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Editorial
THE INAUGURATION OF A NEW JOURNAL

We welcome n o l i  to the first issue of Neural Net­
work World, the first scientific journal published in 
Middle and Eastern Europe devoted to the problems 
of neural and mass-parallel computing and informa­
tion systems. The field of neurocomputing, which 
roughly speaking involves a good part of t h i s  area, is 
in recent y e a r s  the one having the steepest increase of 
interest around the world. Though se\eral wellk_

known journals dedicated to neural networks and 
neurocomputers already existed for a few years (and 
sex era 1 more appeared last year), none of  them comes 
from this part of the world, where a considerably large 
interest of many people in this area has a good histo­
ry. Due to the political changes in our country and 
thanks the support of the I I X j. Company.  Czechoslo­
vakia in Prague, we were able to prepare in very short 
time the foundation of the journal, in which we hope 
to create a scientific forum for the free exchange of 
ideas, knowledge and meanings of all the people inter­
ested in neuroscience and in related scientific areas. 
We hope that in addition to the people living in this 
part of the world our colleagues from other geogra­
phical areas will also contribute to Neural Network 
World.

The field of neuroscience is v ery w ide. W e can take 
it as dramatic and dynamic scene, illuminated by 
many beams emitted from different sources, in which 
the knowledge and experience of various areas comes 
together. There is a great varietv of these sources and 
it is hard to identify all of them. However, definitely 
included among we find neurophysiology, mathema­
tics. physics, informatics . cybernetics and electronics 
(see //g. / ). Of course, besides these, there are other

t l e . t r . o i C b

\
\

M ó t h e rr. a t ) - S
Q?

KNIHOVNA AV CR

PE 6738
1 (1991) c . 1-6

I In

sources, such as microbiology, molecular genetics on 
one side, psychology and linguistics on the other side 
and chemistry, communication engineering and va­
rious engineering applications intersecting with the 
beams illuminating the scene, where the authors 
the neuroscientists -have to play much more compli­
cated roles. The beams have different colors, as the 
languages in which the knowledge from individual 
sources is emitted are not identical. There are also not 
all of point nature. Some of them, like the source of 
mathematics e. g, . consist ol several grouped partial 
sources. Some have a diffusion character. Therefore it 
is very difficult to define their intersection on the 
scene and to identify the actual color of the particular 
place, where one or the other actor is acting.

Moreover, the whole scene is not static it 
changes very dynamically. I he sources emit their 
beams of knowledge in different parts of the scene, 
changes their intensity in time (sometime also stop), 
switch position (comes closer together or take dis­
tance) and also the actors do not plav all their roles hv 
slaving in the same place in the scene. I he whole 
scene ol neuroscience can therefore be considered bv 
an independent observer as a ..Big ( linos". I his prob­
ably happens often especially to the observers who are 
close to the bright and dazzling sources of knowledge 
illuminating the scene.

Nevertheless, there are positions from which at 
least some parts of the scene can be observed with sa­
tisfactory probability to rccogni/e the sense of the 
play and to understand their internal relations and 
laws. I personally belong to the people who believe 
that the whole is not a large chaotic motion of the 
Brownian character, but that this a very dramatic and 
complicated development of the deep and old tenden­
cy of the human being to try to understand at least 
a little bit of its own consciousness and nature.

What role can be played here by the scientific jour­
nals specialized more or le ss  to this field'.’

East tail, after a considerably successful Interna­
tional Symposium on Neural Networks and Neuro­
computing NET RON! I No held in Prague and ha­
ving been asked by Vladimir Eichy. the manager of 
the l fXi  Company,  C zechoslovakia and to whom 
I am very gratelul for this idea and support in their 
development,  to prepare the publication of a new 
scientific journal devoted to this field. I needed to trv, 
tit least lor my sell, to answer this question. I came to 
the feeling that for such a dramatic scene like the one 
demonstrated schematically in //g. /. such journals 
can represent the screens or mirrors on which not only 
the interested observers but also the actors can see 
some parts of the drama in more detail and fixed time.

00882/92 0 0 8 8 2 /
s \ \\ I ZV I. I 3 . iovna Kditnriul



Therefore, by the use of such tools, the actors the 
number of w hom is now already high enough — and 
also the observers can take advantage of having more 
information about the activity in the distant parts of  
the scene, which are from their own standpoint not 
quite clearly visible (see Fig. T). Of course, there are

/ / u -■ To the role <>t scientific journals

now at our disposal several kinds of such screens. 
Above all, we have here the group of well — known 
high level scientific journals. By the end of 1990, 
about 6 of  them were known to me. These are: 

Neural Networks, by Pergamon Press 
International Journal of Neural Systems, by World 

Scientific.
IEEE Transactions on Neural Networks, by IEEE, 
Neural Computing, by MIT Press.
Neural Technology Update, bv Elsevier and 
International Journal on Neural Networks.
Of course, this list is not complete and I am also 

sure that in 1991 more such journals will appear. Be­
side in these, the papers concerning neuroscience 
problems appear almost regularly in many other 
scientific journals, like e. g. in the

IEEE Transactions on Systems, Man and Cybernet­
ics,

IEEE Transactions on Acoustics. Speech and Sig­
nal Processing.

IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence

IEEE Transactions on Circuit and Systems.
IEEE Transactions on Information Theory.
IEEE Control System Magazine,
IEEE Circuit and Device Magazine,
IEEE ASSP Magazine.
Proceedings of the IEEE,
Computer,
Spectrum,
Journal on C ognitive Neuroscience,
Journal of New Generation Computer Systems, 
Communications of the ACM.
Biological Cybernetics,
Expert Systems.
Simulation,

The American Physical Society,
Applied Intelligence,
Applied Optics,
Optical Letters,
Physica.
Nature, etc.
All of these periodicals have their own profile and 

contribute to the information of both the actors and 
observers of the neuroscience scene.

Therefore the second question which we need to 
answer is:

"Is there really space (and if there is, where?) for 
a new scientific journal in this area?"

The answer to this question is much more difficult. 
It can be influenced above all by the fact that at pre­
sent, the total publication capacity of all these periodi­
cals is still evidently much smaller than corresponds 
to the quickly increasing number of people active in it 
and hav ing results worth publishing (even if one con­
siders the necessary amount of rejected or long cor­
rected papers). The present-day reality is that many 
authors have to wait many months for publication and 
that some results lose therefore a part of their timeli­
ness. The second aspect influencing the answer comes 
from the regional distribution of the existing journals. 
Up to now all of them are published in the western 
hemisphere. However there are also other parts of the 
world, where the political barriers are fortunately now 
disapearing where there are many people who are in­
terested in this field who can contribute to its develop­
ment.

Being here in Prague in the heart of Europe just be­
tween these two approaching parts of the world, we 
would like to offer to all of these people the better 
possibility to publish their ideas and research results 
and we hope that they will make use of it. We hope al­
so, that such a screening of  activ ity in neuroscience in 
the East will be interesting for the people from the 
West and vice versa, so that our western colleagues 
will present in Neural Network World some of their 
results which should be relayed here quicker.

Summarizing these and some further aspects, we do 
hope that we can find our right place between all the 
other screens and mirrors on the scene.

The scope of Neural Network World.

Nevertheless, the scene of neuroscience is not a flat 
plane. It can be better compared to the relief of the 
landscape with many hills and vallies. There is almost 
impossible to mirror such a complicated object in one 
screen. Therefore one needs in any case to concentrate 
one's interest on some parts of the scene. The question 
is, how to choose them, how to place the cameras and 
how to display the pictures on the screen. Evidently, if 
the focus will be too narrow, the consciousness of the 
context can be lost.

We expect that the reasonable compromise between 
a too wide and a too narrow scope of our Journal will
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he in focusing it on that aspect of neuroscience which 
concerns the processing, saving and transformation of 
information. Therefore we would like to have among 
our contributors especially those authors of papers 
dealing with the

theory of neural networks, natural and artificial.
methods of neurocomputing.
parallel computing methods.
synthesis and construction of neurocomputers.
distributed and parallel computer systems,
mass-parallel information processing,
biophysics and neuroscience.
applications of neurocomputing in science and 

engineering.
Of course, the selection of good papers is not an 

easy task and therefore we hope that the International 
Editorial Board of our Journal,  membership in which 
was accepted by well known people in neuros­
cience, will be a great help to us. We are grateful to 
many of them for their support and encouragement 
without which we would hardly be able to start this 
Journal in such considerably short time.

The structure of Neural Network World.

Like some other scientific journals, the profile of 
which we have known for many years, we would like 
to offer to our readers not only the presentation of in­
teresting and significant papers, improving the general 
knowledge of neuroscience, but also some other use­
ful services. Of course, we shall accept for publication 
in Neural Network World not only the regular Papers 
of the usual size 20 to 35 pages, but also the short con­
tributions of a few pages' size, which we shall present 
as Letters (I know very well from my own long experi­
ence in circuit and systems theory, that quite often 
very important ideas appear just in such short mes­
sages).

Besides this, we shall insert in some of our issues 
a Tutorial section, in which we would like to present 
to the readers (especially to those who are just starting 
their interest in this field) some useful tools, like sur­
vey views, descriptions of algorithms and information 
on computer programs.

The almost standard service in any scientific jour­
nal consists in the presentation of a Literature survey 
and Book reviews. However, we think that especially 
i>' our field of neuroscience this is of special import- 
mi,.  because of its high dynamics. We shall take 
u gre. ! care with it and try to inform the readers about 
all the interesting presentations which come in the 
Scientific Information System of the Institute of Com­
puter and Information Science of the Academy ol 
Sciences in Prague, with which we cooperate in this 
respect.

We also would like to inform the readers about the 
most interesting Coming Events in neuroscience, about 
the New Products appearing in the market and about 
the Neurocomputer Companies, the number of w hich is 
substantially increasing.

Such a structure of our Journal is of course not ti ri­
gid skeleton. It will be modified according to the ex­
perience with respect to the development of the whole 
field of neuroscience.

Appreciation

The creation of a new scientific journal in neuros­
cience is an exciting, but complicated and not easy ac­
tivity.

The undertakings are large and 1 personally feel 
quite strongly the responsibility to do all the necessary 
things well. Therefore I am very indebted to all the 
people who have helped us, above all to the members 
of the International Editorial Board, to the contribu­
tors. to the staff of the IDG Company Czechoslovakia 
in Prague and to all my colleagues working ¿is Asso­
ciate Editors. They have done an excellent work with­
out which we could not succeed to publish the first 
issue of Neural Network World in such tight time 
schedule.

We hope that the result of this hard work, which we 
now are giving into your hands, our respectful reader, 
will be interesting and useful for you and that you will 
appreciate our efforts.

Mirko Novak 
Editor in — Chief

\N W  1/91.1 - 3 Editorial



CAN NEURAL NETWORKS EVER BE MADE TO
THINK?

J.  G .  T a y l o r *)

Abstract:
\n outline is given of neural network modules, and 

the modes of them, such that a machine operating with 
such a structure can he said to be thinking. The ap­
proach is based on a relational theory of meaning, in 
which the relations are determined by developing epis­
odic mentor) in the net. This later form of memory is it­
self based on temporal sequences and their storage, as is 
the possibility of the machine developing “ trains of 
thought".

I. Introduction

I blinking has so lar been regarded in the main as an 
activity arising from processes occurring in living 
things and not in machines. This is in spite of the v igo­
rous attacks on the problem of the nature of thought 
through artificial intelligence, especially its more re­
cent developments in semantics, natural language pro­
cessing. functionalism and conneetionism. Thinking is 
thus still elusive: in this paper we propose to look at it 
I rum a new angle.

One can identify three major modes of thinking, 
concerned with: problem solving (directed), day­
dreaming (autistic) or memorising (mnemonic). It 
might be expected that if a machine can be built to 
I unction on one or other of these modes then it can be 
said to be thinking. A1 programs which prove, sav. 
theorems m geometry are thinking in a directed man­
ner. Artificial neural nets, which can be trained effec­
tively to classify inputs in various ways, and so be said 
to ' remember them", can be claimed to be thinking in 
a mnemonic mode. But each of these sorts of ma­
chines is performing in a very circumscribed manner.
1 he symbol manipulation machine is not yet capable 

of powers ol an ANN as far as associative memorv is 
concerned, nor is an \ N N  capable of inferential pro­
cesses like an A I machine. T here are v arious recent at­
tempts to form hybrids of neural nets with rule-based 
systems so as to extract the benefits of each. Yet even 
these hy brids do not seem to have autistic powers. The 
purpose of this article is to explore the possibility of 
going beyond the separate and rather low level of ac-
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tivities of present-day neural net classifiers and A! 
machines. We wish to consider the possibility- of a ma­
chine which would be said to be thinking at a higher 
level since it involves if" possible all three modes of 
thought simultaneously. The thesis to be argued here 
is that there is a general approach to the construction 
of a thinking machine w hich seems to allow an analy­
sis of thinking at a level comparable to that of hu­
mans. In particular it leads to the notion of "mean­
ing" of states and inputs which gives a new slant to 
that concept f rom a more general point of view.

The problem of meaning of inputs is seen as a cru­
cial one for the AI approach to the modelling of 
thought. Trenchant criticisms of the lack of semantics, 
as compared to syntax, have been made bv various au­
thors. especially Searle [I] in his ‘C hinese room mor­
al. and by Patricia Churchland [2J. These criticisms do 
seem correct, for semantics can never be mven purely 
by the fixed set of rules obeyed bv predicates in a logi­
cal calculus. There is more to meaning than can be de­
termined by logical manipulation, 't el developments 
have occurred in both logical and AI semantics in 
which the meaning of propositions is beginniim to be 
included. The conditions (in model conditional se­
mantics) or the situations (in situational semantics) in 
which the validity of the proposition is to be assessed 
are currently being incorporated f3J. It is fair to sav 
that these approaches still require a great deal of de­
velopment before they can be said to begin to model 
human thought. It is of value to note that there turns 
out to be considerable similarity between these devel­
opments and our approach, which arises from the mo­
delling of neural nets.

One should also take seriouslv the empirical o b s e r ­
vation that the AI program has not been as effective 
as had originally been hoped; for example the move 
from the tilth to the sixth generation computer bv the 
Japanese.

Other approaches to thinking have been tried which 
are related to AI. functionalism is presently attracting 
interest. The proposition that mental states are satis­
factorily characterised by their causal role is illumi­
nating. However it does not seem to pass the acid test 
of leading to a blueprint for constructing a thinking 
machine, fo r  only if one can do that, or indicate how 
it might be achieved in principle, may one's theory be­
gun to be put to any experimental test. It is not at all 
clear to me how to draw a blueprint for a machine op­
erating on functional lines to lead to activity which 
could be termed ’thinking' at a non-trivial level. Io 
appeal to the fact that the brain acts m such a manner
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is to miss the point that a functional model may not be 
sufficient to allow for the construction of a thinking 
machine, and must therefore only be a very simplified 
description.

