern way of thinking based 
more on a parallel and global approach and a Western one 
based more on a serial and analytical approach, scientists as 
well as philosophers from Japan and Europe and America 
were invited to this meeting. The papers are divided into the 
following sections:

Information Dynamics in Biological Systems,
Brain as a Complex System,
Complexity in Information Dynamics,
Toward the Science of Semantic Relations,
Mathematical Expressions of Relations,
Consciousness and Reality.
To illustrate the diversity of topics discussed in the Proceed­
ings, we shall briefly mention some of the presented papers.

J. S. Wicken in „Can Information Be Quantified by Shan­
non Formalism?“ argues against genetic reductionism by 
showing that the information content of an organism cannot 
be quantified by complexity analysis of DNA sequences. He 
stresses that without the special environmental factors that 
have evolved with living systems, those sequences would not 
even exist, DNA codes only for the primary structures of 
proteins, but particularities of coilings, foldings and higher 
level interactions are left to the physico-chemical milieu, 
which plays a role of a reader of this genetic information. 
To quantify the information content of this milieu would re­
quire nothing less than the quantification of the ecological- 
historical context. Organisms’“hardware“ and „software“ 
are indissociahly integrated. Information content belongs ir- 
reducibly to whole systems, not only to their parts. Finally, 
he warns that science, as a myth-maker of our age, must 
carefully examine the context in which selfishly directed 
survival and reproduction get their validation.

R. Suzuki, M. Kawato and Y. Uno, in „A Neural Network 
Model of Human Motor Skill Development“, propose 
a neural network model of motor skill learning, by which 
they attempt an explanation of the intuitive or unconscious 
decision making process. In their model of control of hand 
movement, a control mechanism added to a feedback con­
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trol system is implemented as a three-layered neural ne­
twork. The authors compare computation of a correlation 
between a desired trajectory and a memorized experience to 
an intuition.

E. Koerner, H. M. Gross and I. Tsuda, in „Holonic Pro­
cessing in a Model System of Cortical Processors“, criticize 
homogeneous neural networks models with simple unstruc­
tured nodes. They propose considering as nodes instead of 
single neurons whole minicolumns. They describe a model 
of columnar dynamics with nodes possessing a complex 
structure made of heterogeneous elements with three differ­
ent homogeneous network systems (one of them with locally 
restricted communications, the other two with global con­
nectivity) communicating vertically in each node. K. Kubota 
in „Roles of the Prefrontal Cortex on Behaviors, Simple as 
well as Complex“ presents an experimentally inspired hypo­
thesis that small groups of columns in the prefrontal cortex 
form functional units responsible for different behaviors 
(like delayed response or delayed alternation).

Y. Tanaka in „The Concept of Reality in Quantum Phy­
sics“ proposes a new interpretation of quantum reality as 
a self-projecting organism suggesting the possibility of 
a synthesis of relativity and complementarity.

R, Rosen in „’Hard’ Science and ’Soft’ Science“ argues 
that the duality between „hard“ or quantitative science and 
“soft“ or qualitative science rests on an entirely false pre­
sumption. It is rather a relative question of simplicity versus 
complexity.

Y. Kajikawa in „Folding the Polyhedra“ presents a kind 
of periodic table describing relationships of all the five Plat­
onic polyhedra and thirteen Archimedean semiregular poly­
hedra. He proves the existence of some basic states that 
would have pleased Plato.

Unfortunately, there are a lot of misprints throughout the 
whole book and also the graphical organization is poorly 
done (e.g. titles of paragraphs on the last lines of pages, 
etc.).

Věra Kůrková
Institute of Computer and Information Science, 

Czechoslovak Academy of Sciences, Prague
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DISCUSSION

RECORD
OF THE PANEL DISCUSSION 

ON SYMPOSIUM NEURONET ’90 
HELD IN PRAGUE, 

CZECHOSLOVAKIA 
IN SEPTEMBER 

1990
W. Eldridge*)

The following discussion is a record of the panel 
discussion that took place during the International 
Symposium on Neural Networks and Neural Comput­
ing (Neuronet *90) that was held in Prague, Czechos­
lovakia in September of 1990, The discussion was 
chaired by Dr. Robert Hecht-Nielsen leading the pa­
nel consisting of Dr. Joel Davis from the Office of Na­
val Research in Virginia, Dr. Lee Giles of NEC com­
puters and the University of Maryland, Dr. Jin' Horejs 
of Charles University (Prague), Dr. Vitalij I. Kryukov 
of the Soviet Academy of Science in Pushchino (Mos­
cow Region), Dr. Hiroyuki Mori of Meiji University 
(Kawasaki) and Dr. John G. Taylor of King’s College 
(London).

Chair: The goal of our roundtable discussion we 
are not going to make formal presentations, except if 
someone cares to in answer to a point or to make 
a point, but there is no plan for that. Our goal is to 
discuss the future of this ensemble of activities that 
people call Neural Networks, neural computing, neu­
ral science, and more importantly, I would like to 
keep the discussion focused if I could not on the far 
future, but on the near future. We know there are 
trends currently in this field. We have heard papers re­
lating to many of these trends during the sessions of 
this conference. Let me give you some examples. We 
have for example a great deal of work going on 
around the world in the area of reinforcement learn­
ing — learning where we do not have a specific 
knowledge of what each processing element should be 
doing at each time step but where we have some sort 
of general reinforcement knowledge about the per­
formance of the system, and we have heard very re­
cent interest and interesting research in that area. We 
have also heard a great deal about oscillator networks, 
and this is a subject that is attracting a significant 
amount of attention around the world, both from peo­
ple studying neurobiology where oscillations have 
been known for years but where phase-locking has on­
ly recently become well-established, and also from the 
practical end of the subject, where people are looking 
for ways of building systems that can bind together, at 
least temporarily, the features of a single object. So 
this is another trend.

*) W. Eldridge. Institute of Computer and Information Science, Czechoslovak 
Academy of Sciences, Prague

In the discussions during this week, we have also 
heard a lot about image processing and image analy­
sis. We heard for example talks on multi-resolution 
methods where you have say a phobial type of process 
with a high resolution in the center going to a very low 
resolution at the periphery, and dynamic gaze shifting 
models, and other methods of image analysis, such as 
these R-wave processors that take the object and then 
allow it to go through a temporal transformation until 
it reaches the periphery of image the area where 
a signature is formed — very exciting work, we have 
heard three or four papers on that — so there are 
these near-term trends and 1 would d like to focus the 
discussion on these trends which we know about and 
have identified, but where we do not know exactly 
where they are leading. Other trends include some 
very exciting new work that you’ve heard about re­
garding the use of automata put like a push-down 
stack in conjunction with a neural network that actu­
ally runs the stack and uses it as a resource; this is 
a concept that appears to have enormous promise. So 
we have had papers on these trends and so what 
I would like to do is begin by asking a question and 
maybe each of you people here can make comments 
about this, and that is: „What in your area of work, or 
in your area of interest shall we say, what are the 
areas that you feel are going to make the most prog­
ress in the next two or three years, which of the areas 
that arc attracting the most attention. So in other 
words, 1 would like to start by establishing a sort of 
panorama of areas that are considered exciting, inter­
esting and highly active. So if we can start, we have 
heard discussions on learning theory and back-propa­
gation theory and so forth, and so perhaps you have 
a comment —

Horejs: Well I feell that you seem to be at home 
among us. It is rather difficult for me to start. You 
know in Czechoslovakia the position is somehow dif­
ferent than in the West, so we are now keeping track 
of you, how you are progressing and trying to follow 
you, I do not mean you personally, but the whole 
thing. The theory perhaps will be the first such topic 
in which we might hope that we will be able to contri­
bute something more important than just to see how 
the train or the world is just leaving us far behind. 
Maybe then image processing which we have some ex­
perience in EEG analysis and EKG analysis and so 
on, and then perhaps again other image processing to 
some extent. That is the only thing which I know to 
say on the behalf of the group which you know al­
ready.

Chair: Thank you very much, and perhaps Professor 
Taylor would make some comments. I would like to, 
if possible, focus this more on a world scale in terms 
of trends. What are the areas that are attracting the 
most attention and the most intellectual effort, and 
which of these do you think show the most progress?
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Taylor: Of coure this is a very difficult problem be­
cause I can look at it from an industrial side, from 
what will go into new industrial developments, or 
from the other extreme, what will be important on the 
theory side, 1 want to just tell you what experience 
! had about two weeks ago. The British Association 
for the Advancement of Science held a meeting in 
Swansea and we ran a Neural Nets Day there. That 
day involved an introduction to neural networks, very 
good lectures from various people, then a description 
of the industrial developments that are occurring, in 
particular through the ANNIE project, that’s Artifi­
cial Neural Nets for the Industry in Europe, a very big 
project, an ESPRIT project, and the Pygmalion pro­
ject, which is the development of a software environ­
ment for running all the main neural net algorithms 
we have in a user friendly manner. And these projects,
I think, are very important in what they are aiming 
and what they are achieving to do in industrial pene­
tration. Though the presentation is also from British 
Telecom, which is funding half the neural net research 
in the UK, and then there was a presentation from 
Roger Penrose who’s written a book called The Em­
peror’s New Mind. Some of you may have heard of 
that. Now that book presents the claim that neural 
nets can never think, can never be made to think, and 
indeed it presents a much more general claim that 
anything that is constructed in an algorithmic form 
will never be made to think and there’s some need to 
have quantum mechanics, even quantum gravity, al­
though that is far beyond the reach of any machines 
we can make to control it, so we’ve got really no prob­
lems for a long time. Now, I had to follow that, and it 
seemed to me that that was a challenge that I do see 
beginning to come into neural networks which I think 
is very important in a way of strengthening the base of 
neural networks. We have the fear that what goes up 
may well come down and it did do that in the early re­
volution of neural networks that was started by Ros­
enblatt, by Wilson, by McCullough and Pitts, and it 
went down when Minsky and Papert had opened up 
their big gun; the set crumbled, they’d destroyed it. 
But the situation now I think is becoming different in 
the sense that I see — to answer the question — that 
there are the contexts through into neuro-cognition, 
neuro-philosophy, where it is important to begin to 
understand in what way one could say model the men­
tation processes which occur in the developing infant. 
Now I was shocked to find out, not shocked in a way, 
not badly, but surprisingly, that infants at the age of 
one month have a concept already of an object that 
persists and if they are shown an object that moves ac­
ross the screen and suddenly disappears, that is sur­
prise. What neural net that we build could do that? 
And that is the revelation that takes me into temporal 
processing, temporal sequences. Human neural nets 
can do that automatically, naturally, already at the age 
of one month. Now our artificial neural nets are not 
even at the age of one month as an infant, and I feel 
that what is the work that is presently going on in tem­

poral sequence storage is very important to be able to 
begin to model that sort of activity. Now it relates to 
the work that is coming from computer science in 
grammar generation, which of course if you are think­
ing of being able to store a sequence you can generate 
it and being able to generate these sentences of the 
grammar with a Chomskyan base structure I feel is 
again a challenge we have to face up to, but one in 
which we should try and relate it to what’s going on in 
the infant who at the age of six months again begins 
to recognize sound, syllables, and so forth.