Similar structures apply to the strict ( onnectionist 
approach.  This uses a semantic network, with nodes 
which are concepts and the strengths of connections 
between them determines the relations between them. 
Such a framework does not allow for any internal 
structure of the concepts which is necessary in order 
for deduct i \e processing to be possible, as pointed out 
by bodor and Pylvshyn [4] and by C lark [5], The lack 
of any inferential structure thus leads to a s\stem 
which is too weak to be able to describe human 
thought.

Neural networks seem, at first glance, to have a bet­
ter chance of succeeding in developing a theory of 
meaning and even of human thought. Neural nets are 
claimed to be simplified models of the brain. \t the 
same time they are much broader than the connection 
ist approach involving onlv semantic nets. However 
the simplicity may be a snare and a delusion; one 
should remember binstein’s dictum "one can make 
a model simple but not too simple". Present progress 
in benchmarking neural nets against traditional ap­
proaches hits shown [6j that neural nets have only 
a slight edge over these latter methods. That is one 
reason why there has been a development towards 
taking a closer look tit the complexity of the brain and 
trying to extract further algorithmic features from it 
than the purely logical or static features chosen so far. 
This is the program of reverse engineering, f o r  exam­
ple, stochastic and temporal features of neurons are 
present!) being investigated [7) for their help in im­
proving the processing power of artificial nets. The 
details of synaptic action [S] (in particular in terms of 
stochastic aspects [9]), of temporal features [10] and of 
structural aspects of single neurons |1 I] are all under 
the microscope in this respect.

These attempts to complexify neural networks, so 
as to have neural models closer to living brains, do 
not address the issue as to what tire the overall pro­
grams being used by the brain. This may be ascribed 
to the fact that we just do not know what algorithms 
are being used by the various areas of the living cor­
tex. Thus even the nature of the processing is uncer­
tain in the different layers of areas 17 and IS of striate 
cortex in the cat or monkey, in spite of the effort spent 
into research on that question [12], The recently dis­
covered cortical oscillations [13] give a hint as to the 
formation and dissolution of temporally synchronised 
neuronal cell assemblies as evoked by suitable exter­
nal stimuli. But the detailed learning processes for 
suitable connectivities and the nature of further infor­
mation processing in associative cortex is still un­
known. Similar ignorance exists about the olfactory 
cortex.

Such a level of ignorance does not mean that we 
should adopt the position of  the ‘boggled sceptic'  of 
Patricia ( hurchland [2], Artificial neural net analvsis
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involves a general attempt to analyse information pro­
cessing by neurons at all levels. Thus it is indeed ap­
propriate to attempt to understand how meaning, or 
other features of human thinking, mav in principle be 
implemented or arise out of neural net activity of 
a broad range of forms. That is the basic problem con­
sidered in this paper. We will use the presently under­
stood neural net properties to try to discover the archi­
tectures and modes of action which could lead to 
"thinking " neural nets. At the same time we will at­
tempt to link up with the strong \ l  approach to 
thought.

How can meaning be incorporated in the activity ol 
a machine? The problem we are faced with is to deter­
mine the minimum structure which must be added to 
the simplest notion of machine in order for it to be 
able to begin to assign meaning to some of its inputs. 
Such meaning will be taken here to be determined by 
means of the following general 'overlap'  thesis:

The meaning of an input is to be determined by the 
decree of overlap such an input h a s  with previous in­
puts. when appropriately stored.

This thesis appears to be both reasonable and mini­
mal. It is reasonable in the sense that any experience 
of an organism which only involves components of 
the input which have never been experienced by that 
organism before may be expected to have no or little 
meaning to that organism. The latter will be at a lo ss  
as to how to respond to such noveltv ; the phrase "lost 
its bearings'  would be appropriate to describe the or­
ganism at that instant.

T he thesis is minimal in that only comparison of in­
coming input with earlier inputs is required, say in 
terms of some distance between states. It is difficult to 
conceive of any simpler measure of meaning which 
can be quantified. Of course the overlap thesis has to 
be fleshed out in some detail in order for its imple­
mentations and implications to be appreciated. That 
will be at tempted in this paper, first at a rather ab­
stract level for automata in the next section, and then 
in more detail for neural network implementation in 
succeeding sections.

2. Machines with Meaning

A machine is taken here to mean an automaton 
/, O, V, 7., d where 1(0)  is the input (output) set. 

S  is the state space and 7., da r e  the next state and out­
put functions

7. : / x S • S 
d : / x S . O

w ith 7. (/. v) being the next state w hen the input is re­
ceived by the machine w hen in state s, and d (/. v) is 
the resulting output.  Such a framework contains neu­
ral network dynamics, although the automata in ques­
tion may need to function in continuous time and 
have an infinity of states and outputs in the realistic

laylor: ( an Neural Networks ever be made to t hink? 5



case of graded neurons. Our discussion in this section 
will not use anv finiteness criterion on anv of the sets
/. a  s.

In order to be able to implement the overlap thesis 
of meaning of  the previous section we have to aug­
ment the automaton A =  < / ,  O, S, A. 8> by what we 
denote a memory function R. This must describe how 
a given state of A can evoke other states from memory 
which are relevant to ‘coloring’ the experience of that 
state. Thus R will be a function from S to the set of 
subsets of S (which we denote by 2 s):

R : S  -  2 s.

For a given state s e S  the set of state in R(s) will 
thus be the memories evoked by ,v. It is more general 
to take R also to depend on the inputs /, and that can 
be included if is so desired; we will not do that expli­
citly here. The automaton < / .  (), S , A, 8, R> will be 
termed a memorising machine. Some simple propert­
ies of R will be discussed later.

The overlap thesis can now be expressed in terms of 
R as follows. The meaning that A assigns to an input 
i and state s', which send the machine into the state 
v = A(/. s'), is determined by the ‘size’ of R(\).  This 
size is an undefined concept, although it can be quan­
tified in terms of a distance function on 5; in that case 
the size of R(s)  would be its diameter. If S  is finite 
then the size of R(s)  could be the number of elements 
it contains. In general if the size of R{s)  is denoted by 
N{R( s)) then the overlap thesis is:

The meaning that A assigns to v is determined by 
N(R(s)) .  (1)

In particular if N(R(s))  — 0 (zero) when R(s)  =  0 
then s can be said to be meaningless, as in the case re­
marked on in the previous section.

The overlap thesis can now be extended to more 
complex situations. In particular a very important 
question is that of the relative meaning of  two suc­
ceeding inputs V|, v: . Suppose each of y,  ,s: are mea­
ningful, what is the degree of relative sense that the 
machine can make of  them? That is relevant, for ex­
ample, to the case when y might be “ this piece of 
cake” and v: is “ is ill” . Then the memories R(s}) 
would involve activities associated with eating, tast­
ing, baking, etc and sensations described by various 
levels of gustatory enjoyment experienced while eat­
ing. The memories of R(s: ) would involve those of 
places such as hospitals, beds, operating theatres and 
of people such as doctors and nurses. In this case 
there is no sense that can be made of the total sen­
tence y y,  this being due to the fact that

R( v,y) = R(y ) f) /?(y) = 0.  (2)

The condition that R(y y )  is null has been noted 
above as corresponding to y y  having no sense to A, so 
the result (2) is consistent with earlier aspects.

More generally we can say that any two succeeding 
states (or inputs, on identifying states and inputs) of 
A make the degree of sense determined by R( y) fj 
R ( s2). Thus by (1) the amount of sense between two 
states is determined by the degree of overlap of their 
meanings. This agree with what is to be expected on 
the grounds of  common sense.

No details have been given so far as to how R is to 
be specified; that will be done in the next section in 
the case of neural net implementation of A. Nor has 
there been any indication of how R will have deve­
loped so as to properly be regarded as a memory in­
corporating past experiences. There will have to be 
adaptive elements in S  which are modified as experi­
ence occurs. Analysis of such plasticity is natural in 
the neural net case. However a minimal requirement 
for R is that if a state .s is experienced at a time /, and 
also at a later time t2 then, if no forgetting occurs,

R( v. /,) — R( v, M (3)

where R( y /) denotes the memory function R at time / 
when in the state v. The strictly increasing relation in 
(3) is that for an efficient memory, and assuming 
A has experienced states other than v between /, and t:. 
The equality relation is for a memory which has not 
been modified by more recent experiences between 
and such as might occur in the case of a patient 
with Korsakoff's syndrome. In such cases there could 
also be states for which R( y /) is a decreasing function 
of L those being for which amnesia has occurred, 
when

R( v. t) 0, t 1  /„

for amnesic states y with being the critical time of 
onset of the disease.

It is possible to extend the above machine to one 
with “ mentation,,,“ (the subscript denoting only the 
mnemonic form) if A and 8 are taken as involving both 
s and R(s):

A, 8 : I x 5 ^  S, O.  (4)

For then the ‘mental content'  of A when in the state 
,v mav be defined as:

M(s) = v U K(-0 •

The set M(s)  will be an important subset for A if A 
and 8 are defined only in terms of M(s ), so

A(M(.s)) € S , 8 ( M ( s )) e O. (5)

Such an epithet “ mental” for M(s)  would seem to 
require strong justification after what was said in the 
introduction. That will only be attempted here as fol­
lows: the mental state of a human at any time is at 
least quite strongly determined by the amount of 
memory evoked by the state she /he  is in at that time.
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Thus when I look at a chair I see it ‘colored' by the 
uses 1 have put it to in the past, by the remembrance 
of the feel of the surface texture, etc. If 1 see an object 
which I have never seen before 1 will have little men­
tal content of that object: such content would be ex­
pected to relate directly to the degree of meaning the 
object (or the state it evokes in me) has for me.

We may, following this approach, define the level 
of consciousness at a time i for the machine A as

C(t) = V< A/( v, / )) . (6)

It is then to be expected that the mental content ( .  
averaged over a day, develops in time as in figure I.

t

Fig. I. The curve o f dependence o f the level ol consciousness Cm on the 
time for a tv/ncal individual. The slow early increase compared to the 
later sharper fall is due la the slower gathering of experience, com­
pared to the more rapids decrease o f consciousness level due to neural

ageing and loss

з. Meaning for Neural Networks.

A neural net is a set of  N nodes which emit activi­
ties sent to the other neurons of the net (including 
themselves). These activities, which are denoted bv
и, (t) for that emitted by the i'th node at the time /. are 
accepted by the other nodes and contribute to their fu­
ture activities. If discrete time steps are used then the 
general dynamical equations for the net will be

u,{i + 1) = ./,'(//(/), u(t  -  I).........1,(1)) (7)

where /, in general depends on the label /, u(t)  is the 
/V-vector of activities of the net at time t and 1,(1) is 
the input onto the /'th neuron at that time. Time de­
lays have been included in the f ,  as have non-linear 
(X-H) units. The connection weights in the general 
structure (7) are proportional to the partial derivatives 
of the / ’s with respect to their variables. The simplest 
case is when

f , ( u( t ) .......) = f ( X  anrw,-(t ~ r )+ I,(l)) (8)
/. r

where f  is a sigmoid type of function; the a,,,, are the 
connection weights for the time delay r. An even sim­
pler case is when

a , = a„ ( r = 0)
= <)(/•# 0) (9)

when the net reduces to that standard in much of 
ANN modelling. The case (8) is important for our fu­
ture discussions since it allows for direct temporal se­
quence storage (TSS) [10]. which we will use as an 
important property of thinking nets.

ANN learning algorithms are based on three levels 
of supervision: none(unsupervised), rewarded by 
a global signal sent to all the neurons for certain of 
their outputs (Reinforcement training), or totallv di­
rected (supervised).

The goal of the latter form of learning is usuallv to 
reduce an error level, this being the difference be­
tween the desired and actual output. The reinforce­
ment training aims to produce an output which maxi­
mises the reward given by the environment to the ma­
chine. Only the unsupervised learning scheme seems 
appropriate to describe the development of the initial 
stages of perceptual processing in humans, as catalo­
gued, for example, in 114], Higher levels of superv ision 
undoubtedly then begin to play a role in the learning 
process, although the learning rules which vertebrate 
living systems use at a cortical level are still being vi­
gorously explored.

The initial problem we face in considering neural 
net implementation of the memorising machine of the 
previous section is that of determining the general 
form the map R is expected to take. To do that we will 
build on the many discussions of the systems ap­
proach to the brain to take as the basic model an in­
itial semantic network fT(to be explained shortly) into 
which the input is fed. after some preprocessing at ret­
inal and striate cortical level. This then feeds activity 
into an “episodic" memory net E (also to be ex­
plained shortly), as shown in figure 2. As in the previ­
ous section we will conflate states and inputs for U. so 
that states tv W may cause or bring about states 
t’(u') E. Feedback could occur from E to IT. but is 
not considered here.

The net R’may be regarded as composed of a set of 
modules. Each of these gives an analysis of its input 
in a semantic manner. Thus the modules close to the 
preprocessed input build up low level categories from 
the input, whilst those which are further remote com­
bine the latter into higher level ones comprising object 
categories. Such categories would be, say, of pho­
nemes, syllables or words as auditory signals, of let­
ters and words as v isual signals, and so on. These con­
cept modules w'ould be heavily interlinked with each 
other by feed-forward and feed-back lines. A simple 
(probably too simple) method to build such semantic 
modules might be by means of Kohonen’s topogra­
phic map [15], although this would have to be ex­
tended to the case of sets of nets interacting with each 
other as the learning proceeds. Such nets have not vet 
been built, but there seems no reason in principle why 
they cannot be so some decades in the future, when 
neural net technology has advanced that far.
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The episodic net ¿'develops at the same time as IT. 
The evidence from the work of Penfield and others 
[16] is that episodic memory is stored as temporal se­
quences. This is made feasible by means ol the hippo­
campus. following 117|. Ihe method used there trains 
a net to store, and so he able to generate, a sequence 
of patterns by requiring the net output is a certain pat­
tern of the sequence given that its input is the succeed­
ing pattern. It was suggested in [17] how the architec­
ture of the hippocampus can be seen as suitable for 
achiew ing such learning, and for subsequently generat­
ing a stored pattern sequence which could then be 
stored more permanently in the infero-temporal cor­
tex. W ith about 5.10' neurons involved in hippocam­
pus and new patterns arriving everx 500 msecs it was 
estimated in 11 7] that the storage capacity would allow 
storage ol pattern sequences for several weeks, a rea­
sonable length of time. The involvement of hippocam­
pus is not shown explicitly in //g. 7 for reasons of 
claritv.

>— w i>
r
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1 here must be a close correlation between the nets 
¿and H during learning. 1 his allows the semantic an­
alysis performed by Ikon inputs to be used both dur­
ing the laying down of new memories and their reacti­
vation in ¿. Such processes have not been achieved 
within ANN simulation, but yet again there apears to 
be no reason in principle why such learning cannot be 
achiewed when the technology has advanced.

It is now necessary to determine a natural form 
which the mapping R of the previous section might 
take. To do that we will use the main feature of ¿ a l ­
ready alluded to above, that an input w may ‘activate' 
a set ol possible memories i’(u)  which are relevant to 
that input. By activate is meant one of several possib­
ilities. The most obvious is that the different but rele­
vant memories to ir (telexant because they involve 
suitably large se t s  of objects initially coded by te and 
common to the input ir) are indeed activated in I. by 
B. Such activation may require a modular construc­
tion ol 1 somewhat similar to It so that numbers of 
activities could be occurring simultaneously. On the 
other hand it could involve a competitive process in 
a single net. where activation of a number of different 
past memories can occur simultaneously in a distri­
buted manner across the net. On the other extreme, 
the activation of these relevant memories in ¿may not 
be simultaneous, but could occur in a serial manner 
by some mechanism. However such a linear search 
would seem to slow down the use of the net ¿. so that 
such a mechanism does not seem to have good surviv­
al value.

I ay lor: ( an Neural Networks ever he made to Think?

It must be added here that the simplest possible 
model has been chosen for memory. Thus effectively 
there is a short term store W and a long term one, E. 
Hie distinctions between, for example, implicit and 
explicit memory are not being made here, but are fea­
tures to be considered on more detailed analvsis of 
out present model.

To return to R, we now consider how activation, of 
whatever form, of an episodic memory in ¿by a state 
ic of H might be used by the system. One way to 
achieve that is to let the outputs of It anil ¿(activated 
by u ) be fed into some comparator or decision net I), 
also shown in figure 2. The decision net /) may act, for 
example, in a competitive manner, so that it assesses 
the closeness of activated memories to their activating 
inputs, and gives an output determined not only by ic 
but also by memories close enough to tv. l or it is these 
latter which should be relevant to the determination 
of responses to the input, as well as the satisfaction of 
goals (which have been left out of direct consideration 
here, again for simplicity ).

It is now possible to define R in terms of the out­
puts if and c(if) of Hand ¿respectively to be of the 
form:

R( if) = {(’( u ) : <-( i f ) : — ifj (10)

where : denotes close to with respect to some dis­
tance function on the outputs of the nets B and ¿, re­
garded as inputs into a set of neurons in the decision 
net I), ihe relevant distance function may naturallv be 
in terms ol the activity arriving on the neurons of /). 
since that activity is what determines the manner in 
which /) notices B and ¿. Unis if .4,(i\ i f ) is the activi­
ty ol the / neuron ol A) due to the inputs if and et rom 
the nets Band ¿'respectively, then c: = if may betak­
en as the condition

max, j A ( c. 0) -  .4,(0, i f ) | < /: (II)

for some suitably chosen Since the response of the 
neuron is assumed to depend only on its activity, then 
the inputs c and if w ill be indistinguishable if /; is suit­
ably small.

K defined as above corresponds to the condition 
that eand if look effectively the same to D. If e and if 
are too different then it is not expected that c should 
be involved in the mental state brought about by if. 
That is exactly what is achieved by the above con­
struction. It is also possible to extend the above defin­
ition by allowing a range of values of /: to be used in 
(II).  these v alues being under the control of other nets 
(by change of thresholds of the neurons in the net /)). 
The construction of the previous section may now be 
used to define the 'mental' state of the system, the de­
gree of meaning any input has to H', and the degree of  
relative meaning between two succeeding inputs 
(states) if,, if . The net of figure 2 is thus a memorising 
machine and has the power to mentatem. But it does 
not yet have the power to think.
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4. Towards Thinking Neural Networks.

It is now necessary to consider in what manner we 
might be able to extend the construction of a machine 
with memory of section 2, implemented in neural net 
technology as in section 3, to that of a thinking ma­
chine. To achieve that end we must, according to the 
discussion in the introduction, incorporate the abili­
ties of deductive and autistic thought. We will consid­
er the former of these powers in this section and the 
latter in the following one.

The problem we are faced with here is to implement 
the “ strong AI" approach to human thinking in neural 
net form. In effect we must understand how neural net 
architecture could be constructed so as to directly 
implement a suitable set of programmes of AI form. It 
is not that we wish to form nets of  hybrid form, w hich 
partly incorporate distributed knowledge, as in the 
neural net dynamics of equation (8) and otherwise 
acts as an inference machine hv running in terms of 
a programme in a suitable language using the outputs 
of  the net as variables. What is being proposed here is 
much more drastic: we wish to construct nets which 
can also implement such AI programmes as a natural 
part of their activity qua neural networks, not qua 
serial computing machines. This can be properly 
called the “ strong neural networks" approach to the 
problem of human thought.

Let us start by considering the essential elements of 
a formal language or an AI programme. This involves 
a set of  symbols (the set of  terminals in a formal lan­
guage). a set of axioms for these symbols and the rules 
for the combination of the symbols to generate f urther 
collections of  symbols which are to be regarded as v al­
id theorems for the symbols (the productions or the 
derivation rules). Thus we might consider the symbols 
to be the integers, the axioms to he the Peano axioms 
and the productions as the associative, distributive 
and commutative rules of arithmetic.

One of the important structural features of a formal 
language, say if it is regular or context-free, is that it 
may be defined as a non-deterministic automaton 
(NDA) or a non-deterministic pushdown automaton 
(NPDA) respectively. Thus we may be able to regard 
our problem as solved if we can implement either an 
NDA or an NPDA by means of  the activity of a neu­
ral net. More generally we should consider how to 
implement a general Turing machine by a neural ne­
twork. Let us consider solely here an NDA for regular 
grammars.

The finite-state non-deterministic automaton that 
can accept a regular language L(G)  of  a regular 
phrase-structure grammar (N, T, P, S ) is specified as 
follows. The system ( N, T, P, S)  has non-terminals N, 
terminals 72 productions P and starting state S. The 
corresponding NDA has state space NU{*} (where {*} 
are the halting or final states), input alphabet 72 state 
transition function t determined by the productions P 
in that, for A e N, a e T  requires that t(A, a)  con­
tains*, and if A - > a B  is in P then r {A, a) contains B.

Thus the dillerences between the automata < / .  O. S, 
a , fi> considered earlier and the NDA (NU{*}. T. t. 
.S’.|*}) is the neglect of <) an dD  and the emphasis on 
the existence of  the start state .Sand the final states *.

It is well known that any automaton of the form 
< I, O, S. a , <i> may he explicitly implemented by 
means of a neural net. Can the same be achieved for 
NDAs of  the above form? There seems to be no diffi­
culty with the start state .V; the following net activity 
from that initial state is to be regarded as accepting 
the sentences of the regular language I \G) .  Activity 
derived from other initial states is to be disregarded. 
However the problem of ensuring that activity pro­
ceed solely to the final states does not appear  trivial. 
Nor is the actual generation of required strings. It 
may be that these questions can he resolved in a natu­
ral manner,  for example by training the net by a suit­
able algorithm to learn to accept only the allowed 
strings of  the grammar,  and so allow deductive or lin­
guistic thought be implemented by neural nets. There 
is indeed a growing literature on the training of neural 
nets to implement N D A ' s  [18]. We add parenthetical­
ly that it has not yet proved possible to train a net to 
implement a non-regular language, due to the arbit­
rary length of the associated stack automaton.  It is 
clear that a neural net could never achieve such sto­
rage due to its finite capacity. However there cannot 
exist in any hardware device an infinite memory ca­
pacity. whether it be a neural net or a stack automat­
on. This leads one to suspect that in the human case 
we can only recognise or generate sentences of 
a bounded length. Indeed one of the essentials of 
good writing is to avoid longwinded sentences. So we 
should not regard the problem of infinite length stack 
memories as insuperable but only as one to make us 
strive for nets or other clases of memories with as 
great a capacity as possible.

Let us return to the question of the powers of  neural 
nets trained as language automata,  whether or not 
they also model stack memories of a limited length of 
pushdown automata.  The main problem here is that 
such a net will only function as a recogniser; it will 
not be able to “ think for i t se l f ’. Moreover it seems ne­
cessary, in any case, to amplify the NDA so as to al­
low for the concept of meaning to be attached to the 
strings so generated, along the lines of  the previous 
two sections. It would be preferred that language gen­
eration and logical thought be closely involved wath 
the appropriate state of the semantic net IT, since that 
has coded states intrinsically bound with linguistic or 
logical thoughts. In other words we need to look deep­
er for a construction of directed thought than by the 
rather naive attempt to make the net ape the action of 
an automaton implementing a grammar of a certain 
kind.

The states of the modules of the semantic net W 
should already contain the symbols of such thought, 
coded by suitable inter- and intra-connections. The 
basic feature to be added to the set of modules of  ITis 
thus the manner  in which productions are achieved by

NNW 1 /9 1 ,4 -1 2 Taylor: t an Neural Networks ever be made to Think?



suitable connectivity. There seems to be two levels at 
which we can try to achieve this. The first is purely 
linguistic: how is language produced correctly by the 
nets? The key to that should be in the connectivity be­
tween various syllabic, phonemic and word modules 
in it: It is assumed that these are developed as, say, 
coupled topographic maps, so that excitation of only 
grammatically correct sentences is achieved with high 
probability for verbal production. Such correctness is 
expected to arise by training during the storing of se­
quences of words, in an unsupervised manner, in early 
childhood (2 6 years) and then later in a reinforced
manner.

The second is at the level of  the method of coding 
used by the episodic memory net, and the manner in 
which this is coupled to the semantic net IT so as to 
give meaning to the words as they are being uttered. It 
is well-documented that the loss of Wernicke’s area 
leads to deficit in meaning either in produced or re­
ceived speech, and that Wernicke's area is connected 
to the temporal lobe, in which the episodic memory is 
thought to be stored. Thus we expect that the manner 
in which the episodic and semantic nets constrain 
each other will be crucial. Indeed it is known that loss 
of temporal lobe prevents the learning of new seman­
tic material as well as new episodes.

So far there is no algorithm available which could 
be expected to allow' the training of a neural net so 
that it can function at the level of a child as described 
above. There are two aspects to the problem of deve­
loping such training. Firstly it appears necessary to 
comprehend how temporal sequences, suitably pre- 
processed, could be stored effectively. This is expect­
ed to require the use of the hippocampus,  since its 
loss is well documented to lead to lack of  laying down 
of new experiences. But, as noted earlier, under such 
a circumstance there is a concomitant loss of new se­
mantic material. This may be considered as involving 
the laying down of temporal sequences, but these may 
only be short. They will also be stored in the semantic 
regions IT, so that there must be suitable interconnec­
tions from the hippocampus to IT so as to cause an 
expansion of the various semantics nets mentioned 
earlier.

We have considered the way in which the hippo­
campus may store temporal sequences internally else­
where [17]. It is now necessary to consider in what 
manner that organ may be used in guiding the storage 
of the two sorts of memory, semantic and episodic, in 
neocortex. We can only give a general outline here of 
a possible modus operandi,  and leave to more de­
tailed analysis, by simulation, the level of success that 
our proposal leads to.

It is to be expected that the general principles on 
which there is storage in both the semantic and epis­
odic modules is the same. This follows from the rather 
similar architecture that neocortex possesses over its 
surface, outside the primary cortical regions. We thus 
assume that there is some level of competitive activity 
between local regions, as is evidenced from distribu­
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tions of inhibitory collaterals in cortex [12]. At the 
same time we take account of the continued persis­
tence of activity on the cell membrane for an import­
ant length of time, as evinced bv the latest values of 
the membrane time constants for pyramidal cells [19], 
We thus propose a temporal extension of the Kohon- 
en topographic map [15]. In this the activity on the cell 
surface at a given time is used to determine the local 
winner, and the resulting updating of the weights. 
Since this activity involves earlier inputs, the topogra­
phic map which results will have built into it the tem­
poral structure of the inputs. It is important to note 
that this extension of the Kohonen learning algorithm 
also involves the learning of lateral excitatory connec­
tions between the neurons of a module. It is these lat­
ter which will be of great importance in encoding the 
temporal structure of the input.

Such learning by means of temporal topographic 
maps will lead to strongly connected regions if they 
are strongly causally related. It appears that this con­
nectivity w ill be an encoding of the rules of the gram­
mar in the case of word and sentence modules.

It might be asked at this point as to the role of the 
hippocampus in the new learning processes described 
above. There appear to be at least two aspects which 
call for its presence. The first is to act as a medium 
term store for coded inputs from various modalities. 
The structure of the hippocampus allows it to func­
tion in this way more efficiently than neocortex, as is 
argued in [17], The second is to mediate between un­
derlying goals of the system, as stored in the hypothal­
amus, and the input as entering the hippocampus.  
There are good connections between these two or­
gans, and it is one of  the proposed functions of the in­
teraction of the two that the importance of  inputs for 
attaining emotional goals be mediated by the hippo­
campus. Thus the hippocampal feedback to the ne­
ocortex can be considered as involving a reinforcing 
activity for emphasising the laying down of perma­
nent memories of the episodic (in temporal lobe) or 
semantic (in associative cortex) type.

We now claim that in the above manner the nets of 
the system will, if allowed to experience a suitable set 
of inputs, such as grammatically correctly produced 
sequences of words, develop a store of these words 
and sentences that encodes the grammar by means of 
the lateral connections both inside each net and be­
tween the modules. Such a claim does not appear  to 
be contentious, in that the system is expected ulti­
mately to achieve such storage. What is at issue is the 
training time and the storage capacity of the system. 
Indeed the former of these questions is still one of the 
main unsolved ones facing neural networks. That the 
system will scale correctly on increasing size of  the in­
put set is also a question facing natural language pro­
cessing in AI, mentioned earlier. This question is not 
one we can expect to solve here, but will return to it 
elsewhere when we present the results of our simula­
tions [20]. We add that a modular  approach to speech
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recognition allows for better scaling than if monoli th­
ic nets were to be used [21].

As to capacity, we have already discussed this for 
our hippocampal model in detail elsewhere [10], [22], 
and only note here that a storage capacity of the order 
of the number of neurons of the net. as shown in [10], 
[22], will lead to vocabularies of the order of hundreds 
of thousands of words, for nets of the size of those in 
the human brain. There may be gross degradation of 
the capacity in the case, for example, of patients with 
Korsakoff's or Alzheimer's disease: it could be of va­
lue to attempt to correlate in a quantitative manner 
what is known about the extent of cortical loss in 
these cases with memory degradation. Indeed these 
cases are of importance in that they may present cor­
tices at the end of their capacity.

Our earlier claim that our system will have gram­
matical powers is now extended to the claim that it 
will have deductive powers. Given an input sequence, 
this will lead to activity in the semantic nets, con­
trolled by the episodic net by means of the causal con­
nections that have been built up in the learning pro­
cess (the connections having been assumed to be pres­
ent in the first place. The efficacy of such connections 
depends on the connection probability between ap­
propriate pairs of  neurons; that will be discussed else­
where). Given that this activity can be output from the 
system in the manner described in section 3 (so by 
some sort of decision unit) and so as to return as later 
input, causal processing by the system on its own ac­
tivity can proceed. We conjecture that this feedback- 
sequential activity may be used by the system in 
a manner which would correspond to deductive 
thought. The sentences will be produced whose con­
tent will be based on the earlier experience of the sys­
tem. Moreover the system will be able to assign mean­
ing to the inputs (and so to its own outputs) by the 
discussion of the earlier sections. It can thus be said to 
think in a manner in which the sentences it is using 
have meaning to them, which is used in the further de­
velopment of its activity. It can be said to have mea­
ningful deductive thought.