Well that is one area that I feel is going to be very 
important: temporal sequences, and the ability to go 
on and even understand how we may begin to think at 
the age of a month. The other area I would say is im­
portant is stochastic features. We have heard a num­
ber of talks in which stochasticity is being brought in. 
We know from simulated annealing which is a very 
important feature in some of our algorithms. Now, 
real neurons are noisy intrinsically. We might say 
again „What is that noise doing?“ It is not something 
that is necessarily got rid of because it would seem to 
be strange if we have in survival of the fittest an evolu­
tion of something that in fact has to be avoided. So 
I would wonder whether stochasticity is not some­
thing that we should take much more note of, and 
I see that various groups are involved in that. And the 
ability to put noise in intrinsically into systems and 
use it I think will become very important over the next 
few years. Well, that’s a way of getting into hardware, 
1 fee! that's the other area, and there are many groups 
who are working on the hardware aspects. Whoever 
gets a learning chip that can be used in a broad range 
of algorithms I feel will have a device that will allow 
us t© properly take off in neural networks. And the 
message that comes from ANNIE, and 1 think this is 
one that we should all recognize in neural networks, 
the message that they are giving is that in the bench­
marking, neural networks are okay, but in most task 
domains, they are only as good or a little bit better 
than most standard algorithms. Neural nets are not 
going to take off until they can take off from Mars in 
the sense that they are put in hardware devices, into 
a robot that can move around intelligently. And it 
would seem to me then that the ultimate is going to be 
effective hardware devices based on neural net algo­
rithms, but hardware in not great pieces: small chips. 
And I would say that’s the other area I see as the fu­
ture.

Chair: 1 hope that Professor Kryukov can add some 
comments to this subject. What are the trends that you 
see and which of these do you feel are going to be the 
most important in the next few years and which will 
gather the most intellectual activity?

Kryukov: I would like to mention three tendencies at 
present appearing. One is that neural networks are 
clearly becoming stated in general theoretical terms. 
I will give you an example where someone tried to
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formulate back-propogation in terms of differential 
equations. It is a simple method but it helps much to 
unite the main ideas into simple ideas and more than 
that I feel that other branches of neural activity must 
be put into general formulation rather than a good 
mathematical formulation for example, the phase 
transition period that is occurring in mathematical 
proofs and its going at present in neural networks. We 
now see phase transitions not like a catastrophe but as 
a useful property of emerging, spontaneous calcula­
tions, as a source of something appearing unexpected­
ly that cannot be expressed in terms of differential 
equations, because some situations cannot be de­
scribed analytically. Nevertheless, they can be ob­
served to exist and used. So S shall answer that differ­
entia! equations and algorithmic review is only a limit­
ed part of our activity. This very famous situation: we 
calculate, we learn and nevertheless we cannot distin­
guish how this hidden layer works. Integrate some 
task. I think it is great in some sense, because we must 
admit our limited capability to understand in state 
terms ways of what they do by neural elements. But 
we can catch the idea and I think this idea of phase 
transitions, its point is to communicate with many ele­
ments as a single entity. It is very important for com­
plex situations like in thinking, moving, and so on.

The next point is this phase transition as a syn­
chronization problem. Of course it is trivial to think 
that synchronization, and especially local synchroni­
zation, is a particular case of phase transition. More 
interesting is that in behavioral sciences we constantly 
observe many phase transitions, like going to sleep, 
like heavy creating, et al. , and if we will be able to ex­
plain them for example in terms of a good statistical 
theory of phase transitions, I think we can understand 
new data and we can build something interesting for 
technology.

And my last point is about apprehension computa­
tion. Of course it is understandable to select some por­
tion of information from a complex program, is good 
for present needs, computers and so on. But the more 
important part is to understand various dispersed nu­
merous data in various sites, in neurophysiology, psy­
chology, physiology and others. And I believe that 
understanding will come not from a particular piece 
of data, new data, like particular data, but in attempts 
to understand the meaning of all the existing data 
from a rather simple single point of view. Of course it 
is not ultimate understanding but if you give us some­
thing important to believe in, to think in future terms. 
So I think that an attentional neural computer is not 
only a technological problem; it is also a general 
scientific problem to build a model of a rather general 
nature, of course using all our achievements in present 
products. And nevertheless to try to understand this 
numerous data, this unlimited wealth that we have 
acquired.

Chair: Now Doctor Mori comes from a more practi­
cal side of this question, from an industrial applica­

tion point of view, and 1 will be very interested, as 
I am sure you will, in his perspective on what some of 
the major trends, perhaps in the application domain, 
will be.

Mori: My area is really the computation of the control 
data to electric power systems. So far in power system 
operation i expect neural networks in two areas. One 
is real-time computation and a high accuracy. That is 
a clerical central to the system composition. So what 
I extend to neural networks is there are three points. 
One point is a learning procedure or algorithm. Right 
now we have two main-stream algorithms. One is 
a back-propagation task and the other is a conclude 
type. But most of them give us a longer, meaner prob­
lem (laughter), so we’d like a stochastic algorithm, just 
like a future value theory based on a theory of random 
generator. And on the other hand, we would like to 
extend an aproximate method and to define an algo­
rithm. The second point is a power system is one of 
a very complicated system. So again we have a large 
type system. Currently when you talk about neural net 
application in Japan you get people who ask “How 
can we solve a large-scale problem?” It is very import­
ant to solve that problem with some crispening tech­
nique affecting the number against the number. At the 
same time we need a sort of optimal new neural nets. 
Mainly in a power system we are interested to get al­
most the exact data. This means all the data involved, 
and also all the knowledge of the system function. So 
even though we construct a neural network, actually 
we cannot use it immediately because the expert abili­
ty of such a network is at the beginning very weak. My 
last point is in our area, so far the expert system tech­
nique is very popular as an AI tecnology, so in the 
near future we expect integration with the computa­
tional numerical algorithms and expert systems and 
artificial neural networks. That is kind of idea is not 
so popular right now, but I believe in the near future 
we can solve difficult problems with such computa­
tional techniques.

Chair: Next we have the advantage of someone who 
lies sort of midway between industrially oriented re­
search and academic research. Dr. Giles is with NEC 
corporation and runs a research facility. In addition 
he is a professor at the University of Maryland and 
has a very strong interest in all matters, academic and 
practical. What are your views on these things?

Dr. Giles: Well the terrible thing is that 1 think agree 
with what most people here have said, so as a conse­
quence I cannot disagree with you.

Chair: We are not here to disagree.

Dr. Giles: Well 1 always feel that argument is healthy. 
On the other hand, there are some issues that were not 
brought up, and I am not maybe the person who 
should be talking about this, but since no one else has
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brought them up, I will bring them up. I think some of 
the most near-term excitement is going to come from 
engineers who are using neural nets to solve real prob­
lems. Let me give you some examples.

There was recently a workshop at Yale in August 
on neural networks for control of adaptive systems 
and robotics, well attended. Next year, there will be 
a workshop — these are all sponsored by IEEE the 
IEEE is an engineering society which in the United 
States, excuse me, world-wide, has over 210,000 mem­
bers. That is a large society. And you get these people 
interested in neural networks, really nice things hap­
pen, and the control people and professor Guez will 
be here tomorrow to give you a talk on the control 
problems. I think that you will see amazing progress 
made in areas like that. Next year in Princeton, there 
is going to be a workshop on neural networks for sig­
nal processing and pattern recognition. What that 
means is that these people — it is not like we are 
splintering or going our separate ways — it means 
that these individuals are so excited, they only get to­
gether and focus on specific directions and ideas.

So I think that some of the areas that have really 
nice near-term applications, ones you see people talk­
ing about, products coming out, are in speech and sig­
nal and image-processing. Larry Jackel at AT&T, Bell 
Labs, is now trying to sell his chip, in fact successfully 
selling his speech-processing chip within AT&T itself. 
So those to me are very exciting directions, and if you 
want to look at what is coming down the pike, I think 
there are seven papers — we are looking at this area 
ourselves — there have been seven papers in neural 
networks or control of switching systems. Now switch­
ing systems are complex structures. They are very 
complex structures, and there are people who could 
build chips for switching systems using neural nets, 
and I will be glad to share these references with you if 
you’re interested. What I am getting at is that this is 
the same kind of direction that the robotics people are 
going in. They feel that neural networks for control of 
massive systems, and you know, it’s your only hope 
for really solving some of these problems because the 
dynamics . . . Grays are dwarfed by these problems. 
So these are the nice kinds of problems that I think 
one can look at.

There is one other direction which I think you 
might be quite interested in. Some people are using 
neural networks for music composition. There have 
been a couple of papers out on this already and my 
company, NEC, is also developing neural nets for do­
ing these kind of compositions in a multi-media struc­
ture, in a multi-media format. And even though I do 
not think that has as much excitement after talking 
with Dr. Ezhov yesterday, I think there is a lot of pot­
ential there. 1 mean that we should look at neural ne­
tworks in terms of artistic creations. And that’s all 
I want to say.

Chair: Dr. Joel Davis is in a unique position to com­
ment on these issues because of his leading role in de­

veloping this field as director of a large research pro­
gram. Joel, would you share your comments with us 
please?

Davis: I think that most of you are sort of aware of the 
position that I take in my advice with regards to this 
area, that is I am a very strong supporter and defender 
of basic biological and cognitive research, and compu­
tation models that spring from this biological and 
cognitive research, and the idea that one can through 
processes of reverse engineering try and eventually 
build devices that do the kinds of clever things that bi­
ological systems do. I think my predecessors have by 
and large talked about applications, and I would like 
to just briefly address for a second some of the basic 
research issues from that side of the coin. 1 think the 
field as a whole, near-term anyway, is very healthy 
one sees, if you could measure health in a scientific 
discipline by the production or the coming into exis­
tence of new journals, and certainly we see that hap­
pening. If you can measure it by success with in­
creased memberships in societies, and actually the 
proliferation of societies, both in the U. S. and Eu­
rope. You can see that as a good indication of health 
in this field. I wish that - Professor Taylor is too 
modest. He has a very dynamic role in the formation 
of new European — I guess it is not so new now — 
but the major European neural network society, the 
acronym is JENNIE. And in the States anyway, we 
see a number of new courses being funded and new 
programs being funded and coming into existence at 
major technological institutions like Cal Tech and M. 
I. T. that attempt to train a new generation of students 
in these quantitative neural network techniques that 
then can be applied to, among many possibilities, bio­
logical systems. And for those people who are already 
in the field, there is a proliferation of courses, summer 
courses typically, in places like Wood’s Hole, where 
neural biologists tend to congregate in the summer 
(they all go to the shore or they all go to the seacoast, 
oi course), and places like with major meetings, there 
will be all day courses.

So what I am talking about is what I think is scien­
tifically short-term success, and our charge from 
Hecht-Nielsen was short-term, but if you allow me to 
extend that out a little bit more, I think really that this 
discipline, whether they accept it or not, is in some 
sense in a contest for support, at least on the basic re­
search level, with what you might call the AI commu­
nity.

And you can agree with that or disagree with that, 
but scientifically, from a point of view of providing 
support for this research, 1 think that at least from 
a governmental level, where still most of the money 
for basic research comes from, this is still a battle 
that's being fought. How can you win this battle?
I think that you need some short-term successes, the 
kind of successes that Robert Hecht-Nielson and 
small aggressive companies like his have been able to 
provide, and some of the things that hopefully Lee
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Giles and his collaboration with NEC will be able to 
provide. I mean you need directed applications, and 
I think still at this point this field is still regressive, it 
still needs financial support from government agen­
cies. In the short term, 1 think it's problematic. I think 
that in the mid-term and long-term, neural science has 
a lot to offer this field. I think there are new technolo­
gies being developed in the confocal laser scan elec­
tron-microscopy, and other technologies such as vol­
tage sensitive dyes, which allow one to spread a vol­
tage sensitive chemical on the surface of a tissue (eith­
er in vivo or in vitro) and determine microvoltage 
changes in real time in biological neural circuits.

And I think another future is new algorithms for 
multiple micro-electrode recording. I think this is 
a kind of feedback, a very interesting loop from neu­
ral networks to neural biology back to neural ne­
tworks again, because either algorithms being deve­
loped -<*-*- traditionally if you wanted to look at a real 
neural circuit, you probed with a number of micro- 
electrodes simultaneously, and what you tried to do 
was isolate one cell with one micro-electrode. Well 
there are techniques being developed that use mathe­
matical analysis, I think one of the terms is “stereo- 
trode”, that you basically use mathematical tech­
niques for teasing out a number of cells, so instead of 
putting in 22 micro-electrodes to record good record­
ings of 22 different cells, this process becomes much 
more simple.

Let me just briefly end with where I think the appli­
cations for neuroscience are. I think number one is ro­
botics, that is been alluded to. 1 think there are very 
interesting cerebellum models that are being produced 
by people like Jim Houk at Northwestern and others. 
There is a good background of computational early 
network models by David Marr and others in the sys­
tem. Vision, we talked about this before, 1 think the 
stuff of Gray and Singer is very exciting because, as 
I have said in my talk, it is putting the visual system 
back together again, instead of reducing it to finer and 
finer levels of analysis. I think attention’s been 
brought up a number of times. I think one problem is 
when five of us talk about attention at this meeting, 
we mean five different things. That might even be 
a good thing that this panel could discuss, or some 
other panel in the future. How do we define attention, 
and of course how do you implement it. If you could 
put what a cognitive psychologist calls attention into 
a machine, you would have an incredible machine.

One last point to Professor Horejs, and that is — 
you called yourself a pebble between two, Í don’t rem­
ember exactly, a pebble between two hills, but I think 
given the past scientific history of this country, and 
the technological history of this country, maybe the 
short-term looks bleak, but I think the long term is 
probably very exciting. I spent my lunch time going to 
what you call the Mikrobiologický Ústav (the Institute 
of Microbiology of the Czechoslovak Academy of 
Sciences) and I saw a new building that will be partly 
devoted to computer analysis directed at sterology, ac­

cording to Dr. Ivan Krekule. Sterology is a new com­
putational technique for neuroanatomical analysis. 
Certainly, this and other kinds of new, computational 
techniques could be reasonably applied to a neuros­
cientific analysis of neural networks.

Dr. Horejs: Thank you for your encouragement, and 
I would like to add that our effort will be to diminish 
the gap between us and the world solely symbolically, 
(moves chair closer . . laughter . .)

Taylor: Well if I could add an insert, because I did 
not feel that it was necessarily appropriate at this 
point in the proceedings to talk about joint activities 
and joint ventures in neural networks, and I feel that 
they are very important to appreciate the way that the 
network community is becoming more of a network 
than it was before. If we can then get a proper ne­
twork established in Europe, it would be helpful for 
all of us; I had a very enjoyable lunch with Dr. Novak 
and his colleagues, and it was very pleasant to sit and 
look at your beautiful city here, but also to talk about 
possibilities for the future where I see that the main 
problem, which is one that will have to be solved 
I think in the proper way, is the relationship between 
Eastern and Western Europe. In Western Europe, we 
have the EC, we have the ECCU, we have of course 
Margaret Thatcher, but we will not talk about that. .. 
(laughter) We will talk about the problems that we see 
with the way that the EC is becoming more of an 
economic community. It is funding neural networks in 
an ever-increasing amount, and the problem really is 
how this relates to Eastern European activity, which 
in some ways would become more disadvantaged be­
cause it will have lesser funding and therefore there 
will be less going through into the industrial market­
place, and hence the gap will widen. I do not think 
that is right, you do not think that is right, we have to 
make sure it does not happen. So there has to be prop­
er representation to the EC, through this country, in 
Western Europe also, to make sure that there is prop­
er collaboration. And we want, I think, to try and have 
a proper new network community of neural netters 
through the whole of Europe, and this includes not 
only Czechoslovakia, but other East European coun­
tries, Russia and so on.

Now I see that there is the bigger problem of total 
world-wide contacts. I think we are still in our infancy 
as far as that is concerned. But the point is how to 
deal with the AI community; clearly we will gain 
strength by having an international world-wide struc­
ture that is strong. We should know how to do it, and 
in fact we should be able to build a neural network to 
tell us how to do it, and I leave that as an exercise for 
the interest of all participants. Thank you.

Giles: I really do not think we are in conflict directly 
with the AI community. I think they have a lot to of­
fer, and it's true that there’s a lot of discontent among 
Alers in the AI community, and we in neural nets are
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fortunate enough to have gotten some of those people 
who have not been happy with the conceptual and 
scientific directions that AI has taken. But they have 
learned an awful lot in AI; they have learned how 
hard some of their problems are and therefore have 
benefited us immensely, because we know how hard 
those problems are now because they worked on them 
for twenty years and did not solve any of them.

On the other hand, they had some tremendous suc­
cesses in Expert Systems, and it is important to realize 
that. It is important to realize that these rule-based 
systems really are useful models, but they have limita­
tions. If you can make the rule-based systems adap­
tive, where they create their own rules, then that is 
going to be very useful for us. I mean, the machine 
learning community talks about all types of learning, 
learning by memorization, learning with a teacher, 
learning by example, learning by discovery, learning 
by analogy. I mean they have done very useful things 
in terms of exploring the universe of learning and 
knowledge, and I think that we have a lot to be gained 
from what they have done and 1 think we can help 
them a whole lot; I think they can help us too. And 
I think that hybrid systems — you’re not going to find 
neural net stand-alone computation, and I really be­
lieve we are not going to displace traditional methods 
of computation; there are good reasons why tradition­
al methods of computation are so successful and are 
going to continue to grow exponentially over the next 
years. But the nice thing is to live with them and to 
leverage our resources based on what they have done 
and what they have to offer, i, e. neural net chips, neu­
ral net VLSI, etc. So it is fitting into those directions 
which I think will offer tremendous promise for the 
growth of neural networks.

Chair: In very much along the lines that Professor 
Taylor raised, regarding the structure and sort of the 
world structure of this research, particularly the scien­
tific aspects I think the industrial aspects of this re­
search are very likely to split into divisions such as 
individual companies or countries, or whatever, be­
cause at least potentially there is a tremendous econ­
omic impact that this may have, and 1 think those 
benefits will be jealously guarded. But ignoring that, 
and speaking strictly about the scientific research 
aspect, the question I have, and I would like everyone 
to comment on, is how should the meetings in this 
field be structured over the next few years? We have 
gone through a period of chaos. We have now a very 
simple sort of structure where we are starting to see 
these specialized meetings, that Lee mentioned, 
emerge and be very successful, and yet we still have 
large meetings. We now have one IJCNN per year 
and there seem to be also large continental meetings 
like a large European meeting and a large Asian meet­
ing, and do any of you have any comments? Maybe as 
to the current approach? Are there better ways, and in 
that regard, this issue of countries and researchers 
who are not able to participate as much are there

answers? We have spoken of Czechoslovakia, but 
what about Gambia: imagine being a neural net re­
searcher in Gambia or in Paraguay. We feel suddenly 
very lucky. Okay, maybe we each could comment on 
that subject. How the meetings are structured —are 
you happy with the meetings? Do you see the need for 
more meetings, fewer meetings? Plow should these 
things - should the sponsorship change? Or is every­
body pretty content? I have to say personally I'm con­
tent.

Horejs: Lor this one we can end completely exhaust­
ed. As for the next one 1 look forward to it very eager­
ly, but I do not know where and when. 1 have no 
precise idea,

Taylor: Well from the point of view of Western Eu­
rope, we are proposing one main meeting a year. 
There is the ICANN ’90 meeting, we had it in Paris 
a few weeks ago, the next year's will be in Helsinki, it 
will be organized by David Kohonen, the year after 
will be in Brighton in the United Kingdom, on Sep­
tember the 4th through 7th, for those of you interest­
ed. We will be circulating to everybody whose mailing 
address we have, and we are presently developing 
a mailing list, because that is one of. I think, the cru­
cial things in networking: to gel to people the infor­
mation about what the meetings are. There are con­
stantly meetings throughout the world, but many peo­
ple in the field do not know, and do not have access 
necessarily. This is where in Europe we are proposing 
to get a newsletter out that will be able to inform peo­
ple. Now the question is whether to, hopefully with 
our colleagues in Eastern Europe as well, try and de­
velop specialized meetings, because we do know that 
there are specialized areas that are becoming clearer 
know. Lor example, if we look after the mathematical 
theory, we could have a whole meeting on that. I am 
holding a meeting in London on coupled neuron os­
cillators in December. There are all these specialized 
meetings that should be developed with the associated 
areas, which can then report back at the international 
meetings as to how developments are proceeding. 
That, however, leaves a problem paramount: Para­
guay. Leave the problem or gamble it what do we 
do? My good colleague A. Salam at Trieste at the In­
ternational Centre for Theoretical Physics has, 
through UNESCO, developed a network called Cen­
tres or Institutes of Advanced Learning in Third 
World Countries. Now there is a problem still because 
in this form we have already had to face up to the fact, 
mainly that there are too many international confer­
ences already, there are three a year, and if one takes 
account of other ones as well, such as this very good 
one here, one would have even more, one would have 
a half a dozen, even a dozen; and I am not sure 
I quite agree with Bob in the sense that maybe there 
are just becoming too many, but it may be that one 
way of helping the situation has been suggested al­
ready, that w;e run a conference world-wide, using sat-
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ellite links so that somebody can lecture say here, 
through a satellite link that is beamed to an audience 
in Seattle or in New York or well, Gambia if they 
have satellite links as well, I am not sure. But we have 
many problems on that side, but let us assume that 
wherever there are good centres of communication, 
one can have involvement.

There are problems about time zones on that. It 
may have to be in the middle of the night to some au­
diences and how do they stay awake? Well maybe 
enough coffee if you are down in Venezuela, but ! am 
not sure it is quite fair to fill them with caffeine to 
keep them awake. I think we have to face up to that 
problem. Our students are not able necessarily to be 
supported by funds to go to all the international con­
ferences. To send them off to the United States for the 
1SCNN conferences is more difficult. And so it may 
be an effective way to do it if we can have a go at it.
I think it is something for the future we are trying to 
think of. But if anyone has any further suggestions as 
to how to enable us to avoid a plethora of confer­
ences, but yet to let people have access to all the con­
ferences that they feel they should attend to keep 
themselves topped up, I think its very important we 
try and resolve this.

Chair: Now Dr. Kryukov ran a very successful meet­
ing last summer in Moscow, and being from the Soviet 
Union has a unique perspective on scientific commu­
nication. He is one of the globe-trotters of the Soviet 
Union; he has been going to many of the most import­
ant meetings, in fact all of the important meetings for 
the last few years. And so maybe your perspective on 
meetings — are there enough? Are there too many?