5. Creative Thought.

It is finally necessary to understand how it is possi­
ble to allow the system we have developed so far to 
think in an autistic or creative manner. By this we 
mean that the activities of the system are more con­
trolled by its internal activity than from the exterior. It 
should be able to day-dream, so that its internal activi­
ties become the centre of its thought processes. Such 
a change of mode of activity has already been consid­
ered from the point of view of  feedback control in 
a strictly hierarchical system in [23], and further deve­
loped in [24]. The model presented here may be ex­
tended along somewhat similar lines to those refer­
ences so as to be in keeping with what is known about 
the general connectivity in the brain. However we

should point out here the considerable difference be­
tween the present approach and that of [23] and [24]. 
In the latter references there is a strict adherence to 
hierarchical processing. That is not the situation here, 
where there is a great deal of lateral connectivity in 
the system. One may consider the net D as at the top 
of a hierarchy, but there is only at most one hierarchy 
in the system.

The basic circuit arrived at is shown in figure 3. 
This extends the circuit of figure 2 by the addition of 
an input processing module I and feedback lines from 
the decision unit D to /. The module I can be the pri­
mary visual cortex, areas 17 and 18, in the visual mo­
dality, whilst the presence of  feedback lines is well 
established. One of the functions of the feedback 
lines, as considered extensively in [23] and [24] is to 
control the primary inputs. Thus there may be inputs 
which lead to feedback from I) which cause a reduc­
tion in the further primary inputs. The ensuing activity 
of the system is then controlled by interna! activity cir­
culating round the internal loops which are both ex­
plicitly drawn in figure 3 ( ff * /) - / - IT.
W - E-* /) - / — W) and implicitly ( ft - E * W, 
W - IV, etc).

Fig. J. Extension o f the machine in the previous figure to include the 
preprocessing unit / and the feedback from the decision unit D to I to 

achieve control o f the input, as discussed in the text.

It has been claimed above that learning by means of 
temporal topographic maps will lead to causal con­
nections of both an intra- and inter-module form 
which encode the causal structure of the inputs being 
experienced. The resulting activity when the external 
inputs are inhibited, as described above, should thus 
develop along the same lines as it did when there was 
no such inhibition. In particular there will be the de­
velopment of logical chains of thought, arising by the 
interactions between modules in fTor E. There will al­
so be modifications of these causally guided develop­
ments of activity due to the altered input set. Thus the 
nature of the experience of the system in such an al­
tered state will be, in general, of  a considerably differ­
ent form than that in the originally aware state. It 
would indeed be appropriate to call such a state an al­
tered state of consciousness.

It is clearly possible to include in the model further 
states of  consciousness, such as REM or slow-wave 
sleep. That has already been developed in the refer­
ences [23] and [24], We do not wish to do that here at 
this juncture, since it does not seem crucial to our mo­
delling purpose.

We conclude finally that the system is indulging in 
autistic thought in the above activity. It may well be 
described as day-dreaming.
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6. Conclusions.

We have presented a general blueprint for a ma­
chine which can, with some reason, be said to think. 
Yet there are clearly some very difficult problems we 
have to solve before we can put the system into action 
so as to test its powers.

Firstly the temporal topographic map learning algo­
rithm must be tested by simulation. That can be done 
straightforwardly for small nets, with small input sets, 
and is presently under investigation. This is expected 
to lead to a useful set of nets trained on simple (small) 
tasks. But will these nets scale in any effective man­
ner? We raised this question earlier from a technical 
point of view. However here it is necessary to consider 
this point from a general viewpoint. Is it the case that 
the above approach has not yet got the crucial clues as 
to the way that neural nets work at the level of effi­
ciency of our own brains. Are there still subtleties of 
neurons, of synapses, or of other aspects of living neu­
ral nets not yet included in our discussions which are 
essential for the success of the enterprise of building 
thinking neural nets?

We think not. The subtleties of the above sort left 
out so far in our discussion undoubtedly do help the 
system. That has already been noted in the analysis of 
temporal sequence storage in [10]. But the experience 
gained there in the need, for example, for a descrip­
tion of the opening and closing of synaptic channel 
gates, indicates that such details improve the system 
performance but do not change the underlying modes 
of operation. Thus it seems reasonable to claim that 
the complete description of the manner of operation 
of neurons, synapses, etc., down to the molecular level 
will be a technical aid to the system in allowing it to 
be scaled up without drastic loss of efficiency, but 
need not alter in any way the general algorithms un­
der which the system is operating.

The second area of discussions is that of  a very dif­
ferent sort. It is as to the nature of the experience of 
the machine when it is in action. Will it, in particular, 
have a sense of  conscious awareness that w'e, as hu­
mans, all experience and which has led to the mind/  

body problem? That is not a question which we will 
discuss in any detail here, but note that the system is 
to be expected to develop a model of its owm actions. 
In this way it will develop a sense of consciousness of 
self. The manner in which this could be simulated de­
pends on the success of the earlier simulations of the 
nets IF'nad E. W’e have a long way to go before we can

begin to appreciate the problems raised by such fea­
tures.
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ASSOCIATIVE INTERNEURONAL BIOLOGICAL
MECHANISM

J.  F a b e r * )

Abstract:
The neurologist finds analogies between the Farley 

and ( lark automatic self-organizing model and the 
brain highly intriguing. The signal generator suggests 
comparison with the thalamus which also has a rh\thru- 
making function and. likewise, sends many variables — 
impulses — into the cortex. The complex with its ele­
ments randomly connected at the start of the experiment 
is reminiscent of the cortex which, in the newborn, is in 
a naive, poorly organized state. The discrimination unit 
designed to determine the state values of the cortex is 
like the limbic system which monitors theh body's meta­
bolic equilibrium by means of internal environment re­
ceptors in the hypothalamus, and which adjusts the 
“emotive equilibrium of mental functions" by means of 
endocrine and nervous mechanisms. Stimuli from the 
discrimination unit travel on to the signal generator and 
to the formator. The formator can be likened to the 
modulatory humorergic centres it similarly regulates 
the thresholds of elements and connections in the cortex 
and other parts of the brain. In the model there is one 
formator, in the brain there are more, for each state 
there is a centre of formator action: the reticular forma­
tion for the state of vigilance, nuclei raphe for synchro­
nous sleep, locus eaeruleus for paradoxical sleep. Each 
nucleus operates in its own way, generally perhaps by 
setting the threshold and, consequently, by changing the 
programmes of the target neuronal circuits and net­
works. Under pathological circumstances, even a corti­
cal lesion, e.g. an epileptic focus, can become a forma­
tor. This focus then competes with physiological forma- 
tors for control of the cortex. This power struggle then 
results in an epileptic attack or acute psychosis. For the 
most part, physiological formators act as inhibitors. 
During epileptogenesis, prior to manifest paroxysms, 
there is gradual loss of sleep, especially paradoxical 
sleep.

1. Introduction

Without making any megalomaniac claims to ex­
plain the activity of the brain, some of the similarities 
between artificial cybernetic systems and brain func­
tions are so striking that we cannot help drawing some 
analogies in terms of function as well as structure.

*) Urol J. I ahcr.
Departm ent of Neurolojřv 
Charles University.
120 00 Prague 2. Kateřinská 20 
C/evhoslm akia
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2. The Earlev and Clark model

The aulo-organi/ation system of Farley and ( lark 
(1954) is one of the first and. to this day. in many re­
spects unsurpassed model of brain function //g. 11. 
Designing the model, the authors used four principal 
components:  signal generator, complex, discrimina­
tion unit, and formator.

2.A. The signal generator produces sequences of 
signal, i.e. two different, though regular, sequences to 
send them on to the complex. The generator itself re­
ceives control signals from the discrimination unit.

2.B The complex consists of 128 initially randomly 
connected elements, whose mutual contact undergoes 
no further change during the experiment. These ele­
ments are divided into 4 fields, ie. 2 input and 2 out­
put fields. The sequences of signals from the genera­
tor reach the two input sectors (01 and 02) and from 
there pass on quite randomly to the two output sectors 
( ( )+  and O ). The point is that one type of the se­
quence of signals should arouse response solely in the 
0  4- sector and the other solely in the () sector. T his 
"spontaneous" discrimination is effected so that the 
initially random connections between the elements of 
the complex become organized, i.e., some connections 
acquire a low threshold of excitability and become 
"important" while others become extinct. For this de­
crease in entropy among the 128 elements to come 
about sufficiently soon, the system needs two more 
members: the discrimination unit and the formator. 
There are, however, self-organizing autonomous com­
plexes of elements without any such "accessories", 
but then the elements must be endowed with a fairly 
large independent memory: even so, however, the 
"learning" period is longer than in the Farley and 
( lark model (Beneš 1966).

2.( , The discrimination or analytical unit analyzes 
the state of the complex, i.e.. by monitoring the state 
values which show how the complex has "learned" to 
discriminate between the two types of sequences of 
signals. The information about the state of the com­
plex organization is then passed on to the signal gen­
erator, thus influencing the alternation and number ol 
one or the other sequence of signals. In the other 
route, information about the state of the complex is 
channelled inti) the formator.

2.D. The formator or modifier is the last member of 
the system. As already said, it receives information 
from the discrimination unit and, on their evaluation, 
sends out control signals or action quantities into the
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complex. The formator effect on the complex is, es­
sentially, of dual type: it controls the thresholds of ex­
citability of the elements of the complex as well as the 
capacity or conductivity of the inter-element path­
ways, and second, it transmits Gaussian noise into the 
complex. This noise randomizes the deterministic pro­
cess going on in the complex. Thus the process be­
comes less inhibited but freer in looking for the way 
to a solution, which, oddly enough, accelerates the bu­
siness of “ learning”-and seeking an equilibrium.

Noise has a major significance in the process of au­
tomatic organization as H. von Foerster showed 
(1960, according to Beneš 1966). Nicolis et al. 
(1975) refer to the significance of  different types of 
noise. These authors employed a mathematical model 
of  a self-organizing “ open non-linear system remote 
from thermodynamic equilibrium” to realize it on 
a computer. As they exposed the process of organiza­
tion to intensive noise which was stationary in terms 
of amplitude, the organization of the system was 
growing, entropy decreasing and redundancy increa­
sing. However, when they used “jitter” noise which 
was non-stationary in terms of amplitude, the organi­
zation was being retarded or else there was an in­
crease in entropy.

We ourselves studied the significance of noise as 
a regular variable carrier to find out that 4%  of the 
harmonic variable in the Gaussian distribution of the 
random variable was sufficient for this regular signal 
to be detected by the periodogram. In contrast, in the 
Weibulian distribution of noise, 8 % of the harmonic 
variable was needed for the detection (Faber and 
Vladyka 1984).

Beneš developed the theory of the formator control 
o f  the complex to apply it, for instance, for the control 
of large systems. He also devised a model of the effect

Faber: Associative Interneuronal Biological Mechanism

of the human factor in large systems (Benes 1981, 
1990). Kotek et al. (1980) used a somewhat remote 
mathematical apparatus for a similar function, i.e., ad­
aptation and learning.

3. The model — brain analogy

The properties of the Farley and Clark model and, 
in particular, those of its individual parts are very in­
teresting in that they suggest comparison with differ­
ent parts of the brain (Fig. 2).

3.A. The generator of signals can be likened to the 
thalamus, which is the largest nucleus or grouping of 
neurons in the highest portion of the brain stem. This 
structure is noted, in particular, for two important 
properties: I. it is the last transmitter of impulses from 
the peripheral sensory organs such as the eye, the ear, 
and cutaneous, muscular, articular and tendinous re­
ceptors, impulses which, on processing, are passed on 
to the cortex; 2. it is a generator of rhythms, to which 
impulses from the periphery of the body are also par­
tially subordinated. Hence it also has a clock pulse 
function. Moreover, in the thalamus all the nuclei re­
presenting different sensory organs are abundantly in­
terconnected, and exercise an indirect effect on the 
power of  movement. This is probably the site of  a pri­
mitive integration of impulses and, thereby, of the 
subject's simple awareness of its body and the envir­
onment. This is definitely the case of beast of prey, 
though a similar phenomenon cannot be ruled out in 

-man either. For instance, even with the visual cortex 
removed, the dog can move about without knocking 
against surrounding objects (Babak 1908). The thala­
mus is sometimes referred to as the gateway of con­
sciousness (Fig. 3),
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Fig. 2. Semiši hemalie view of the sagital section o f the brain. I F. is aren entorhinalis tarea 2S>, part o f the palleocortex.

l ig. Analogy betw een brain structnres and the Farley and Clark model.
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■ B. The complex with its initially randomly inter­
connected elements reminds ns of the neonatal cortex 
with its naive “ unenlightened” neurons. It is only up­
bringing and education that will organize the brain. 
With regard to the model, however, there is a measure 
of difference, e.g., in that the neurons of the cortex are 
not quite so randomly interconnected as their pro­
cesses, dendrites and neurites grow in a partly organ­
ized way in accordance with genetic rules, i.e. bv giv­
ing rise to the left and right hemispheres, in each hem­
isphere to four lobes (frontal, parietal, temporal and 
occipital), according to Brodmann to 50 areas and, ac­
cording to Hubei and W iesel (1002). to some million 
columns, batch column contains about ten thousand 
neurons, thus representing a group of neurons organ­
ized in a column which runs vertical!) right through 
the cortex. I he total number of neurons in the human 
cortex is about 2.10 ". Also genetically de\ eloped is 
the six-layer structure of the cortex and some of the 
connections between the columns. Tei minologically 
speaking, this is the neocortex which accounts for 
95 "o of the surface of the cortex. Between the thala­
mus and the cortex, impulses keep circling reverbe­
rating, hence we refer to the thnlnmo-cortical reverb­
eration circuit ( TC RC ).

It anything bars the physiological flow of impulses 
from the eye to the cortex, the genetically started co­
lumnar organization will not reach completion. A si­
milar situation occurs in individuals horn blind who 
even tail to develop the appropriate eleetroencephal- 
ographic ( FT.G) activ ity of the brain marked by alpha 
activity at a f requency of some 10 Hz (Cohen 1969. 
Hubei and \\  iesel 1962). I I G activity takes some 5 to 
6 years to achieve maturity. In the school age it is al­
ready like that in adulthood. A number of animal ex­
periments have shown the relationship between the 
genetic plan and postnatal programming. As Valverde 
(1971 ) showed, mice kept in darkness have porly deve­
loped dendrites, spines and synapses of neurons of 
the visual cortex while animals liv ing in day light have 
visual cortex neurons rich in those organelles. In other 
words, an adequate influx of' impulses to the cortex 
accounts for the development of plentiful interneu­
ronal connections.