Kryukov: I will try to express my personal view. Of 
course my knowledge is limited, but the general feel­
ing is that small highly-professional meetings must be 
the basis of other activities. At the same time, 1 would 
stress that this activity is very good as a phase trans­
ition point, and as you know, at this point every level 
of structure and organization plays a role. You cannot 
reduce the situation to a single or two levels only, be­
cause they are closely interconnected and play a seri­
ous, important role, I will give you an example. Those 
who are skeptical about micro-tubules (and 1 was 
among them) can think that we have the leading role, 
and here is a situation now closely associated with 
phase transition. At this point, you cannot limit your­
self to past activity, to a remembering level. Of course 
in the vicinity of this critical point, you can reduce to 
one level miniscule approximations for example. 
Nevertheless, I believe that some situations will re­
quire simultaneous contemplation, simultaneous anal­
ysis of different levels, and as for meetings, of course 
you need both very great meetings, like in America, 
and, as 1 said, small professional meetings to cooper­
ate with. As for concrete steps, I am not a profession­
al. I do not know what is best to do, but I think we are 
self-organizing, and we do almost natural things.

Chair: Thank you. Now Dr. Mori has, I am sure, an­
other opinion. In Japan, the Japanese Neural Ne­
twork Society has excellent meetings and there are 
a number of other important technical meetings in Ja­
pan that have a strong neural network component. So 
I think your perspective will be most interesting.

Mori: Right now we have three big institutes focused 
on neural networks, so that each institute has a neural 
network briefing every month. So in industry, we are 
always confused [laughter], because even though we 
develop a lot of papers, we do not have time to look 
over everything. So my graduate students always have 
to deal with that. As far as the neural networks papers 
are concerned, we actually don't know which one is 
our best one.

By the way, talking about my area, power, our point 
of view — it is a very conservative area — so we do 
not have any international cooperation. I mean the 
other institutes have a joint contract with Korea, with 
Shanghai. Fortunately the Institute for Electrical 
Engineering Society has an international juried com­
mittee in the power area. I understand the lack of in­
ternational communication. I hope that we shall be­
come a member of an international conference in the 
power area, because graduate students and younger 
professors do not have the opportunity to exchange 
ideas with foreign people.

Chair: Thank you, that is a very interesting point. 
I have had the pleasure of attending a number of neu­
ral network conferences in Japan, and I have two 
problems. One is this problem of sheer volume, the 
number of papers, and trying to figure out which of 
them mean something to me, and the other problem is 
the fact that many of them are in Japanese, which is 
an impossible barrier for me, having no language 
skills. Now, Lee Giles has been involved in probably 
more organizational activities relative to meetings 
than most people have attended meetings, and so he is 
in a unique position to comment on this sort of topic, 
of meetings, their structure and number and so forth.

Giles: I will assume that is a compliment [laughter]. 
I think there are too many meetings, but I think as 
Professor Kryukov said, they are self-regulatory. After 
a while, people stop attending them if there are too 
many. I mean the attendance will go down, so you 
find that the meetings will come and go. Meetings re­
quire people’s efforts, a lot of effort, a lot of time, and 
after a while it will be decided by the group that puts 
them on that it is just not worth doing anymore, and it 
has happened, you know, you can see this in other 
fields from meetings that just sort of died away. How­
ever, it is really hard. I mean I do not have any ideas. 
I would like to have some body, some formal body 
make some decisions on endorsing meetings, whether 
we should have a joint world meeting — I think that 
would be superb, that is a fantastic idea. And at that 
time you have to get an agreement from other large
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meetings that they probably would join together for 
this one meeting every year. It would also be very use­
ful to either expand or condense possibly the proceed­
ings. 1JCNN is known as the phone book meeting, 
because you come away with four phone books, and 
for some people it has even cost them extra on their 
luggage. We need to do something about that. We re­
cently had this discussion with NIPS, the Neuron for 
Information Processing Systems, conference held 
every year in Denver. We receive so many fine papers, 
and we had to reject so many fine papers, just because 
we wanted ONE book. We did not want two, you 
know, we did not want to go to the phone book ap­
proach, but on the other hand, the feeling was that we 
wanted papers of significant length, so if you read 
them you had more than just a glimpse of what some­
one was doing, you really knew what he was doing to 
the point where you might be able to go and duplicate 
the work yourself. So there was an issue of „Should 
we expand from eight to ten pages?“ I think these are 
hard issues.

Let me bring up something just very quickly though 
that I think that people maybe here are not aware of, 
but in the United States and other places, it is becom­
ing a great way to communicate results or get into 
good arguments, and that is called E-mail. In these 
neural network nets, there are two that I am aware of, 
that I participate in, one is Neuron Digest and it 
comes out as a large digest of things maybe once 
a week, and then there is the Connectionist Net, and 
that is supposed to be neatly after you make your 
comment, so you bring a comment in, you say „Well 
I’m . , . “ and you do it sort of politely, „1 don’t agree 
with so-and-so, these are the reasons , . . We should 
look at this, this and this . . . “ and then there is a flur­
ry of responses, and it is fun to read this mail, because 
you get to see what people are really thinking about 
and you find out about the latest trends in research. 
But be careful, you can also get some bum steers too. 
We were led down the path of the contiguity problem 
for about a year because there was a flurry of it on the 
Connectionist Net. As it ends up, the contiguity prob­
lem really is not that interesting. But I think that is 
a good way to have a good world-wide communica­
tion, when everyone can afford to be on the E-mail 
system.

Chair: I think now Dr. Davis has probably funded 
more meetings than most of us have been to, and so 
he also has a unique perspective. I like to think of Joe! 
as a philanthropist and also someone who happens to 
be a very good scientist and a connoisseur of this re­
search, so I think his perspective will be quite unique.

Davis: Well the difficulty in the U. S. is — here I get 
the crumbs from the table . . .

Chair: We will let you go first next time . . .

Davis: The best I can do here is say yes I agree that

the number of meetings with a free market, where 
people are free to go to the meetings, either more or 
less depending on the interest, as well as the need to 
pay lor it, because the bottom line really comes down 
to the fact that they are very expensive to run and they 
involve the marshalling of lots of time, effort and mo­
ney, so if people want them, there will be moremeet- 
ings — if people do not want them, there will be less. 
I think the idea of large international meetings is 
a good idea. I would also like to re-iterate Lee's point 
about E-mail. I know here in Czechoslovakia now you 
certainly have FAX contact with the west. I do not 
think you have E-mail, or at least if you do, at least it 
is not very common, but clearly this is coming and 
clearly the world is going to be linked together with 
E-mail. And it seems to me up until this point a very 
positive development, but just as in the West you 
know, you take a look at your FAX machines and 
what you see is ten pages worth of advertisements 
sometimes. I think it is not long before we are going to 
see the E-mail system cluttered with garbage. But c’est 
la vie, okay?

My last point is that: what is the purpose of a meet­
ing0 I think with modern telecommunications being 
what they are, or what they soon will be, that the tra­
ditional presenting a paper may be a thing of the past. 
Let me just suggest this to you I do not know. 
I think that the rise of the poster session was in some 
sense a response to this traditional paper method, 
which as far as I know has been ever since the Royal 
Academy, a couple of hundred years and maybe be­
fore that. I think, to leave you with an idea, the pri­
mary purpose of a meeting like this, is the interaction 
of individuals outside the meeting hall, over coffee, 
over pivo [Czech for beer] (laughter), whatever it be, 
and that is where we are going to gain most from. We 
can take the program, and we can on the plane home 
or on the train ride home read it at our leisure and 
think about it. But look into your own selves: what 
you are really going to remember here is ideas that 
you discuss for the first time with people that you 
have not seen before. I think that you can do this with 
E-mail probably, though it is not as easy.

Chair: Down at the other end . . .

Taylor: Now, with respect to Paraguay which was 
raised earlier, I am in fact just about to go out there at 
least just before Christmas, to Paraguay. Now you 
might say „What are you doing going out to Para­
guay?“ [laughter] But if anybody has got an answer,
I would be most interested to hear it. [more laughter] 
But seriously, the point is that this is being organized 
by the EEC, it is funded by the EEC at least, it is 
a group of neuro-scientists who are going to go out 
there to try and arrange joint collaborative work in 
neural models. And that seems to be the sort of thing 
that actually has not been raised by anybody, which is 
this, also EEC, idea of cleaning of lavoratories, and 
this is a way of having what you might say are micro-
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meetings. The mini-meetings are the workshops and 
the macro-meetings are the big conferences, but it is 
the micro-meetings that are also as important, and in 
a sense should go on after the macro— and mini­
meetings. And it is that approach that I certainly think 
is developing in the EEC, through the cleaning of la- 
voratories, through funding of travel. The British 
Council, i am proud to say, is doing its little bit for 
this as well. And I feel it is important that we recog­
nize it is true contact between people over a period of 
time, and not just what has happened here and now 
say for a few weeks, that is going to get a lot of devel­
opment done. And I do feel that we should all think 
about that, for what we may get out of it. And you 
have got then to push that yourselves to try and get 
twinning arrangements or whatever with Eastern Eu­
ropean, with EEC, with American, with Japanese 
groups.

Joel Davis: Could I just add a note to that? I agree 
with you, and I think the Japanese are to be congragu- 
lated on the Human Frontiers program which has 
a strong flavor of directed work with laboratories out­
side of Japan.

Chair: Now in this research that we are discussing 
here, neural network research, one of its characteris­
tics is the multidisciplinary flavor. This is not a unique 
subject, but an unusual subject in the broad range of 
disciplines that make up the work in this field. 1 have 
a question in terms of future trends. We have already 
seen large numbers of physicists become interested in 
this field, and more and more neuro-scientists have 
become interested, and some mathematicians — not 
many, but some -and other fields as well. One of my 
questions is: is it maybe time to become proselytizers? 
In other words — John Hopfield was the originator of 
this theme, when he made so many talks — he gave 
talks all over the world to physicists and got many 
people interested in this field. Is it time for us to 
proselytize over the next few years to convince some 
of the top people in related fields to join this field? 
I know Dr. Kryukov has a young mathematician in his 
group who I do not believe started off doing this sort 
of thing, but has been now sort of coopted and drawn 
into this field and will probably make spectacular 
contributions. So I think that a question for everyone 
is: Do we need to be active in our pursuits of the inter­
ests and time and talents of people in related fields, or 
should that be a natural process? Any thoughts on 
that?

Davis: i think it is absolutely necessary, I think you 
brought up a good point. A good example with John 
Hopfield: not only has he gone around the world talk­
ing to physicists, and of course he addresses major 
neuroscience meetings on modelling and neural back- 
resistance, which I know is a very great interest of his. 
But you know John carries it one step further: I have 
to tell you a little story that he told me. That is in July

when he was at the Aspen Institute for Physics in Co­
lorado, who else should be in Colorado at the same 
time but Maggie Thatcher visiting George Bush, and 
Maggie Thatcher I believe is trained as a chemist, and 
she asked what was going on at the Aspen Physics In­
stitute, she had heard about it, and in fact John Hop- 
field and two or three other physicists gave her a brief­
ing on, in John’s case, neural networks. So taking 
what you suggested I think is taking it to the very top. 
[laughter] I do not know if Dr. Kryukov has Chairman 
Gorbachev’s ear, but it can never hurt to go all the 
way to the top.

Lee Giles: Well, I agree with Joel, but there are some 
problems, and let me state the problems as they have 
been told to me, not as I see them. Institutions — 
academic institutions tend to be quite conservative, 
and if a young Ph. D. comes into that institution, at 
least in the United States, he has six or seven years be­
fore he can get tenure. They usually hire only those 
who they think have a good chance of getting tenure. 
And if you are going to get tenure, they want you to 
get tenure in that field, whether it be Computer 
Sciences, Electrical Engineering, whatever. There is 
a feeling in some institutions — in quite a few institu­
tions — that if you have a degree, if your Ph. D ., your 
research, is in neural networks, that is fine, that is 
good, but you also better be that other person, you 
better be that physicist, you better be that computer 
scientist, you better be that electrical engineer, be­
cause if you are not, you are not going to get tenure. 
Because your peers are not going to give you tenure. 
So it is a hard topic in some ways to encourage young 
people to do exclusively neural nets. I mean you have 
got to encourage them to do neural nets, but also be 
whatever field they are in, unless somehow there is go­
ing to be a Department of Neural Networks, or some­
thing like that. And I do not know what to do about 
this, because I have even seen it in my own institute 
where we have been hiring quite a bit and someone 
will come in, like in a field like neural nets or in an­
other field like nonlinear dynamics, and the question 
is „Well, what else are you?“ You know, „Are you 
more than just a neural nets person?“ because neural 
nets is a purely speculative field — it died once, 
maybe it will die again. These are comments you hear 
from conservative, but I think very famous physicists 
and computer scientists and neural scientists, etc. , 
and 1 worry about that.

Chair: Professor Mori, could we have your comments 
on this, in terms of recruiting people from other spe­
cialties. In power engineering — Lee was talking 
about conservative people, very cautious. Power 
engineering is the height of this.

Mori: Fortunately in Japan, the big companies encou­
rage us to do research on neural net applications. For 
example, in Tokyo our company provides us with a re­
search grant for application of neural---------- nets in
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power systems. Talking about the U, S. , the National 
Science Foundation supports several universities, for 
example the University of Washington in Seattle has 
a brief project for signal processing as an application 
of neural networks, and also Carnegie-Mellon has 
a project.
In addition, neural networks’ potential supports a spe­
cial workshop on power systems by the neural nets ap­
plications. Next year a power systems international 
forum on application of neural networks in power sys­
tems will be held in Seattle. And also the Power Re­
search Institute supports a big research grant. ECT 
and a power systems company out of San Diego, Cali­
fornia have a project, etc.

Chair: Okay, good. Now Dr. Kryukov, as I have said, 
has already been very effective in recruiting people 
who work in other fields. The Soviet Union has an 
enormous supply of brilliant scientists and mathemati­
cians, many of whom 1 think could be interested in 
this field. Is this something that you feel should be 
done? Is it going to be done? How do you feel about 
this?

Kryukov: From my talk you can understand that 1 like 
both local and global directions, for example these 
particular meetings and this other type, about the mul­
tidisciplinary state of neural networks. I think that we 
have now a unique example of a special role of neural 
networks, clearly integrating different branches of 
science into maybe a future science, and I will give 
only one example. Just recently, not many years ago, 
psychology and neuro-physiology were quite far apart 
principally. You can check it from Francis Crick’s pa­
per on the brain several years ago. And now there is 
a growth of specialists in both these areas using the 
same model for an explanation of their data in terms 
of each other. Another example is that neural ne­
tworks through the direction of mind, in some sense, 
attracts the attention of good specialists. Of course 
I know that we need their professional skills, their 
personality. We have a good example: we have at 
least two Nobel Laureates here. But the point is that 
neural networks present the unique opportunity to at­
tract the attention of good specialists through not 
bright, but promising results. For example, this using 
of Kolmogorov representation theory I am certain will 
attract the attention of good specialists in analysis and 
other branches. And I could give many other exam­
ples like that, and I believe also in travelling not in ex­
tensive sight of this problem, but in intensive. This 
rare opportunity to propagate and to propose, and 
maybe I exaggerate, that we are starting a new sort of 
science.

Chair: And now Professor Taylor has thoughts on this 
matter, proselyzation.

Taylor: Well I think the problems have been raised al­
ready. I think Giles’ question as to how to support or

advise the young student going into a branch or a sub­
ject which may make it difficult for him to be employ­
ed on a tenure track, and get tenure at a later day is 
a very critical one. I do think that we should address 
ourselves to that. I see that there are actually two dif­
ferent aspects of the way of attacking this problem. 
One is, and 1 am delighted to hear that story, I am ab­
solutely delighted that John Hopfield could get at 
Margeret Thatcher, who really is the government of 
England. We have to persuade her, and I think John 
Hopfield is the ideal person to do it, so . . .

1990 IEEE International Workshop on Cellu­
lar Neural Networks and Their Applications 
CNNA-90, Budapest Dec. 16-19, 1990

The conference on cellular neural networks brought 
many new approaches to cellular automats and neural 
networks as well as to their applications especially in 
picture processing.

The cellular automats and neuron nets are in their 
principles a little contradictory approaches in the 
sense that in cellular automats each active cell com­
municates with tight neighbors only. The two dimen­
sional grid of these cells naturally leads to the applica­
tion in picture processing. On the other side the stand­
ard neural nets are usually fully connected. This way 
connected is Hopfield net and its modifications, per- 
ceptron and many of others, but not all, paradigms of 
the neural nets. It is spoken about large number of 
connections, about massive interconnection. The cel­
lular neural networks comprise local interconnection 
in cellular structures and nonlinearity and adaptivity 
of the neural nets. Standard approaches in picture 
processing proceed from small tight neighborhood of 
each pixel and so they use local matrix of three times 
three points. The ability to classify in neural nets al­
lows to enlarge this matrix to 5 times 5, 7 times 7 or 
larger and thus reach very interesting results. In such 
large matrices it is impossible effectively analyze and 
evaluate all possible template combinations as in the 3 
times 3 matrix. There the notion of nearest template 
and the ability to classify the patterns in classes seem 
to be very useful.

The author of this notice is interested in problem of 
equivalence or similarity in behavior of neural nets 
having Dr. Levendovsky pointed out a procedure for 
possible transformation of the fully interconnected 
net to partially interconnected net.

Rather surprising was the fact, that smaller part of 
the papers dealing with picture processing dealt also 
with learning of the net considered. In most of con­
tributions of this kind the optimal template for given 
task of picture processing is looked for. The ability of 
learning is most fascinating feature of the neural nets.
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This problem was considered in the papers dealing 
with design of cellular neural nets from the theoretical 
(Zou el al. ) as well as from practical realization in 
VLSI technology point of view.

As to technical realizations of the neural nets using 
VLSI technology it was possible to find the analog as 
well as pure digital approaches. The analog realiza­
tions seems to be a little preferred for their larger pot­
ential speed and inherent integration process which 
excludes or diminishes lengthy iterations. It was de­
scribed many realizations based in one or in the other 
principle. It was also described several hardware ac­

celerators and hardware realizations of neural nets.
The conference was held in pleasant environment 

of Budapest. It was good and thoroughly organized 
and it is possible only to thank to initiator and main 
organizer of the conference, Dr. T. Roska from CAI 
of Hungarian Academy of Sciences.

Marcel Jiřina 
Institute o f Computer 
and Information Science 
Prague, Czechoslovakia

Book Review

Spectral Analysis In One or Two Dimensions. 
S. Prasad, R. L. Kashyap (editors),

Proceedings of an Indo-United States Workshop 
New Delhi,India,November 27—-29, 1989

Oxford and IB H  publishing Co. PVT.LTD, New Delhi,
Bombay,

Calcutta 1990.
842 p.

The book contains fifty-one invited papers which were 
presented at an Indo-United States workshop held in New 
Delhi in November 1989. The collection contains contribu­
tions on current and topical problems in the area of the sig­
nal processing. The emphasis has been on capturing the im­
portant developments currently taking place in various fac­
ets of signal processing viz. techniques, algorithms and ar­
chitectures, and their applications such as array processing, 
spectral analysis and image processing.

The contributions were organized into six areas of
themes:

1. Spectral analysis with multiple nodes. Contained 
here is a estimation of the directions of arrival of multiple 
plane waves from data arriving at an array of sensor. It in­
cludes the formulation of the problem in terms of artificial 
neural networks, beam space processing for computational 
efficiency and robustness and others.

2. Nonlinear and adaptive techniques. Contained here 
is a significant review paper of techniques associated with 
the use of higher order statistics in signal processing, the 
other papers deals with topics on adaptive filtering and con­
trol.

3. Multidimensional systems.This consists of papers 
dealing with modeling and algorithmic issues in image pro­
cessing, texture classification, computer vision and hologra­
phic imaging.

4. Spectral estimation and detection. Included are in­
vestigations into high resolution spectral estimation, robust 
estimation of AR parameters, different methods for a detec­

tion of the number of signals in the incoming data and 
others.

5. Parallel processing. This section contains papers 
dealing with parallel implementations of various signal pro­
cessing problems including the solution of the Toeplitz sys­
tem of equations and image computations.

6. Filtering techniques. Presented here are papers deal­
ing with digital filter design problems as well as with some 
issues related to numerical robustness and adaptive filter­
ing.

Some of the papers are very useful topical overviews, 
some contain interesting new and original ideas, the rest are 
of a more specialized nature and are incomprehensible to an 
ordinary reader, but, as they are invited papers, all contain 
an introduction into the problem studied. On the whole it 
can be said that the book supplies a satisfactory notion of 
the present level of the field and research directions. We can 
therefore recommend it to all who take the interest in signal 
processing. The peoples from neural network society will 
find there at least three papers which are strongly related to 
neural networks. These are: On Parallel Sorting Methods by 
S. Rao Kumar, Sensor Array Processing with Artificial Neu­
ral Networks by D. Goryn & M. Kaveh and Deterministic Ne­
tworks for Image Estimation Using a Penalty Function by A. 
Rangarajan, R. Challappa & T, Simchony.

Zdeněk Fabián
Institute of Computer and Information Science, 

Czechoslovak Academy of Sciences, Prague
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W TO  RIAL

A VIEW ON NEURAL NETWORKS 
PARADIGMS DEVELOPMENT

(Pari 2)

./, Hořejš*)

Here we continue in the tutorial paper concerning the 
neural network paradigm, which first part was published 
in the Neural Network World, No. 1, 1991.

3, Adaptation [an exercise in a bit more ab­
stract reasoning!

Now consider what happens if the “neural system” 
of the chicken from the last section makes a mistake, 
wrongly considering a hawk x* as a fanner due to po­
or life experience. If it survives, it will perhaps forever 
remember the difference; in its long term memory 
LTM, which is in NN models represented by synapti- 
cal weights w (as opposed to short term memory STM 
which may be roughly compared to current activities 
of neurons, given by the vector a ), this memory trace 
is causes as an adaptation, a proper move of w. The 
original memory given in Fig. 7a by a dashed separat­
ing line between squares [hawks] and circles [farmers] 
should change so as to place the new terrible experi­
ence x* (full square below the dashed line) in the posi­
tive halfspace of the square dangers. The possible re­
sulting full line is shown in Fig. 7b.