We can also put it in this way : in a living brain "fre­
quently used software will change into hardware” (Fa­
ber and Vladyka 19X7, Faber and Weinberger I9XX). 
Hence also in the treatment of psychoses it is advis­
able to use "kind words” all the time as the principal 
programming instrument, and not only chemotherapy. 
Summing up years of experience. Sjdstrom ( 19X5) not­
ed that his schizophrenics receiving psychotherapy 
felt subjectively better and objectively exhibited grea­
ter sociability on substantially lower drug doses than 
patients left to pharmacotherapy alone.

Human pathophysiology recognizes atrophy of the 
cortex, e.g. Alzheimer's or Pick's diseases, conditions 
invariably associated with dementia and personality 
disintegration. C onsequently, the cortex is the seat of 
intellectual abilities and probably also the seat of
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memory engrains. The brain has many inborn reflexes 
(sucking, grasping and other reflexes) with centres si­
tuated subcortically, but relativelv speaking, with re­
gard to adulthood, the cortex is a "tabula rasa” . The 
huge number of neurons appears to be necessarv onlv 
in the actual phase of learning. Once the perception of 
and motor response to stimuli have become automat­
ic, the need lor the number of neurons is substantia 11 v 
less. Similarly, vigilance in itself utilizes few neurons. 
Thanks to the great redundance of neurons, "anv kind 
of programme can be implemented” in the cortex, as 
witnessed by deprivation experiments m animals or 
the unfortunate stories of humans such as. e.g.. "wolf 
children” or the fortunes of kaspar  Hausner (Vese­
lovsky 19X5. Rican 1975). This means that a sound 
brain can learn anything from the ability to live in the 
jungle up to the potential career of scientists. One can­
not help wondering about the number of partiallv de­
prived "modern.  TV-educated children” .

3.C. Another member of the automatic self-organiz­
ing system, the discrimination unit, can be likened to 
the limbic system (I S ) .  Bhy logenetically, this i s  one of 
the oldest parts of the brain, i.e.. the paleo- et archi- 
cortex; in pre-mammalian vertebrates closelv connect­
ed with the smell brain or rhinencephalon, and. in 
those species, hierarchically standing at the top of the 
central nervous system ( ( ’NS).

1 he limbic system receives information from the 
whole body, mainly from visceral organs, and also 
controls those organs by way of the hypothalomo-pi- 
tuitarv system and vegetative nerves. The hvpothala- 
mus, which represents 0.5 'V of the weight of the brain, 
registers and regulates body temperature, osmotic 
blood pressure, blood sugar levels, the acid-base bal­
ance of  the blood, and it takes a share in sleep regula­
tion (nucleus suprachiasmaticus). The FS also receives 
information from the neocortex, from the so-called 
primary and secondary association fields, i.e , infor­
mation mediated from the periphery , from the sensorv 
organs (eye. ear, muscle receptors, etc.).

The LS includes the septal nuclei, in humans the 
area adolfactoria representing a clock pulse generator 
specially developed for some parts of the FS. mainlv 
for the hippocampus. Phy logenetically, this structure, 
the hippocampus,  is the old cortex the arehicortex. 
It has a mere three layers of cells and. together with 
another part of the cortex (gyrus einguli) occupies less 
than 4 % of the cortical surface. I he remaining one 
per cent is the oldest part of the cortex, the paleocor­
tex, i.e., cortex prepiriformis and part of the amygda­
la. The hippocampus with the adjacent structure, the 
amygdala, are important centres for olfactory percep­
tion and for the rise of emotions. According to Gas- 
taut ( 1952), this is the site of origin of the stress reac­
tion advancing to the hypothalamus, the pituitary, and 
the adrenals which produces the hormones responsi­
ble for the body's "sympatheticotonic" reaction in­
volving heightened blood pressure, quickened heart 
rate, dilatation of eyes and pupils, and subjective.
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mostly negative, feelings, such as anger and susceptib­
ility to aggressiveness.

The hippocampus is the site of a kind of time regis­
ter designed to classify memory traces according to 
“ when and where they took origin" (O'Keefe and 
Nadel 1978). This is an invariably affect-dependent 
process. Like all mental activity, committing some­
thing to one’s memory, remembering, is always asso­
ciated with some kind of emotion. The stronger (and 
more positive?) the emotion is, the better we can rem­
ember. We learn because we are motivated, because 
we take a certain stand to learning. Consequently,  the 
LS acts to combine rational and emotional behaviour, 
thus helping to create the personality structure.

Motives can be classified differently. For instance, 
we refer to the biological and social origins of mo­
tives. Primary or biological motives include, for in­
stance, instincts as complex inborn unconditioned ref­
lexes (e.g., birds building nests in the spring, exhibi­
ting parental instincts, procreating the young, flocking 
and Hying away in the autumn). In humans, such mo­
tives are called impulses. (The word impulse has a du ­
al meaning; the above mentioned type of motives, and 
the electrochemical process of transmitting a stimulus 
along the membranes of dendrites and neurites from 
one neuron to another). Impulses represent endoge­
nous character-based tendencies. There are, for exam­
ple, individuals of moderate or energetic behaviour; 
in Hippocratic terms people of sanguine, choleric.

phlegmatic or melancholic temperament.  We can refer 
to a mental cast with a propensity to rational or artis­
tic thinking, hypersexuality, toxicomania, etc. (Mad­
sen 1972). A number of psychologists have devised 
ingenious qualitative and quantitative criteria for the 
description of human nature. Thus, Fvsenek classifies 
differences in personality by the degree of neuroticism 
(the polar extremes being suppressors and sensitors), 
and on the plane vertical to the previous characteris­
tics he makes a distinction between the degrees of “ so­
ciability" (the polar extremes being extroverts and in­
troverts). / //g. 4).

Besides impulses there are incentives, i.e., parts of 
motivation induced by a certain type of education, es­
pecially in early childhood, mostly within the family. 
In ideal cases, impulses and incentives work hand in 
hand. For example, the child has a talent for music, 
and one of the parents is a musician. Fhus the child is 
raised in a harmonious relation of impulses and incen­
tives, i.e., learning music, enjoying it and scoring suc­
cesses. Naturally, there are many degrees of transition 
between the ideal and the pessimal such as when a pu­
bescent is impulsively (instinctively) hypersexual 
while education in the family is marked by strong reli­
gious or puritan leanings. The youngster's further 
progress then depends on his or her other characteris­
tics of nature. In any case, however, a conflict arises 
due to the discrepancy between these two lines of mo­
tivation. Unless the motivated behaviour is gratified.
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there is bound to he frustration or even total depriva­
tion of this instinctive need. Depending on their na­
ture, the individual may respond to this in many ways, 
e.g,, by a show of depression or regression (infanti­
lism) or aggression, mostly, however, in the presence 
of subjectively unpleasant emotions and, objectively, 
often with signs of stress.

This is the classic wav to neurosis arising from 
a conflict of motives. The whole process may take an 
entirely unconscious course. A good psychoanalyst 
can identify the presence of such unapparent conflicts 
and offer the patient relief by helping him to expose 
such latent psychotraumata. Together, they can then 
try and evoke the traumatizing situation with the pa­
tient fully aware of all the circumstances and, eventu­
ally, alter the patient's insight and help him get rid of 
the cause of chronic tension, anxiety or somatic symp­
toms (palpitation, variable hypertension, gastrointesti­
nal ulceration, etc.).

The human brain is endowed with an immense 
power of  memory; there is a daily build-up of experi­
ences, and it is quite certain that not all of  them can 
be remembered equally well so as to be recalled at any 
time. Moreover, unpleasant experiences are often well 
remembered but recalled with subconscious reluct­
ance as there is an emotive block. Their persistent sub­
conscious presence may become even more harmful 
as they take up too much operation time in the CNS. 
Like the discrimination unit in the model, the LS in 
the brain keeps monitoring the state of the viscera 
(cardiovascular and gastrointestinal organs), the body 
(receptors of the skin, muscles, joints) and the neocor- 
tical rational situation, i.e., the actual picture of the 
animal's situation in natural surroundings and man’s 
in society. It is the LS that keeps all this mutually inte­
grated, thus creating the momentary psychosomatic si­
tuation described as “ mood“ or affectivity (Plzak 
1975). This may be either positive (joy, cheerfulness) 
or negative (sadness, anger). There is always a vegeta­
tive reaction (e.g. heightened heart and respiratory 
rates) and secretion of  hormones; from the pituitary 
gland prolactin, STH (growth hormone), A ( T H  
(adrenocorticotropic hormone) and, as a secondary 
source, adrenaline and corticoids from the adrenals. 
Studying epileptics with implanted electrodes, Gal ­
lagher (1987) found that hippocampal epileptic dis­
charges shorter than 10 seconds inhibited the hvpo- 
thalamo-pituitary system as well as ACTH secretion, 
while those of longer than 10 second duration in­
creased the secretion of ACTH and prolactin. This 
clinical fact serves as a model of the LS effect on 
stress and mood in terms of both excitation and inhi­
bition.

The LS system appears to take a major share in 
a phenomenon which can be described as “ awareness 
of  reality". The LS evaluates interoceptive (visceral), 
somatic (skin, muscles) ad exteroceptive (eye, ear) 
events, whose equilibrium gives rise to the emotive 
charge and “ somatization" of that which is experi­
enced. Under pathological circumstances, the limbic

system is susceptible to irritation leading to epileptic 
psychomotor paroxysms or to brief psychotiform 
states. A paroxysm is often preceded by the sudden 
appearance of an aura of a sensory or emotive nature, 
e.g., pseudohallucinations of odours and anxiety. This 
is not loss of consciousness, but rather loss of a func­
tion of  memory with the patient losing real contact 
with the surroundings and lapsing into automatic 
non-adequate behaviour. This kind of situation can 
repeatedly be observed in epileptics and psychotics 
with electrodes implanted into the amygdalo-hippo- 
campal complex (AHC) during spontaneous and pro­
voked epileptic discharges. High sharp and slow 
waves are discernible in the AHC itself while the 
neocortical system may show near normal activity.

The TURC has the following principal functions; 
keeping lucid vigilance, i.e., reactivity, perception and 
adequate motor response to stimuli, in other words, 
gnoseological and psychomotor functions. In this 
kind of system, epileptic discharges cause loss of con­
sciousness, i.e. uncounsciousness. What subsequently 
appears on the LEG are regular S+ W complexes, i.e. 
spikes and waves taking turns. At the same time, the 
LS may be little affected by epileptic activity. The LS 
is prornirmtly active during paradoxical sleep, hence 
our tendency to mistake dream hallucinations for real­
ity.

3.D. The last part of the system, the fbrmator, re­
minds us of the activity of the brainstem modulation 
humorergic centres. As the brain is a far more com­
plex structure than a cybernetic model, it comprises 
more such formators. As it helps to maintain vigilance 
and sleep, it also serves, albeit indirectly, memory and 
learning. Information storage in the memory medium 
is relatively simpler in a non-living machine than in 
neurons. The computer will process data only if they 
are in a logical-arithmetic unit while the brain appears 
to process such data more often, and that kind of pro­
cessing unit (neuronal network) cannot well be distin­
guished from the memory medium. To put it in a sim­
plified form, memory is in every neuron and every 
neuron is a small processor.

The activation reticular ascending system (ARAS) is 
localized in the pons and in the mesencephalon and 
its purpose is to maintain vigilance. When Frederic 
Bremer (1935) surgically interfered with those struc­
tures in the cat, the result was unconsciousness. As 
Moruzzi and Magoun (1949) discovered, it was not 
the whole mesencephalon that was affected but mere­
ly its central portion, the so called tegmentum, whose 
neurons stimulate with their axons the thalamus and, 
indirectly, the cortex, thus keeping the animal awake. 
Hence, the ARAS is the formator for vigilance.

Formators periodically take turns in their activities. 
After a certain period of wakefulness, say after 16 
hours, control of the brain is taken over by centres for 
synchronous or NONRFM sleep. They are nuclei of 
the medulla oblongata, nuclei raphe, nucleus traetus 
solitarii, and nucleus suprachiasmaticus hypothalami 
secreting serotonin. A share in sleep regulation is also
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taken by other, as yet unidentified, peptidergic centres 
secreting proteins such as VIAP (vasoactive intestinal 
peptide) and DSIP (delta sleep inducing peptide) 
which is found in the cerebrospinal fluid of the ventri­
cles of brain and which, if supplied into the ventricles, 
even in its synthetic form, or into the blood of ani­
mals, will induce sleep (Monier and Schbneberger 
1976).

At this point it is useful to realize that to model hu­
man nervous and psychic activities it is necessary to 
monitor not only the neuronal networks but also 
other, e.g., humoral modes of information transfer 
with their effect on the chemical nature of impulses.

The prelude of synchronous sleep lasting about tw o 
hours is followed bv a period of paradoxical or REM 
(rapid eye movements being typical of this period) 
sleep.The nuclei (i.e. anatomically defined groups of 
neurons) reponsible for REM sleep are localized 
again in the brain stem (being its formators): locus 
caeruleus in the pons Varoli and ncl. gigantocellularis. 
Similarly to the previous structures designed to regu­
late wakefulness or REM sleep, these nuclei send out 
their fibres (neurites) over long distances to other 
parts of the brain stem, the spinal cord, hypothala­
mus, basal ganglia (where they programme and regu­
late skeletal muscle movement), thalamus and cortex. 
They take their name from the substance (modulator) 
which they secrete at their synapses. Thus, the ARAS 
is associated w ith acetylcholine, NON REM with se­
rotonin, dopamine and peptides, REM with noradren­
aline and again acetylcholine and peptides. Hence al­
so the names of acetylcholinergic, serotoninergie and 
other systems (Fig. 5).

During REM sleep, the blood receives endocrino­

logical secretions of the hormones prolactin, testoster­
one, endorphins and, imprecisely synchronously, also 
ACTH. During NONREM sleep, the STH (growth 
hormone) is secreted. Generally speaking, melatonin 
and, in the last third of the night, AC TH and cortisol 
are secreted during sleep. Paradoxical sleep is marked 
by increased activities of neurons of the cortex and 
the whole motor system including the cerebellum, 
brain stem and spinal cord. However, the motor path­
ways are blocked at the level of motoneurons of the 
spinal cord, which is why no living being can move 
about in REM sleep. In 1965. however, Jouvet and 
Delorme made a surgical operation on the distal part 
of the locus caeruleus so that their cat after the opera­
tion performed with its movements what it was dream­
ing about. What apparently applies to all mammals is 
that what we experience in dreams goes on not only 
on the sensory, i.e. imaginative level, but also on the 
motor level. That means: in a dream involving swim­
ming or running our brain does, indeed, produce spe­
cific movements for swimming or running, and it is 
only the block of motor pathways as a last resort in 
the spinal cord that prevents us from actually realizing 
the movements (Fig. 6).