Fig. 7a, b

Rosenblatt invented an algorithm, the so-called per- 
ceptron algorithm, which handled such simple cases. 
The algorithm was able to treat many successive cor­
rections of separating lines (separating hyperplanes) 
as the need arises. It is not quite easy, because if you

*) Prof. Dr. Jiří Hořejš, Department of Computer Science. Charles Universi­
ty, 118 00 Prague 1, Malostranské nám. 25, Czechoslovakia

solve one counter-example like x* , you may generally 
introduce others: the full line in Fig. 7b covers the ter­
rible experience of the chicken, but makes it a bit too 
anxious — even some GOOD messages now cause it 
to get into a panic (cf. the full circle). So the algorithm 
should take into account previous cases as well and 
Rosenblatts’ task — successfully completed — was to 
show that the invented algorithm converges, finally es­
tablishing the separating line so that all squares are in 
one halfspace and all the circles in the other. The idea 
of the algorithm may be roughly (but inadequately) 
explained by the formulas

w’ = w + x*;
w' . x* = (w + x*) . x* = w . x* + x* . x* > 0 (4)

The first formula exemplifies the adaptation law:the 
new (full) separating line specified by the vector w’ af­
ter the occurrence of x* e BAD is simply adapted as 
a sum ot the previous (dashed) line given by wand the 
terrible input x*. [Remember that w’s are normal vec­
tors of corresponding lines]. The problem was that 
w . x* < 0, indicating wrongly that x* 6 GOOD. Af­
ter making the sum w + x* and under the additional 
assumptions that 3 = 0 and all the vectors under con­
sideration are normalized [so that we can sum up ap­
ples and oranges], we get among others x* . x* = 1 
which itself exceeds (or is at least in absolute value 
equal to) w . x*, so the situation changes. The new 
hawk x* is again recognized as a hawk. As already 
mentioned, the proper algorithm of a perceptron 
looks somewhat different; having an iterative charac­
ter, the adaptation law is not so strict as stated in (4), 
but is of the form w’ = w + a . x* for some a, 0<a< 1 
etc.

There is however a good reason why we do not 
dwell on a detailed description and proof of the per­
ceptron algorithm and it is actually the reason which 
was pointed out by Minsky and caused the second 
gap in investigations of NNs. We have already noted 
that a single perceptron has a limited recognition cap­
ability (take any linearly nonseparable subsets, say the 
XOR problem). Multilayered nets do not suffer from 
this deficiency, but in the time of the second NNs gen­
eration, research had not provided us with any algo­
rithm similar to the perceptron algorithm that would 
function for multilayered nets and thus for their auto­
matic adaptation and to learning by examples, which is 
one of the most important feature both of living crea­
tures and NNs today. Moreover, Minsky gave reason­
able argumentation that it would never be possible to 
solve this problem successfully. Fortunately enough, 
he was wrong in this respect and invention of new ad­
aptation algorithms disproved his claim — but this is 
the question of the “third generation” of NNs, to 
which we return later on.

Now we recall our chicken toy to formulate the gen­
eral problem of adaptation and some related con­
cepts. Assume we are given some NN for which it is 
easy to state active dynamic laws (that govern how the
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activation of neurons is spread over the net and of 
which (3) is just an example); for the net it is also easy 
to specify a mapping from the input (say /«-dimen­
sional) space into the output (say «-dimensional) 
space. The net thus implements a mapping (p\ Rm- 
-> R”, where R is the set or suitable subset of real 
numbers. Denoting x an input vector and y an output 
vector, we can write <y?(x) = y. Multilayered nets are 
good examples of structures which can realize such 
mappings in a rather unusual yet useful way.

The mapping (p of course depends on the topology 
(geometry) of the net (number of neurons, layers, way 
they are interconnected, etc). All these things being 
fixed, (p depends heavily on the synaptic weights as­
signed to all existing connections. If w again denotes 
the weight “vector” (which may now have a rather 
strange shape, in multilayered NNs reminiscent rather 
of a sort of matrix), we should take it as a parameter 
of the mapping, <plv. It is not difficult to imagine that 
the number of components of w can highly exceed the 
dimensions of x and y. In a specific yet important net 
of n neurons, where each neuron is interconnected 
with each other, w is usually given by an n x n matrix 
having tr weights [this net does not belong to the class 
of multilayered nets!]. Because of the important role 
of connections, and long term memory (as well as 
other capabilities to be discussed later on) represented 
in these highly interconnected nets by synaptic 
weights w, you can often meet the terms “neuronal” 
and “connectionist” used almost interchangeably.

One way how to use NNs is to use them to imple­
ment a “given” mapping. In mathematics, “given” 
usually means that we are able to specify it analytical­
ly (by a formula) or algorithmically (by a program). It 
is difficult to imagine that our chicken has wired in its 
“brain” a Pascal program to create the lot of recogniz­
ing capabilities necessary for its survival. Even man 
does not solve all his daily life problems strictly logi­
cally on the basis of theories he/she has learned in 
school. A four-year-old child speaks quite well with 
its words and yet it has no idea of grammar and its 
rules. It simply learns to understand and to speak by 
examples, which it observes around it. NNs are trying 
to mimic to some extent this ability. A mapping to be 
implemented is mostly “given” by the examples.

Formally we consider a so-called training set T as 
a set of pairs T=  | [x1, y1], [x:, y2], . . . , [x'\ y''j }, all x'’s 
being m-dimensional vectors from the input space (re­
presenting external stimuli) and y'’s being «-dimen­
sional vectors from the output space (representing 
proper responses) and then try to establish the net Nn. 
[that is weights w], which would implement the map 
<pH so that

(pn (xj) = y1 for all considered j  ( 1 < j  < p) (5)

Fig. 8 depicts abstractly the net Nn.((p„). Taking an 
arbitrary set of initial weights, wO say, it is improbable 
that (5) will be satisfied by (pn<) (w = wO, which is often 
chosen randomly, or from some previous experience

Fig 8
playing a sort of genetic memory or our knowledge of 
the problem to solve, like the assumed symmetry of 
some parts of w). Yet in many cases there is a w* such 
that (pn* satisfies [at least approximately] the equa­
tions (5). The process of (successive) changes 
wO—>wl —> . . . w/. . . —>w* is called adaptation of N. 
Often [but not always] it relies on a supervisor j

(teacher) which signal differences between expected 
values y1 and the actual values y produced by the net 
which is not (yet) well adapted [using e. g. weights wi 
so that (pul(x') = y'i # y1 for some j]. The announced 
differences are then utilized by a given adaptation al­
gorithm, which tries to change weights wi so as to di­
minish these differences. Unlike our simple (and not 
completely discussed) chicken example, most adap­
tive algorithms change the weights in small steps so as 
not to miss a satisfactory w* nor to make the weights 
oscillate too much. It follows that the weights should 
be adapted only slightly and many times; the algo­
rithm of adaptation dynamics then needs also to be 
exposed to the members of the training set many times 
to achieve slight changes of w. Together with the ad­
aptation algorithm we have to present also a training 
strategy which selects and submits training pairs to the 
adaptive algorithm in some order (including perhaps 
random features and a lot of various repetitions).

In a biological system the “teacher” who esta­
blishes the differences is a vague mechanism of pun­
ishment and rewards (y'’s are not stated precisely and 
unambiguously and also the differences between y'’s 
and y ’’’s may be difficult to measure). When the error 
is measured only by some “grades of success”, the 
term ‘‘critic’’ is used instead of “teacher” : teacher is 
supposed to be able to confront every result with 
a correct one, while critic just estimates the general 
performance in (perhaps also general and fuzzy) 
terms.

In technical systems on the other hand there are 
several reasonable formulas which can serve this pur­
pose. Mostly the error function Ew is given by the least 
mean square criterion,

E , - Z H ( r , - y :  9 2
i i
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where the inner sum is taken over all n output neurons 
(1 < i < n) and the outer sum is taken over all train­
ing pairs sets submitted (perhaps repeatedly) during 

i some stage of the adaptation process.
Displaying the value of Ew we can see how the ad­

aptation process behaves. This value should generally 
decrease until EK* is sufficiently small [although rare­
ly zero in the case of input/output vectors composed 
from real numbers; anyway this would mean that the 
net perfectly satisfies (5)]. £„ is of course function of 
many-dimensional w (the dimensionality is usually 
enormous w. r. t. the many neurons used). The graph 
of £H (difficult to depict unless we restrict ourselves to 
dimension 2 or 3) is called the error function landscape, 
often rather bizarre, with many hills, valleys, etc. It is 
purpose of all adaptation algorithms to find a trajecto­
ry over the landscape, which — starting with wO — 
would ultimately fall down into a (possibly stable) 
minimum (hole) of the landscape. In the best case we 
end up with reaching the global minimum of £„*, but 
sometimes we have to be satisfied with a not too high 
local minimum. Not necessarily, but very often, we 
look for a minimum using a sort of gradient method: 
w/ as a point on the landscape rolls down along the 
steepest descent. Fig. 9 shows several trajectories on

a rather wild landscape, depending on the initial posi­
tion of wO. In practice we however usually meet a mil­
der climate.

4. Generalization and knowledge extraction

If we again draw an analogy from the animal world, 
we surely understand the importance of the so called 
test set Q. It is OK when our net has learned well all 
the pairs from the training set T. Given an inquiry 
(question) x', it answers with an output vector near y', 
provided that [x', y'] e T. It proves a good memori­
zing capability, but still may lack the ability to re­
spond reasonably to inputs which have not been seen 
before, say to an input x* e Q [Q is thus formed not 
by pairs, but by singletons from the input space], for 
which there is no j7* such that [x*, y*] e T. In the the 
situation just described the net simply lacks the intelli­
gence necessary to behave well in a not fully under­
stood environment. It is not able to grasp “inner 
laws” hidden in examples from T; it is not able to ge­
neralize its memorized knowledge.

A simple and not too exact example is that of a stu­
dent who carefully memorized some facts according

to given exam questions (first coordinates of pairs 
from T), but still does not understand the theory be­
hind all of them. The function mapping questions 
x7 of the examiner to correct answers Yj (where [xj, yJ] 
6 T) may look like that in Fig. 10a. If the lecturer 
confines himself just to the given list of questions, the 
student can still be graded as excellent. However so­
me additional question x* can cause him troubles. He 
is good on training set T, but poor on test set Q.

On the other hand the student from Fig. 10b has bu­
ilt a sort of comprehension: he generalized somehow 
the knowledge hidden in the examples from T and for­
med an inter- or extrapolation ability from what he le­
arned. It is not possible to say from the figure whether 
his understanding is correct; actually there are many 
possible generalizations from 7’onto Q and a general 
(meta)theory of generalization has not been success­
fully developed yet. Yet in many cases, for many NNs, 
many adaptation algorithms and many applications 
we have good reasons to believe that the NN under 
consideration (together with the adaptation procedu­
re) generalizes correctly, for some examples we are 
even pretty sure about it. Perhaps the reader will be 
convinced as well when these two rather abstract sec­
tions will be made more concrete later on.

The responses to questions from Q also heavily de­
pend on a sort of similarity of 7"and Q. Sometimes we 
extend the set T to make it more close to the environ­
ment represented by Q (supplying correct answers for 
questions which, we admit, were too artificial w.r.t. 
the set T). On the other hand, if the net is exposed too 
many times to some members of 7j it may become (si­
milarly to people) overtrained and its generalization as 
well as other capabilities may decrease.

Fig. JO Students, a, h.

Assume now a suitable net TV with good adaptation 
abilities: say a highly interconnected multilayer NN. By 
the way, highly interconnected means that the net uses 
nontrivially (i. e. with weights not constantly 0) many 
of the possible connections, the amount of which is re­
stricted only by the general topology of the net. Com­
pletely interconnected multilayer nets are discussed in 
the next section.

Now imagine a situation which has indeed been re­
ported. A human-controlled plant works in such
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a way that someone follows a few indicators and his 
job is to set up a few control mechanisms (knobs, ge­
ars etc; details are unimportant). The environment is 
so complicated and implicitly dependent on so many 
factors (like behavior of customers, their mood, mar­
ket tendencies, weather etc. etc) that there is neither 
an analytical nor a stochastical model for relating in­
put information (given by the indicators) to outputs 
(manipulating control devices), although all pertinent 
information can be expressed numerically. Yet the hu­
man performs after thirty years of service his job ex­
cellently. He proves to be able to combine some com­
mon reason with a sort of intuition given by the lifeti­
me experience, that nobody dares to simulate his beha­
vior by classical computers. However he is going to 
retire and the company should look for a replacement. 
They try expert systems, but the attempt fails: the per­
son is not able (although willing) to state exactly the 
rules according to which he behaves.

In this situation a suitable (sufficiently big, highly 
interconnected, etc) net N may save the plant. For so­
me time (perhaps few months), N is exposed to the sa­
me inputs as the man and obtains also copies of his 
reactions. It successively trains on the enormous trai­
ning set of situations. From the beginning it itself be­
haves poorly, but as more training data is processed 
by an efficient adaptation process, its behavior impro­
ves. Finally it is able to compete successfully with the 
man, who was so long its teacher.

In the very many synaptical weights there appeared 
to be incorporated the human knowledge. Nobody is 
able to decipher the strange language of large weight 
matrices, yet the system works. Similarly like in many 
professions, only an apprentice observing his master 
for a long time can replace him. In Fig. 11 we tried to 
illustrate this special sort o man-machine communica­
tion; after some time, the difference 8 between a man 
and machine’s responses diminishes.

o  o  o  o

O  O' O  0  O  ©  ,

Fig. 11 A man and Neural Network.

There are other examples you can read about. Some 
guy trained a robot to play ping-pong. Surely there 
were many technicalities involved and NNs were only 
a part of the whole machine. But the difference bet­
ween direct learning by observation and a rule (algo­
rithm) obeying device can be again demonstrated. 
Suppose that you are a beginner in this game and you 
have a champion to direct you during the play, giving 
you real time instructions on what to do: now move

your right hand forward about four inches, rotating it 
twenty degrees, lowering yourself ten inches at your 
knees,. . . Neither the champion would be able to ex­
press quickly what he almost unconsciously has in his 
head, nor would you be able to follow his instructions. 
None of our many languages is suited in many cir­
cumstances to express our knowledge completely and 
pass it to others; and yet we have it. One of the fasci­
nating (although not yet well mastered) features of 
NNs is that they sometimes enable us to extract 
knowledge which is otherwise unaccessible.

Perhaps the time has come when a remark on the 
style of presentation would fit. As the reader many ti­
mes has noted, we often use metaphors and parables 
within a broad range of fantasy: from a one-neuron 
chicken up to similes between training strategy of NNs 
and students. You can interpret these in a various 
ways. Because we believe that a description of formal 
aspects is to a great extent independent of them, you 
have several possibilities: a rigorous reader can take 
them as bad jokes or skip them. A more adaptive one 
can read them for a sort of amusement or mnemonic 
which helps to remember more formal tricks. Finally 
an enthusiast can believe that to the true (although 
oversimplified) isomorphism between structures in the 
brain and NNs may correspond a slight isomorphism 
of behavior. It depends on the specific topic, which 
interpretation is in a given case most suitable, general­
ly it will be a weighted sum of all, but we leave it to 
the reader to fix the weights.

5. Complete multilayred nets

A complete multilayered net (CMN)  is a multilayered 
net in which for any pair of adjacent layers, every neu­
ron j  in the layer below is connected to every neuron 
/ in the layer above by the connection with a synapti­
cal weight w,j. Let us repeat explicitly that there are no 
interconnections between neurons in the same layer 
and the graph of the net is acyclic: if we conveniently 
order the layers with the input at the bottom of the fi­
gures, there are thus no arrows leading back from hig­
her to lower layers. Therefore the activation is always 
spreading bottom-up and is “feed-forward'1. In the ac­
tivation (working) mode the information flows in one 
direction and reaches the output layer by layer in fini­
te time. Fig. 12a depicts such a net with an /// dimen 
sional input layer, k- and /-dimensional hidden layers 
and an «-dimensional output layer. We call it an m-k- 
l-n net. Additional auxiliary fictive neurons represen­
ting thresholds are shown only if there is some addi­
tional reason for it. Sometimes we use an abbreviated 
graphic picture form Fig. 12b, In many cases we re­
strict ourselves to nets with one ^-dimensional hidden 
layer, an m-k-n net. A net 2-2-1 is shown in Fig. 15, 
where moreover some of the neurons are split to be 
able to speak separately about outputs (after the non­
linearity transfer function S) and net incomes £ cf. 
the last picture of Fig. 4.
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Fig. 12 Multilayred net with rightangles.

We see that in this sort of net there are again many 
interconnections and we can speak about connection 
nist systems. Due to so many interconnections in the 
majority of the nets in use practically, nothing tragic 
as a rule happens if a relatively smal portion of them 
become missing (e. g. by setting some of the wtj con­
stantly to 0 ); such damage occurs often in biological 
organisms. Although they are not able to recover their 
axons, if the damage (caused e. g. by an accident or 
a smal brain stroke — a lesion) is not too far reaching, 
the net is usually able (possibly after some retraining) 
to replace the damaged connections by circumventing 
them — from this fact, shared by artificial NNs as 
well, follows a sort of robustness or graceful degrada­
tion. Compare this property with classical computers 
where a one bit fault, in say a memory check,disables 
the device totally.

There is one more general advantage of highly in­
terconnected nets. No matter that at present we often 
simulate their activity on serial machines, they are in 
fact inherently parallel (and more advanced implemen­
tations take this fact into account). This helps to ex­
plain their efficiency. The real brain works at a fre­
quency of tens to hundreds of hertz, while standard 
silicon technology is about a billion times faster. The 
fact that living organisms are still superior in many 
“intelligent" activities [a two year old child recognizes 
immediately, among dozen of people, its mother, ne­
ver seen before in exactly the same dress, hair, smile, 
etc., a task not yet satisfactorily solved by a supercom­
puter], stems from the great parallelism involved in 
the brain’s work, where almost every neuron reacts at 
every moment of time; nobody is lazy, nobody waits. 
NNS actually also mimic this important feature.

In spite of a high degree of interconnections, infor­
ming a given neuron about the situation in a broad 
area of the net and perhaps the environment, its own 
actions (computations) are local: each neuron decides 
for itself what to do next. In the majority of cases in li­
fe and in most NNs, there is no central planning: eve­
rybody contributes to the system performance just by 
being responsible for himself/herself/itself. The prin­
ciple o f locality precludes e. g. such things like finding 
the neuron with maximal output — other than 
through information delivered directly by the net; no 
algorithm of finding a maximum (an exercise a begin­
ner in programming), is applied (see section 9 for 
a neuronal solution to this task and for further com­
ments).

To get a still more general model of CMNs, we will 
now generalize also the nonlinear transfer function S. 
What we need is first to obtain any real numbers (or 
proper subsets of reals) at the outputs of the neurons 
[specifically on the output of the net] and second, to 
be able to formulate more powerful adaptation algo­
rithms. Actually the example of Fig. 11 and the follo­
wing one implicitly assume these possibilities.

Instead of binary signum 5, the so called hard nonli­
nearity because it is not continuous at point 0 , we will 
often take a sigmoidal transfer function S which is mo- 
notonically increasing and differentiable, the shape of 
sigmoid reminds one of a “flattened S ”, similarly to 
Fig. 13. Such functions have several plausible proper­
ties even from the neurophysiological point of view. 
When the inner activation o f potential C, of a neuron 
(delivered by its net income) is too high, it loses discri­
mination, while near zero, the sigmoid is almost linear, 
more sensitive to little changes of inner activation. 
This may simplify modeling properties like habitu­
ation; on the other hand in formal theory of NNs we 
should be aware that admitting too big weights (and 
thus too big net incomes) can cause problems with ac­
curacy of computation and other problems. Therefore 
we usually try, wherever possible, to keep weights in 
reasonable ranges; one way how to achieve that is to 
perform normalizations (dividing weights and perhaps 
also input and output vectors by their lengths or ta­
king other measures to reduce them systematically] in 
some stages of computations.

Fig. 13 Sigmoidal transfer function.

There are analytical formulae for sigmoidal S, ha­
ving nice mathematical properties. Unless stated 
otherwise we shall use the logistic function

£ = S ( tj) = ( \ / ( \  + exp(-rj)) (7)

for which it holds

d£/d77=<r (1 - £ ) ,  (8)

as can be easily calculated.
Another possible formula is e. g.

S(V) = tanh (77), (9)

which has similar shape. Unlike (7) which ranges bet-
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ween 0 and 1, (9) increases from — 1 to 1 [both limits 
in both cases being reached only asymptotically, 
which has the consequence that the outputs, say in 
clkassification problems, will never be exact].

Between X e [— 1, 1] and x e [0, 1], there are of 
course simple lineasr mappings:

X = 2 x - \ \  x = (X+\ ) / 2  (10)

These allow us to pass also between binary (boolean) 
values {0, 1] to bipartite values {—1, 1], even that in so­
me models there are slight behavioral differences bet­
ween models using the two different codes.

Consider now a complete multilayered net in which 
all layers except the bottom one are split (cf. the last 
drawing of Fig. 4) \ potentials of neurons are denoted 
by Greek script, while the final output signals are de­
noted by Roman letters. In Fig. 14 there is a CMN

y-LAYER

t * LAYER

2 - LAYER 

/-LAYER

x LAYER

m
Ci = X  WUXI> Z i = S ( Q ,  i= 1,2,..

j = o
. k (Ha)

ft]
rl,= X  vuzj, y = , '=  R2, ••

j = o
If we arrange the k . (m + 1) weights

. n (lib)

Wy into a matrix
W and similarly n . ( k +  1) weights Vn into V and

K"*IIH i =[«., •
Z  =  [2 q , Z j ,  . . . , Z k ] ,  1] =  [?/,  , - . • , T]„], Y= [X,. • • , Yn\
(Xq = z0 = — 1 — > w*), Z;o represent thresholds), the 
linear parts of the mappings can be written in a matrix 
form

with one hidden layer m-k-n, where

O ' O r "

g7 “  W • x r, tjr = V ‘ Z T, (12)

where superscripts Tdenote transposes. Note that the 
matrices express cross dependency of all neurons in 
adjacent layers, while the nonlinear parts of the map­
pings S are pointwise.

The whole mapping taking input vectors xto output 
vectors y  is thus decomposed into interleaving linear 
and nonlinear components. The linear parts preserve 
convexity, parallelism in the case that an input pattern 
.V possesses one and another affine properties, while 
the nonlinear parts are able to “distort” it converting 
convex patterns to concave ones, etc.

In Fig. 15 we present an example of how such a suc­
cessive mappings may look like when solving the XOR 
problem: first an input square [in coordinates x,, x2] is 
given. For suitable W it is first transformed into 
a “thin” parallelogram [coordinates £  which is 
next taken by the ^-transformation into a concave 
shape [coordinates z,, z2 \ allowing one to place an ap­
propriate separating line. This line forms the coordi­
nate 7] and the distances of the four given points from 
it give the next picture, which is then somehow smoo­
thed (due to the shape of (7)) to the final representa­
tion on the y output classifying coordinate line, pla­
cing one pair of the points near 0 and the other near 1.