“ Jouvet’s cat” permits us to explain some of the 
syndromes of the human pathology of sleep such as, 
for example, somnambulism (sleep walking) or pavor 
nocturnus (nightmare) and perhaps also some types of 
sleep psychomotor epilepsy. The busy neuronal activi­
ty goes hand in hand with intensive mental activity in 
the form of dreaming. REM dreams are very vivid, 
made up of all the sensory qualities and noted for 
their emotive charge. According to American statis­
tics, two thirds of what we experience in our dreams
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lip  6. A representation o f Jouvet's experiment with desinhihilion of the 
spinal cord motor mechanism during RUM sleep. Distal part of the lo­

cus caeruleu.s ¡solid1 is destroyed.

are negative emotions. The motor pathways block is 
manifested as atonia, i.e. loss of normal muscle tone, 
which appears to account for reflex dreams about fall­
ing or living.

Different states of consciousness are matched by 
different EEG rhythms: wakefulness is noted for alp­
ha activity (8- 13 Hz), NONREAM sleep for theta 
(4—7 Hz) and delta activ ities (1 3 Hz) of higher am­
plitude and for sleep spindles (14 Hz), and paradoxi­
cal or REM sleep for theta, delta and beta (14 40
Hz) of  low amplitude. During sleep, neurons undergo 
major metabolic changes: NONREM is marked by 
a rise in RNA, and REM by an increase in the level of 
proteins which seem to be the substrate of memory 
(Hyden 1980). During NONREM sleep, some neu­
rons slow down, others speed up the rate of  dis­
charges while during REM sleep, all systems of the 
brain, sensory and motor areas and their neurons ac­
celerate their activities (Hobson and MeCarley 1971, 
(Faber 1978).

What remains a moot point is the way the brain 
stem nuclei as formators control different states of 
consciousness. No doubt, this involves.adjustment of 
the input and output thresholds of neurons, an opera­
tion performed, in principle, by synapses of dual type: 
axosomatie synapses secreting mediators of fast and 
short-term effect on membrane polarization (e.g., GA­

BA, glycine), and axodendritic synapses secreting 
modulators of slow and long-lasting effect on the 
membranes (e.g., noradrenaline, dopamine). (Fig. 7). 
Between the thalamus and the cortex there are mi lions 
of fibres with thousands of millions of impulses per 
second circulating in them. Eor a system like that to 
be able to operate effectively, it has to meet a number 
of condi t ions:

I. The number of impulses per second has to be 
optimal; a very low number is present during uncon­
sciousness, e.g., due to asphyxia, and very high during 
an epileptic attack.
2. The same goes for opptimal synchronization, i.e., 
the simultaneous co-operation of many columns of 
the cortex and rhythmic generators of the thalamus.
3. The sequence of impulses must be meaningful, i.e., 
it must carry some encoded information. This is 
a phenomenon which Mountcastle (1966) called "neu­
ral replica” . The point is that a certain "firing pat­
tern” of impulses in the neuron always represents 
a piece of specific information, e.g., the pitch of a tone

fiy  7. Schématu view of cortical pyramidal neurons w ith their orya- 
neles tsynapses. dendrites, body of neuron, axon hillock, and neurit c 
Connexion between pyramidal neuron and specific projection afferent 
pathways X I and nonspecific projection afferent pathways i .XS'. t > 

from the brain stem neuron.
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or the shape of an object just seen, etc. Verzeano 
i 1977) pro\ed this for the frequency of Hashes. In ep­
ileptic activity, the neurons involved produce primi­
tive firing patterns, and as this precludes any mea­
ningful interneuronal communication,  there is loss of 
consciousness, reactivity, and data recollection from 
and storage to memory (Faber 1975, 1978).

4, The above described regimen is controlled by- 
brain stem modulation nuclei, whose impulses reach 
the target structures (cortex), thus introducing a defi­
nite programme responsible for functional changes in 
the neuronal networks within permissible limits. This 
can best be shown on an example of altered percep­
tion and mentation. During vigilance, the sound of 
a locomotive whistle sugests that the locomotive is 
near, during NONREM the same sound evokes 
a dream about a railway station, and — during REM 
sleep sav. a nightmare with the hooting of an owl. 
In other words, on and the same neuronal network in 
the temporal lobe has changed under the effect of for- 
mators so much as to interpret one and the same en­
vironmental sound in entirely different ways.

4. Anatomy and function of different parts of 
the brain

4.A. Thalamus generator of signals. From the pe­
ripheral sensory organs, impulses pass along the pre­
vious interstations on to the thalamus. This is the last 
point before reaching the cortex that the impulses are 
relayed from neuron to neuron. The thalamus con­
tains many nuclei, for each sensory quality one or 
a group of nuclei, i.e., for the sight, hearing, skin sen­
sitivity, and so on. Each nucleus is divided into small 
groups of neurons called rhytmic thalamic generators. 
Each group receives impulses from a small limited 
cluster of sensory cells concentrated, say, around one 
cilium, or from a hundred rods in the retina.

The thalamus of  the cat contains some 25 thousand 
such generators, the human thalamus about one milli­
on. It is from there that impulses, once “ re-encoded", 
travel on to the cortex. Thalamic “ relay cells" do not 
relay impulses immediately but rather after previous 
accumulation of impulses and in accordance with 
their momentary threshold. This threshold is raised, 
e.g., during sleep. A thalamic cell is influenced also by 
non-specific afferentation from brain stem nuclei and 
by two inhibitory cells nearby in what are typical ex­
amples of feed-back and feed-forward relationships. 
One inhibitory interneuron receives collateral infor­
mation from the relay cell itself to exert inhibition on 
that relay cell (Fig. 8). The other inhibitory interneu­
ron receives collateral information from a specific af­
ferentation, and inhibits the first inhibitory interneu­
ron.

The result of  this activity is as follows; once it has 
received a supracritical quantity of impulses, the relay 
cell sends an impulse to the cortex. By way of a colla­
teral, however, it will excite the first inhibitory inter-
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neuron which causes hyperpolarization of the mem­
brane of the relay cell, thus inhibiting it. This process 
can be blocked experimentally, e.g., w ith bicueoline or 
penicillin, in which case there is no inhibition, the re­
lay cell is not inhibited, and every impulse will pro­
voke a burst of impulses, which may result in epileptic 
activity. To avoid too much inhibition by the first inhi­
bitory interneuron and to allow more impulses reach­
ing the cortex while sensory organs happen to be sup­
plying too much information from outside, the first 
inhibitory interneuron is inhibited by the other inhibi­
tory interneuron in a feed-forward fashion (Anders- 
son and Holmgren 1975).

Once the inhibition is over, the neuron spontane­
ously aims at depolarization or postanodal exaltation, 
i.e., at further discharging which is enhanced by excit­
ation impulses coming in from any of the sensory or­
gans. The discharge is followed bv another spell of 
inhibition, thus starting a cycle of discharges and v oid 
intervals. This rtythm may assume different frequen­
cies, about 5 up to 25 Hz, i.e., in the theta, alpha up to 
beta bands.

Thus, due to the cumulation of impulses, the thal­
amic relay cell exhibits short bursts of impulses remin­
iscent of clock pulses. The thalamic generators are
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plentifully interconnected, hence the impulses are 
propagated to other areas of the thalamus and to the 
whole of the remaining part of the cortex. This keeps 
the whole cortex informed of all sensory qualities.

In reality, the situation is more complex as all the 
above listed neurons of the thalamus receive excitato­
ry and inhibitory impulses also from non-specific re­
gions of the brain stem, i.e., from the modulation sys­
tems for vigilance and sleep, from the cortex and from 
the motor systems, i.e., from the cerebellum and basal 
ganglia. The thalamus is a very important relay station 
(body periphery - cortex) but also a significant inte­
grating unit. Hence, as already mentioned, its name 
the gateway of consciousness. According to Penfield 
(1969), movement is initiated in the thalamus, too.

4.IT C ortex complex. Impulses evoked from the 
thalamic relay cells and their groups rhythmic gen­
erators reach the cortex, in particular layer 4, where 
they stimulate excitatory interneurons with large syn­
apses, the so-called cartridges with their ability to am­
plify the impulses arriving there, and to stimulate 
powerfully the principal dendritic trunk of pyramidal 
cells of layers 3 and 5. If the stimulation is above the

threshold, the pyramidal cells will send their impulses 
from within the cortex, in particular to the basal gang­
lia, the brain stem motor nuclei, and the spinal motor 
cells. Pyramidal neurons of  the 3rd layer send typical 
subcortical association fibres to the remote areas of 
the cortex, or they run through the corpus callosum to 
the opposite hemisphere, and their fibres terminate 
again in cortical layers 2 and 3. The pyramidal neu­
rons of layers 3 and 5 also have inhibitory neurons of 
their own similar to the thalamic relay cells, and these 
inhibit them by way of their feed-back mechanism. 
(Fig. 9).

More collaterals arising from the pyramidal cells 
project to the excitatory interneurons with a “ bunch" 
of dendrites. Hence there French description “ double 
bouquet dendri t ique” , whose neurites stimulate pro­
fusely the neighbouring neurons and, consequently, 
also the dendrites of pyramidal cells. In this way, 
a “ self-sustained loop" is developed. This activity 
concerns neurons of one column, i.e., about ten thou­
sand neurons organized in a vertical little column run­
ning all through the cortex layer. This mode of im­
pulse propagation would mean a risk of the whole

fog. 9. Structures of the cortex and thalamus. The six-layer organization is discernible in the cortex. Lavers I and 2 receive NS A from the brain­
stem centres for vigilance and sleep, lovers 2 arid 3 association and commissural fibres from other parts o f the ipsilateral and contralateral hemi­
sphere, layer 4 -specific afferentation (SA) fibres from, sa w the eye by h ay of thalamic relay cells (RC). Layer 5 sends out efferents o f the large 
Pyramidal cells PY) to spinal curd as the corticospinal tract Laver 6 projects neurits to the thalamus, tBC -  basket cell. DB -  “double bouquet 
dendritique '' neurons. M Martinotti 's neurons. The question-marked dashed line stands for inhibition of inhibition as we proposed and simulat­

ed it (Faber and Weinberger 1988). IOther abbreviations the same as in Fig. 8.)
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cortical system getting off balance under the effect of 
the preponderant positive feed-back, and developing 
into an epileptic state. For that reason, there is more 
inhibition in the shape of basket cells. An axon pro­
jecting from the thalamus stimulates, in part, interneu­
rons with “cartridge” synapses, in part, with its colla­
teral, those basket cells which fibres pass through the 
cortex horizontally inhibiting pyramidal cells of layers 
3 and 5 in the neighbouring columns. In this way, in­
hibited surroundings come into existence around the 
excited column.

The ten thousand neurons of the column include 
about 800 pyramidal cells, and out of these, some 100 
are needed to make the excitation rise above the 
threshold and initiate muscular movement (Eccles 
1973). Several columns together make up a functional 
whole called a hypercolumn. Within this higher entity 
the columns alternate, e.g,, in motor areas for the ex­
tensors and flexors of the extremities. Their activity 
can be visualized as follows: stretching the arm for­
ward will activate ¿ill the odd-numbered columns I, 

3, 5, 7, etc. — which innervate extensor muscles, while 
the even-numbered columns are inhibited by the bas­
ket cells. As the object is grasped by the hand, the 
even-numbered columns for the flexors of  the arm 
and the hand become innervated while the odd-num­
bered columns are now inhibited. One of  the results of

our modelling was the idea to introduce an inhibition 
of inhibition. After that, the model of thalamo-cortical 
reverberation proved to operate with far more reliabil­
ity. The point was that the basket cell inhibited not 
only the neighbouring pyramidal cells, i.e., cells of co­
lumn 2, but also the neighbouring basket cell, thus dis- 
inhibiting other pyramidal cells in the 3rd column (Fa­
ber and Weinberger 1988).

The hypercolumn in the visual cortex has a com­
plex function to perform. Every column perceives 
lines slanting at a different angle. Their synthesis then 
permits, e.g., the reading of letters (Hubbel and Wiesel 
1962). The synthesizing neurons exhibit a hierarchical 
arrangement: with simple neurons registering differ­
ently oriented lines, from where fibres project to com­
plex neurons which register lines moving at a variable 
angle. And last, hypercomplex neurons receive fibres 
from complex ones to register, for example, angle-de­
fined areas. Up to this point, experimental evidence is 
available. From there on the neuronal hierarchization 
can be visualized as progressing further on so that we 
can imagine hvper-hyper-complex neurons designed 
to identify letters, houses, persons, and so on (Fig. 10). 
Taylor ( 1990) has devised a model of retinal and corti­
cal processing.

The human cortex is a wonderful structure contain­
ing about 20,000,000,000 neurons aranged in a thin

Fig. 10. Structure and functions o f the optical cortex. Spaceorientated lines or sectors of surface are projected onto the retina, transmitted via the 
corpus geniculatum laterale to the cortex. This is where a simple analysis of the lines, angles and edges is made in the deeper strata of layer 4 (cl 
and a more complex analysis in the shallower strata o f layer 4 (h. a). Series o f neighbouring columns perceive the different orientation o f lines. 
The adjacent columns running parallel perceive the same from the contralateral eve. Columns o f similar function localized in series or parallel to

each other constitute a hypercolumn.
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layer of 2 — 5 mm in thickness and nearly a quarter of 
a square meter in size. One cannot help regarding the 
cortex as a kind of mega-chip with its individual com­
ponent parts extremely ingeniously integrated. The 
cortex itself is non-independent,  hut it has attach­
ments such as the signal generator and the data bus 
for addresses and concrete data, which is taken care 
of  by the thalamocortical system. Also involved in the 
cortex are modulation brain stem systems which re­
present instructional data and have a data bus of their 
own (fasciculus longitudinalis telencephali -  medial 
forebrain bundle). Another addressing attachment can 
be seen in the limbic system (LS). The l.S works at the 
level of a higher programming language. Without it, 
the function of the thalamocortical circuit is very pri­
mitive and possible only at “ assembler" level, though 
quite confusing in terms of intelligent communication. 
For example, a patient with his limbic system patho­
logically involved is capable of speech, but unable to 
recall things from memory , given to confabulation, 

and emotionally superficial. Hut he is still conscious. 
A patient with the thalamocortical system pathologi­
cally involved is unconscious. The last known address 
and data bus is the subcortical associative system of 
the so called “ U ” fibres.

If we compare the cortex to a chip, then the layers 
of  the cortex have the following functions: 
layers I and 2 represent the input for the bus of in­
structions from the brain stem modulation systems, 
i.e. from the formators;
layers 2 and 3 are a data bus and amplifier and bus of 
addresses from the remote columns of the cortex of 
the same layer (associative and commissural connec­
tions) as carriers of what are already partially pro­
cessed data from other columns;
layer 4 is the input of concrete data from the thalamus 
as carriers of concrete data from sensory organs as 
well as thalamic clock impulses, but also as carriers of 
processed data from'other columns via the thalamus; 
layer 5 is the output of data from the cortical column; 
it is an executive function, which means that these im­
pulses can pass through other nuclei to muscles or to 
basal ganglia where they pre-programme and perhaps 
even remember motor patterns, “ know how” ; 
layer 6 projects neurites to the thalamus, thus closing 
the thalamo-cortico-thalamic circuit. In this way, data 
are processed between the columns via the thalamus.

Connetions from the 6th layer represent communi­
cation between the cortex-complex and the thalamus- 
signal generator. They are the largest data bus in the 
brain, transmitting data between the different parts of 
the chip, i.e., between the columns, and taking care of 
impulse divergence, i.e., propagating any information 
throughout the brain in a few tens of milliseconds in­
dependently of the specific sensory organ (eye, ear, 
skin). The primary cortical projection areas for each 
sense are small. They receive information from the 
senses the earliest, within 10 to 30 msec, most of the 
rest of the brain, the motor and association areas soon 
afterwards, in about 100 msec. Connection with the

LS, especially the hippocampus, is via the thalamus, 
hypothalamus and mesencephalic tegmentum, which 
represents potentially fast recollection from memory. 
I he results ol this activ ity tire recognition and identifi­
cation of that which is seen, heard or felt, associative 
thinking, and mode of response to ti situation ana­
lyzed. The speed of the response to ti stimulus is deter­
mined by the “ intelligence” of the sy stem, age. experi­
ence, “ complexity of the scene” , etc., and. as ti rule, is 
anything between 150 to 500 msec. This amounts to 
about 2 5 reverberations, i.e.. runs between the thala­
mus and the cortex.

4.C. Projective and associative pathways data, 
address and instruction buses. We encounter about 
four types of buses. The LS effect on TCRC was al­
ready mentioned before. The main subject is the rela­
tionship between reason and emotion.

Another instruction bus is represented bv brain 
stem modulation designed to regulate the main states 
of consciousness, e.g., vigilance now, sleep at some 
other time. Similarly to the first one, this too is to 
a prominent degree determined genetically.

The third data bus is determined anatomically by 
the subcortical intercolumnar associative connection 
linking layers 2 and 3 of different columns, i.e., fibrae 
ercuatae, fibrae commisurales. This is a sort of horiz­
ontal organization of connections designed to process 
data at a higher level which could be defined in terms 
of the theories of chaotic dynamics and cognitive 
channels with the aid of attractor and fractal func­
tions (Nicolis 1637). These are physiological functions 
and anatomical structures developed under the effect 
of external factors, i.e., programmed by education and 
upbringing. Psychologically, they relate to abstract 
thought.

The fourth data bus, consisting of thalamo-cortico- 
thalamic pathways, a kind of vertical organization of 
data apparently designed for primary data analysis, 
represents real thinking. This structure is, to a large 
extent, determined congenitally.

With some exaggeration we might say that in the 
absence of the thalamus but in the presence of 
a sound cortex we would be capable of abstract 
thought and data synthesis. And vice versa, given 
a good function of the thalamus and cortex but in the 
absence of subcortical associative fibres there would 
be problems with synthesis but there would be a rela­
tively good primitive analysis of data. The latter alt­
ernative has its clinical version periventricular atro­
phy in dementia.

In a normal brain, the last two data and address 
buses appear to take turns in their activities, keeping 
in regular time. Stroke 1 is marked by primary infor­
mation reaching the cortex from the vertical thalamic 
data bus. The information is processed as the im­
pulses reverberate between the thalamus and the cor­
tex, probably giving rise to primary primitive images 
of association, e.g., we recognize seeing a man wear­
ing a hat. From the primary sensory area the impulses 
travel into the primary and secondary associative
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fields and, from there, mainly into the hippocampus 
to look up earlier memory traces for comparison. Fol­
lowing stimulation of layers 2 and 3 in the cortex, 
stroke 2 is started automatically, activating the horiz­
ontal data bus. Partially processed data from a parti­
cular group of columns then pass along subcortical 
projections to more columns and areas for further 
more detailed and more general processing. Thus, for 
instance, we recognize the hatted man as an acquaint­
ance. Anatomically speaking, the impulse passes from 
primary sensory area 17 with its simple neurons tow­
ards the complex and hypercomplex neurons of areas 
18 and 19 of the visual cortex, (Fig. Jib 

Stroke 1 has a cycle-like alpha activity, i.e., in the 
region of 10 Hz. Stroke 2 has the delta cycle, i.e., 1 — 4 
Hz. The cortex in itself without the thalamus is 
marked by delta as the dominant  activity (Stein 1965, 
Rappelsberger et al., 1981). The results of strokes 1 
and 2 appear to be synthesized in tertiary areas, i.e., 
for the visual cortex — in area 19, for the acoustic cor­
tex in area 20, for the tactile cortex in area 7. To 
corroborate this speculation, the technique of evoked, 
especially cognitive (P300),  potentials could be used 
to advantage (Sutton et al. 1965, Pollich et al. 1986), 
These are evoked potentials registered similarly as
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EEG from the cranial surface but visualized only after 
many (about 100) repeated stimuli have been aver­
aged. This is a positive wave accompanying a condi­
tioned reflex, with a latency from 250 up to 450 msec 
after the stimulus. The specifications of this wave are 
stimulus-dependent. Its amplitude and latency show 
the degree of difficulty of recognition of two different 
stimuli. The amplitude is directly proportional to the 
significance of the stimulation and to the importance 
of the motivation. It is low in states of depression. The 
longer the latency of the wave, the more difficult it is 
to discriminate between two stimuli. The latency 
grows in cases of dementia. A comparison of normal 
persons'  latencies registered at different points of the 
cranial surface would permit taking a more qualified 
view of the existence and function of the “ data 
buses” . P 300 monitoring is already now made use of 
in clinical practice.

As the above facts suggest, the brain cannot be 
viewed as a single-chip computer,  though there are 
objections to the idea of the cortex being one chip. 
The cortex is composed of neurons, and these ele­
ments cannot be likened to simple flip-flop circuits or 
arithmetic-logical units realized by means of transis­
tors. Every neuron is in itself rather a small hybrid
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computer  with a digital-analog input and analog-digi­
tal output in the axon hillock. The neuron itself ap­
pears to operate mostly in the analog mode and to 
have its memory in the form of protein structures 
which regulate the input and output thresholds.

Interneuronal connection is effected b\ means of 
dendrites and neurites or axons terminating in svn- 
apses. I he surface membranes of those fibres and the 
neuron bodies act as conductors for physical signals 
(electrochemical processes) or impulses which c a m  
information and are frequency-modulated on the ax­
ons, and analog-modulated on the other parts of the 
neuron. On entering the neuron, bursts of impulses 
are turned into continual analog-changes in the 
membrane potential. An excitatory synapse will cause 
depolarization which, once it has reached the critical 
threshold of some 40 mV, will result in precipitate de­
polarization and transpolarization of the membrane, 
whereupon from the axon hillock where the axon 
begins the neuron will send an impulse to other 
cells in what is called analog-digital conversion. An 
inhibitor) synapse follows a precisely opposite course 
as its impulses lead to membrane Inperpolari /at ion 
(of up to 00 mV or more) with the neuron being inhi­
bited, i.e.. remote from a discharge. A neuron has 
main dendrites (inputs) and one neurite or axon (out­
put). (Kandel and Schwartz 10S5).

Far from being stationary. the threshold of neuron 
al inputs and output keep changing under the effect of 
synaptic potentials. In th i s  respect, modulation syn­
apses appear to have a greater effect than mediator 
synapses. In t h i s  wax. brain stem modulation centres 
(formators) alter neuronal activity and, thereby, also 
the programme of neuronal circuits and networks. 
T h i s  causes changes in \ i gi I a nee. sleep and. pathologi­
cally, also in paroxysm or psychotic raptus.

It appears then that the cortex can be likened to 
a "non-urn Neumann" system, i.e., rather to a trans­
puter. The neuron is more than just a flip-flop circuit, 
it is a computer w ith a memory of its ow n designed to 
process information independent!) and pass it on or 
withold it, in other words, "to make ad hoc decisions 
of  its ow n". There are mans neurons dealing with si­
milar jobs, a phenomenon well known from the visual 
cortex (Kuffner and Nicholls 1976, Hubei and Wiesel 
1974) and referred to as redundance in the nervous 
system. Among other things, this means the parallel 
involvement of very similar, though not quite ident­
ical, microcomputer units and a better analysis result­
ing in an isomorphous representation of reality. It is 
quite probable that this is only apparent rather than 
real redundancy. The drop-out of some fine structures 
need not be clinically discernible, albeit identifiable 
through very detailed psvehophybiological testing.

C ompared with a technically devised transputer, 
the brain has the additional complexity of four types 
of regulators buses taking part in the control of 
the complex-cortex: thalamo-cortical, subcortical, lim­
bic and brain-stem regulators.
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4.1). I pileptic focus ( I P)
An epileptic focus is a group of neurons featuring 

special, abnormal properties. As a rule, an I P is local­
ized in the neo- or aiclu•cortex, and arises due to am 
pathological process, injury, asphyxia, inflammation, 
vascular disorder, etc. I he pyramidal neurons in the 
locus usuallv exhibit lesions of the dendritic trunk 
and synapses, especially axosomatie inhibitory syn­
apses. Frequently, there are disorders of the neurogli­
al cells, i.e. satellite, supporting cells, i e.. structures 
designed to take care of neuronal metabolism ( I ischer 
et al. 1968. Ward 1961 ). As a result, there is a damaged 
neuron in a parabiotic state which is insufficiently in­
hibited either by mediators or modulators, and. conse­
quently, mostly m a state of moderate depolarization 
and with a tendency to keep firing. Hence the I P be­
haves like an aberrant lormator competing with phy­
siological formators for influence over the cortex.

I he discharges of such a neuron differ from those 
of a normal cell. I hex are faster and exhibit a differ­
ent firing pattern with short inter-impulse intervals, 
shorter than 5 3 msec, and with primitive rhythmici-
ty. A firing pattern like that is a threat to other neu­
rons as it causes rapid depolarization of other con­
nected neurons and their potential lapse into an ep­
ileptic regimen. A discharge of this kind then propa­
gates at a geometric rate. As Calvin ( 1972) found out. 
a mere one per cent of impulses of this firing pattern 
on entering a normal neuron will do for the normal 
neuron to become epileptic itself. In the brain there is 
a constant danger of the increase of damaged neurons 
threatening to drive the whole brain into pointless pri­
mitive firing and. consequently, into an epileptic sei­
zure. Hence the presence of an effective system of 
defence. There are not only inhibitory •interneurons 
operating as "satellites" to every larger neuron but al­
so quite large structures such as the caudato-thalamic, 
rubro-thalamie or noradrenergic-locus caeruleus sys­
tems.

An epileptic focus contains about 10 ")> morphologi­
cally damaged neurons which keep firing solely in the 
epileptic mode, about 50 "u normal neurons and 40 "n 
neurons firing in the epileptic mode only occasionally 
(Lockard and Wyler 1979). Whether the focus will be 
only slightly or very intensiv e and whether their activi­
ty will actually lead to an attack depends on the 40 "n 
facultatively firing neurons, i.e., on which side they 
will take. In F I G  and stereo-FFG from implanted 
electrodes we register epileptic foci which, in clinical 
terms, arc “ silent" for longer periods of time in ep­
ileptics or permanently in psychotic patients (Faber 
and Vladyka 1984. Faber and Vladvka 1987), (Fig. 12).

Under normal circumstances, the cortex is an ana­
tomically and functionally accomplished integral 
whole interconnected by subcortical, thalamocortical, 
limbic and brain-stem pathways (“ data buses"). An 
HP becomes emancipated, isolated, relatively autono­
mous and independent of the whole, uninhibited and 
uncontrolled either by the cortex or by other modula­
tions, Moreover, it itself' puts out many fast impulses
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whose primitive programming is readily acceptable to 
health} neurons. An I P processes the information re­
ceived inadequate!}', e.g.. it is increasingly excitable 
during photostimulation ( I’anayiatopoulos et al.
1972)r

Normal data and address buses also adopt this sim­
ple mode of work. As a result, more seeondar} and 
tertiarv epileptic foci arise with the help of subcortical 
pathways. Thalamocortical pathways likewise adopt 
this mode of firing to pass it on to the whole cortex. 
The latest svstems designed to inhibit this type of ep- 
ileptogenesis are the brain-stem modulation systems, 
w hich are inhibitory by their very nature. If even those 
structures fail there is a manifest epileptic paroxysm. 
Specifically, the system of paradoxical sleep fails dur­
ing epileptogenesis (Label et al. 1977, Faber and Vla- 
dyka 1984). A similar mechanism underlies the devel­
opment of psychoses. About one third of psvchotics 
have an F.P deep in their brain (Sem-Jacobsen et al. 
1955, Trimble 1984, Heath 1975, Faber and Vladyka 
1987) and also altered brain-stem modulations, which 
is manifested bv lack of NON REM sleep in schizo­
phrenia (Caldwell and Domino 1967) and by RFM 
sleep changes in depressive syndromes (Kupfer et al. 
1985).

Experimental models of “ psvehosogenesis" in ani­
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mals (Stevens and I ivermore 1978) show that the right 
kind of manipulation of brain-stem modulations can 
change the animal's "nature" and make i ts behaviour 
“funny". This can be attained by chronic stimulation 
(kindling) of mesolimbic structures leading to hyper- 
dopaminergv and inhibition of the frontal lobe. As 
a result of t h i s ,  certain symptoms of human schizo­
phrenia appear, e.g., autism. Most drugs designed to 
control schizophrenia are of the antidopamine tvpe. 
e.g.. phenothiazines or butvrophenones.

4.T:. Diencephalo-temporal circuit
The diencephalo-temporal or septo-hippocampal 

circuit (SH) is part of the limbic system. It represents 
structures phylogeneticallv older than the thalamo­
cortical circuit and, in terms of function, it is domi­
nant in reptiles, birds and, partially, in primitive mam­
mals. The SH regulates emotions and behavioral auto­
matisms and shares in data storage in memory. The 
hippocampus is regarded as a register of memory, i.e., 
determining when and where events happened, giving 
them the idex of time and space (O'Keefe and Nadel 
1978). Pathological functions take the clinical form of 
temporal epilepsy or psychotic states (Servit 1983, 
1987).

As already mentioned, the LS appears to be the site 
of interaction between impulses and incentives in the
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motivation play. Objects of  the external world have no 
absolute value in themselves; it is man that gives them 
this “value” by wanting or not wanting them. This in­
terplay of “desire or rejection” is defined in terms of 
motivation, i.e., interaction of impulses and incentives 
or interplay of inborn and acquired tendencies. This 
“ play about human happiness” appears to be co-de- 
termined by another factor, a set of  general intellectu­
al qualities, most of them congenital but developed by 
education and localized in the thalamocortical system. 
The general term for this factor is talent. Impulses, in­
centives and talent may sometimes be at variance. 
A harmonious personality is marked by those pheno­
mena being well balanced.

Anatomically, the SH circuit includes most of the 
limbic structures: nuclei septi pel I ucidi in mammals, 
area adolfactoria in humans, nuclei interpeduncu- 
lates, nucleus habenulae and amygdala interconnect­
ed bv the stria medullaris and stria terminalis. The SH 
further includes the hippocampus, corpora mamillar- 
ia, nucleus anterior thalami and gyrus cinguli; these 
structures are interconnected by the fornix and fascio­
la cinerea, and make up the Papez circuit (Papez 1937) 
and the Fisher-C urry circuit (Val/eli 19X0, Marsala 
1985). (I:i%. 13>.