H « - - - - - - - - * - - - H- - - - - - - - - - - - - - —  Y T  Y
0 ¡V A,., 1 1

Fig. 15 A (¡¡stored square.m

While the power of CMN relies on the two sorts of 
mappings, some properties can be deduced from the 
linear parts alone. Thus e. g. it the matrix JYis not full 
rank (the set of equations (1 la) is linearly dependent), 
several vectors of the input space map onto the same
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point in the C layer giving thus the same final output. 
These inputs form a linear hyperspace (whose dimen­
sionality depends on the difference between m and 
the rank of W) and the same “collapse” of the input 
space is observed in all parallel hyperspaces. In Fig, 
16 a four dimensional hypercube together with two lo­
wer layers of a 4 - 2 —-* CMN is shown (cf. Fig. 6). 
The equations (11a) for this case read

0111 1111

Fig. 16 4 — cube.

¿/-dimensional convex subspaces arising by the dissec­
tion of n ¿-dimensional hyperplanes, This formula 
may sometimes help to estimate the number of hidden 
layer neurons (one of the most difficult problems in 
the design of proper CMN realizing the wanted input/ 
output mapping). In the simplest (classifier) task when 
we wish that outputs of all output neurons should 
tend to 0 or 1, all z’s should be as far from the separa­
ting hyperplanes as possible, so that 7/,’s have the lar­
gest possible value [remember the note about the di­
stances in section 2] and are thus far away from the 0 
of nonlinear function S (tending to + infinity); it fol­
lows that in such cases we can consider only full di­
mensional (i, e. /¿-dimensional) convex subspaces and 
set d = k. The formula (14) then simplifies to

¿ 0)
which shows how many different 0/1 (approximately) 
output vector responses we can maximally expect. For 
a net *—2 —4 we get the number 1 1. See Fig. 17 to see 
which separating lines actually arise and to see where 
the z points were placed (in a 2-dimensional plane) 
during some stage of the adaptation process (when we 
keep in mind the restriction to 11 successful possibili­
ties), It is seen that to transfer over the net 4—2—4 all 
of the 16 vertices of a 4-dimensional cube is an impos­
sible task. If you try to realize it, some of the 16 inputs 
necessarily lead to the same output. Moreover, which 
11 out-of 16 will be successfully transmitted over the 
net, also depends on the orientation of the hyperpla­
nes.

Si -V] 4" 2.x2 2 x 3 ,v4 +  19 (13)

cy ~  “ V, -  2 x 2 +  2 x 3 +  x 4 -  $

The equations are clearly dependent. If 5 = 0 ,  the 
boolean vectors [0000], [0110], [1001], [1111], as well as 
all others lying in the same 2-dimensional plane, map 
to the same values of [£, <f2], namely [0, 0], So do the 
inputs from the plane given by [0101], [1110] and 
[1000], all mapped to [1, —1] (see dashed lines). This 
fact may help us to partially explain some properties 
of CMN to be discussed later on.

Some interesting things can be observed by conside­
ring the F-transformation between z-layer and ¿/-layer. 
Each ii specifies by the vector v, = [vfl, vn,. . . v,A] a k- 
dimensional hyperplane in /¿-dimensional space, total­
ly n in number (1 < / < n). Now you can count the 
number of possibilities, where the vector z=[z0, 
z,, . . . zk\, which came out of lower part of the net, is 
placed w. r, t. the convex subspaces dissected by the 
hyperplanes in the following sense. Relying on a theo­
rem from combinatorial geometry (as proved e. g. in 
Edelsbrunner’s monograph) there are (in the general 
case)

dI
( = 0

(14) There is another restriction deducible from simple 
linear algebra. If k < n, so that in (1 lb) you have more
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restrictions (equalities) than variables (coordinates of 
vectors z), the vectors rj are constrained to satisfy so­
me linear dependency (and because S is at least for­
mally one-to-one, output vectors y are not free, but 
constrained in some way as well).

To be consistent with our optimistic assertion from 
section 2 that three layers are able to implement any 
(boolean) function, it should be noted that there we 
were not too much interested in the number of hidden 
neurons. While dimensionality of input and output 
spaces (i. e. m and n) is fixed by the environment and 
the task, the number of hidden neurons has to be est­
ablished and to keep their number optimal is not easy. 
Our final considerations show that if k is “too small“, 
we have to be prepared for some unpleasant restricti­
ve constraints on mappings which we would like to re­
alize by CMNs.

If a CMN has all neurons equipped with the same 
nonlinear function S, it is called homogeneous. But ex­
perience shows that sometimes it is desirable to let the 
different neurons have different transfer functions. 
The simplest and most useful way to construct such 
an inhomogenous net is to introduce a parameter A 
which governs the shape of S. He formula (7) then 
changes to

S\{rt)=  1/(1 + exp( -  A//)) (16)

!n this case A gives the slope of the sigmoid at point 0 
and is sometimes called the gain of S'; in Fig. 13 it is 
A = 1. If we choose A -  0, we get just a straight line 
(constant 0.5), while A — > infinity derives from the Sx 
the hard nonlinearity shown before. Every neuron can 
have its own A and the mapping tp realized by the net 
(cf. Fig. 18) then depends not only on the weights (in­
cluding thresholds), but also on all the X's. Denoting 
their vector A, we can then indicate this dependency 
by writing <p„.A. As we will note in the next section, the 
individual gains can be also adapted automatically, 
sometimes bringing a better or faster solution to the 
adaptation process.

In 1957 Soviet mathematician Kolmogoroff proved 
a theorem that a many-valued continuous function

Fig. 18

can be expressed by suitable sums of single-valued 
functions, answering thus after more than half century 
one of Hilbert s famous problems. As noticed by 
Hecht-Nielsen and others, this theorem established in 
fact the possibility of realizing any continuous 
function <p by a three layered NN. Because, however, 
the theorem was not constructive enough to solve the 
problem, how to do it, it took some time before effi­
cient adaptive algorithms for CMNs were presented; 
nevertheless the theorem (and its various improve­
ments) encouraged the search for better understan­
ding of the whole problem, one result of such a search 
is described in the next section.

To conclude our discussion of complete multilaye­
red nets, enormous variability of the device should be 
emphasized. This consists not only in the huge num­
ber of parameters involved (one will extend their set 
when we shall discuss their adaptation algorithm), but 
mainly in the fact that in represents a complex map­
ping with several stages of linear and nonlinear (al­
though continuous!) functions interleaved.

(Continual ion)
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Abstract: The inverse magnification rule in cortical so- 
matotopy is the experimentally derived inverse relationship 
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size (area of restricted skin surface driving a cortical neu­
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Abstract: Local dynamics in a neural network are de­
scribed by a two-dimensional (backpropagation or Hebbi­
an) map of network activation and coupling strenght. Adia­
batic reduction leads to a nonlinear one-dimensional map ot 
coupling strenght, suggesting the presence of a period-dou­
bling route to chaos. It is shown that smooth variation of 
one of the parameters of the original map-learning rate gives 
rise to period-doubling bifurcations of total coupling 
strenght.

NNW 2/91, 121 —128



Instructions to authors

1. Manuscript
Two copies of the manuscript should he submitted to the Editor-in-chief.

2. Copyright
Original papers (not published or not simultaneously submitted to another journal) will be reviewed. Copyright for published papers 
will be vested in the publisher.

3. Language
Manuscripts must be submitted in English

4. Text
Text (articles, notes, questions or replies) double space on one side of the sheet only, with a margin of at least 5 cm, (2“ ) on the left. 
Any sheet must contain part or all of one article only. Good office duplication copies are acceptable. Titles of chapters and paragraphs 
should appear clearly distinguished from the text.
Complete text records on 5 I 4" floppy discs is prefered.

5. Equations
Mathematical equations inserted in the text must be clearly formulated in such a manner that there can be no possible doubt about mea­
ning of the symbols employed.

6. Figures
The figures, if any, must be clearly numbered and their position in the text marked. They will be drawn in Indian ink on white paper or 
tracing paper, bearing in mind that they will be reduced to a width of either 7,5 or 15 (3 or 6“ ) for printing. After scaling down, the nor­
mal lines ought to have a minimum thickness of 0,1 mm and maximum of 0,3 mm while lines for which emphasis is wanted can reach 
a maximum thickness of 0,5 mm. Labelling of the figures must be easy legible after reduction. It will be as far as possible placed across 
the width of the diagram from left to right. The height of the characters after scaling down must not be less than I mm. Photographs for 
insertion in the text will be well defined and printed on glossy white paper, and will be scaled down for printing to a width of 7,5 to 15 
cm (3 to 6“ ), All markings on photographs are covered by the same recommendations as for figures. It is recommended that authors of 
communications accompany each figure or photograph with a descriptive title giving sufficient information on the content of the pictu­
re.

7. Tables
Tables of characteristics or values inserted in the text or appended to the article must be prepared in a clear manner, preferably as Ca­
mera Ready text. Should a table need several pages these must be kept together by sticking or other appropriate means in such a way as 
to emphasize the unity of the table.

8. Summaries
A summary of 10 to 20 typed lines written by the author in the English will precede and introduce each article.

9. Required information
Provide title, authors, affiliation, data of dispatch and a 100 to 250 word abstract on a separate sheet. Provide a separate sheet with 
exact mailing address for correspondence

10. Reference
References must be listed alphabetically by the surname of the first author. List author(s) (with surname first), title, journal name, volu­
me, year, pages for journal references, and author(s), title, city, publisher, and year for the book references. Examples for article and 
book respectively:
Dawes, R. M. and Corrigan, B.: Linear models in decision making, Psychological Bulletin, Vol. 81, 1974, 95-106.
Brown, R. G.: Statistical Forecasting for Inventory Control, New York: McGraw-Hill, 1959.
All references should be indicated in the manuscript by the author's surname followed by the year of publication (e g., Brown, 1959).

11, Reprints
Each author will receive 25 free reprints of his article.



This is
mm

! chnology
Seagate's line of hard disc 
drives is packed with 
high technology. And 
every one is built to the 
highest quality and 
reliability standards in 
the industry.

And now, Seagate 
drives are available 
locally for all your 
Personal Computer applications

Only Seagate can offer 
you full technical 
support, and a 
one-year warranty. 
through our authorised 
representatives in 
your country.

Complete technical 
and interface details are 
included in the Seagate 
product brochures, which
are free of charge to 
professional PC buyers
and users. Simply use the 
coupon below to request 
your copies.

You'll soon see why Seagate 
has become the world's leading 
independent manufacturer 
of disc drives.

<5P Seagate
Seagate Technology Europe
Seagate House, Fieldhouse Lane, Globe Park, Marlow SL7 1LW Great Britain. 
Tel: 0628 890366 Fax: 0628 890660 Telex: 846218 SEAGAT G

To: Seagate Technology Europe,
Seagate House, Fieldhouse Lane,

Globe Park, Marlow SL7 1LW Great Britain. 
Please send me technical details of Seagate disc dnves
Name________________________________
lob Title 
Organisation 
Address— --------

Country---------------- ——------- — — -------
Type of business-------
Number of employees--- Number of PCs

I use a PC □ I authorise the purchase of PCs 
I am a technical support manager

L