The physiological F I G  activity of the human SH 
system is probably very much like that in all primates, 
with fast theta and slow alpha (7 9 Hz). This activity
is imparted by rhythmically firing neurons in the sep­
tal or adolfaetorv areas. This system secretes on the

synapse acetylcholine as the mediator, which accounts 
for its description as acetylcholinergic. Its axons come 
by way of the fornix where there are also important fi­
bres from the corpora mamillaria for memory and sex­
uality. Other projections to the hippocampus pass 
along the perforant path carrying information from 
the area entorhinalis which, in turn, receives informa­
tion from the primary and secondary associative 
fields. These impulses are non rhythmical and carry 
information mediated from sensory organs.

The perforant path terminates in excitatory syn­
apses on the apical dendrites of hippocampal pyram­
ids and granular cells of the fascia dentata, which is 
part of the hippocampus. Fibres from the fornix touch 
with their excitatory synapses the trunk of dendrites 
and granular cells of the hippocampus. The axonal 
collaterals of the cornu Ammonis (C'A) pyramids and 
granular cells of the fascia dentata project to the bas­
ket cells and from there back to the same pyramidal 
cells. This is a well known negative feedback recur­
rent collateral inhibition, the only inhibition in the 
hippocampus. Other excitatory connections include 
moss fibres from the granular cells and Schaffer’s col­
laterals, i.e., fibres projecting from ( A3 into ( Al in 
the hippocampus (Eccles 1973). Schaffer's collaterals 
have a powerful excitatory effect, the kind of kindling 
going on here is very effective, and epileptogenesis 
takes a rapid course (Wadman et al. 1983). Due to the 
fact that in the hippocampus there is a predominance 
of excitatory over inhibitory synapses at a ratio of 4:1,

/ V.tr /.X Schema of hippocampal structure showing its three- 
cotations ( I Conut imams. (iC

laver organization.Pyramidal neurons exhibit four excitatory and one inhibitory af'ler- 
gramtlar cell. Other abbreviations the same as in Pig. S. 9j .
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this structure is noted for great excitability, i.e., a low 
paroxysmal threshold. This was repeatedly shown in 
classical experiments with strychninization and, more 
reeenth. with chronic electric stimulation inducing 
,i kindling effect (Goddard and Douglas 1975).

The LS includes also a neocortical part such as the 
gyrus cinguli and fronto-orbital cortex. These are the 
sites lor psychosurgical operations, as artificial lesions 
made there often bring considerable relief to psychot- 
ics suffering from anxiety, compulsive ideas and de­
pression (Fulton 1951). Gray (quoted from Howard et 
al. 1982) described BIS and BAS. two systems closely 
related to anxiety and aggressivity. The BIS (behavior­
al inhibition system) arises from the following ana­
tomical structures — gyri fronto-orbitales, nuclei septi 
and gyrus hippocampi and its purpose is to inhibit 
motoriuts in conditioned reflexes and in complex be- 
haxiour. Fh perfunction of this system results in exces­
sive inhibition felt subjectively as tension or even anx­
iety. Frontal lobotomy, i.e., separation of the frontal 
lobes from the rest of the brain, leads to suppression 
of anxietx but mostly also to personality devastation. 
Hence today's preference for but minor lesions made, 
as a rule, in the innominate zone, anterior capsule, the 
anterior part of the gyrus cinguli. This helps to supp­
ress anxietx while the patient's personality remains in­
tact (Laitinen ¡974). (Fig. 14).

BAS stands for behavioral approach system. Ana­
tomically, it comprises the lateral hypothalamus, later­
al septal nuclei and the fasciculus longitudinalis tei- 
encephali or medial forebrain bundle, and also part of 
the amygdala.In terms of function, this structure un­
derpins behaviour. Hyperfunction there leads to im­
pulsive or even aggessive behaviour. Hence, psycho- 
surgery designed to suppress aggressivity has its tar­
gets in the lateral and dorsal hypothalamus and in the 
amygdala.

4.F. On the one hand, nuclei of the brain stem exhi­
bit an inconspicuous anatomy with simple clusters of 
neurons; on the other hand, not enough is as yet 
known about the interneuronal connections within the 
nuclei. In contrast, rather a great deal is known about 
the internuclear connections. These constitute a very 
complex network and permit the “ formators” to take 
turns in their activities (Hobson 1977, Petrovicky 
¡981).

5. Sensorium

Let us say that the term sensorium denotes con­
sciousness (das Bewusstsein, conscience, soznaniye). 
From the psychophysiological point of view, we can 
see it as a phenomenon of three qualities, namely.

Fig. 14. Gray's BIS (behavioral inhibition) and BAS (behavioral approach) systems, two circuits, each combining emotional and psychomotor ac­
tivities. iMFB = medial forebrain bundle, i.e. fasciculus longitudinalis telencephali, pathways for NSA.)
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Fig. 15. Attempted interpretation o f the complex notion conseiousnessensorium, according to electrophvsiological findings. Parts o f consciousness 
can he classified as input: sensory function (seeing, hearing), mental processing: (MENTAL P.) (gnostic function, abstract thinking), output: psv- 
chomotor activity (behaviour. speech). States o f consciousness are vigilance. NON REM sleep and REM sleep, pathological states are e.g. epileptic 
paroxysms or psychotic raptures. Types (or kindest o f  consciousness rationed, emotional. Left above: LEG curve o f semisubclinical epileptic
paroxysm, the higher mental activity disappears, but simple reactivity to external stimulation remains. Right above: EPILEPTIC PAR.. CLINI­

CAL ATTACK, i.e. loss o f consciousness.

quality of state, quality of type, and quality of parts of 
consciousness (Fig. 15).

5.A. States of  consciousness vigilance, synchro­
nous sleep and paradoxical sleep — are so different 
from one another that they can be viewed as mutually 
independent states. They are inborn phenomena deve­
loped in the 7th month of foetal life, i.e., well within 
pregnancy, and defined by different regimens of the 
brain. Each exhibits a distinct metabolic and EEG ac­
tivity. They are rhytmically repeated and take turns 
throughout each individual’s lifetime. During wake­
fulness, the organism receives information from the 
environment and energy from food, during sleep, the 
process of learning continues with information being 
stored in memory, selected and abstracted. These are 
states of the 1st order, and they are determined solely 
genetically. They follow a pattern of periodic activity 
controlled from specific centres in the brain stem as 
listed under 3.D. The archicortex and the neocortex 
operate somewhat differently from each other, but 
their activities are co-ordinated bv means of brain­
stem modulation into mutual association. Disordered 
co-ordination results in dissociation and in a patho­
logical state. For example, hypofunction of the neo­
cortex may produce anxiety or hysterioform behav­
iour very much like in archicortical hyperfunction.
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Conversely, hypofunction of the archicortex may give 
rise to depersonalization and other symptoms of psy- 
chasthenia. Marked and prolonged insufficiency of 
the modulation systems produces deeper-seated disor­
ders. For instance, NONR FM sleep deficiency may 
lead to the schizophrenic syndrome. REM sleep insuf­
ficiency may result in epileptic attacks, and REM dis­
organization may provoke depression.

States of consciousness of the 2nd order are deve­
loped postnatally. They include focused attention, or­
ientational attention, conditioned reflex development,  
concrete thinking. There are also corresponding elec- 
trophysiological manifestations: focused attention has 
its EEG counterpart  in synchronous alpha or theta; 
orientational attention — desynchronized activity and 
beta activity (Gestaut et al. 1957).

States of consciousness of  the 3rd order are specif­
ically human conditions. They are mechanisms of 
speech or phatie functions, speech understanding, 
speech production, reading, writing;, in general — 
mnestic functions, i.e., the ability to associate words 
and phrases with their meanings, or thoughts with 
their expressions. Also included in this category is ab­
stract thinking such as logical reasoning, calculation, 
etc. Duffy et al. (1981) and later a number of  other au­
thors, too, were able to prove that this activity is like-
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wise EEG-detectahle by means of mathematical-statis­
tical data analysis.

5.B. The type of consciousness is another quality, 
the rational and emotional aspects of consciousness. 
As already mentioned, the rational functions are situ­
ated in the neocortex, emotional functions in the ar- 
chicortex, in particular, the hippocampus. Electric sti­
mulation of the neocortex or epileptic discharges in 
the same structure will excite or inhibit gnostic or 
phatic functions, evoking, e.g., visions of faces or 
causing “ speech arrest” . Electric stimulation or ep­
ileptic discharges in the hippocampus can often pro­
voke anxiety or fear, rarely also voluptuous experi­
ences (Faber and Vladyka 1984, 1987, 1988).

5.C. Parts of consciousness constitute the third 
quality. I. the qualitative aspect comprises (a) sensory 
perception (analysis of things seen or heard), (b) men­
tation; this is just another aspect of the functions list­
ed under “ states of consciousness of the 3rd or­
der” .Here they are viewed as a separate category pot­
entially related to another separate cate-gory, e.g., to 
REM sleep. We can see then that mentation exists 
even during this type of sleep, albeit quite different 
from mentation in wakefulness. And last, (c) motor ef- 
ferentation or action response to stimulation, behav­
iour. 11. the quantitative aspect relates to the gradual 
loss of quality; lucid vigilance, somnolence, stupor, 
coma. The quantitative aspect is classified either as 
physiological, i.e., the simultaneous inhibition of all 
functions as we go to sleep and during sleep, or as 
pathological, i.e., slow and simultaneous extinction of 
psychic functions in the course of extracerebral coma 
such as hepatic, diabetic or uraemic coma. In an ep­
ileptic paroxysm, these functions usually come to an 
abrupt end, but in some absences or pseudoabsences 
(possibly also in their temporal equivalents) only 
some functions will become extinct while others re­
main relatively preserved such as, for example, dis­
cernible loss of phatic functions (speech disturbance) 
in the presence of preserved simple reactivity (Faber 
1975).

Similar situations may arise in cases of narcolepsy 
where, during lapse into sleep, there may be a brief 
spell of paradoxical sleep in the form of hypnagogic 
hallucinations. Or in the course of waking up, there 
may be a discrepancy between vigilance, already func­
tional, and muscular atonia persisting after paradoxi­
cal sleep with the patient perceiving all this as a dis­
agreeable state of paralysis. Here we refer to the phen­
omenon of sleep paralysis which even perfectly heal­
thy persons may experience once or twice in their life­
time. All the above listed qualities of sensorium have 
their electrophysiological, especially EEC), correlates.
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NEUROCOMPUTING AND CONSCIOUSNESS
l). L. Koruga *)

Abstract:
This article deals with the problem of interrelation 

between neurocompilling and consciousness. Neurocom­
puting is approached from the aspect of the space-time 
structures, while consciousness is perceived as a link be­
tween states of mind and images of these structures in 
the brain. This approach leads to a relativistic model of 
information theory, and opens up the possibilities of 
linking information with mass and energy.

B> considering neurocomputing and consciousness, 
a new field of science emerges which can be named: in ­
f o r m a t i o n a l  physics.  In the final discussion, one ex­
tra problem is considered: Can a machine, as a form of 
artific ia l life, posses consciousness?

1. Introduction

From the point of view of importance, the question: 
What is concioiisnessV. comes after the questions: 
why are these essents rather than nothing? 111. and 
what is time? Consideration of the relationship be­
tween neurocompiing and consciousness opens up 
new possibilities of closer answers to these questions.

In the scope of our recent research |2. 3J in the field 
ol bioinl'ormatics. we have shown that information 
processes as space-time patterns depend on the vo­
lume of the unit sphere in the N-dimensional space 
|4. 5]. I he values of the unit spheres in N-dimensional 
space are given in I'able I. In this table, appear the 
positive dimensions, the negative dimensions, and the 
dimension N 0.

Considered from the informational aspect the opti­
mal space is five-dimensional, and it appears as both 
positive and negative. Having in mind that a N 0 
space also exists, we will assume that the main infor­
mational state represents the unity of N 5 and N 0. 
x'(5°) I where \  means the information code of di­
mension N 5 and N 0 tFig. la). The unity sphere 
N () contains the entity whose dimension is d = 3 2. 
and volume is ( - I. which is equivalent to the value
of the space information code v(5°). In other words, 
there is a correspondence between x (5°) and C„.

*1 Prof Djuro I . Koruna.
Molecular Machines Research ( entei 
I acuh> ol Machine I ngiiiccrinu 
l imersin of Belgrade 
27. Marl SO. I in no Belgrade 
Vugoslas la
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lei & l a \: (3X111 320 201
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»1
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■r
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In order to establish a connection between the inf'or- 
motional approach, the result of which is Table I. and 
the physical approach it is necessary to find a physical 
entity which, in five-dimensional space, has a dimen­
sion d 3 2. and whose volume is ( I.

It is well known from quantum field theory [6] that 
the dimension of  mass, as a real physical entity , is cal­
culated from the expression:

(Iill (I)

where d is a dimensional space-time value. In the 
main information state x(5°) the mass dimension 
based on the expression (I) is «/,„-■= 3/2. In other 
words, the real physical entity which contains in for­
mation code is mass in the state */(3/2, (.' ).

Fig. I Two soli ilinns when N 5: a) optimal ami hi quasi optimal
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From our results shown in Table /, it is implicated 
that N = 0 as d ( 3/2, C 0) may, from the aspect of infor­
mation, pass into the new state d(3/2), because 
N (3 ) . N(2) -  N(0). I n this case we again have d = 5 
in N = 2, but we also have d = 3 in N = 3 (Fig. lb).

We know that our awake consciousness is a result 
of brain information processing with interactions from 
the real world. We present every event of objective 
reality as:

x =  X,, v =  x 2, z = x,, / = / (2)

and this is our four-dimensional world. One of the dif­
ficulties is to visualize four-dimensional space, as we 
observe a three-dimensional world through our visual 
system and through information processing in the 
brain which makes us conscious of it.

In Minkowski’s approach [7] to four-dimensional 
space there exist the speed of light as a factor of four­
dimensional space. It is possible to write this as

x] + x \  + x j  — c2 t 2 = 0. (3)

This means, having in mind Fig. lb and Table /, that 
ct is dimension N = f. But from our results given in 
Table I there must be one more relationship between 
the three-dimensional space (x,, x 2, x,) and time (t). 
From a dimensional point of view we can write a four- 
dimension as follows:

c ■ f(--=) m , - (  = ) — . s (4)

and there is only one more possibility for a relation of 
one of three dimensions (x,, x 2, x 3) and time ( t ) as

m .~s ( = ) m . s ~ (  = ) k k . F  (5)

where: Kh is a cardinal dimensional measure as a main 
information code of space time structures and f  — 
frequency.
Now we can write:

X2 + x 22 + x  \ — (ct)2 — ( k k .JY  = 0 (6a)

or

x] F x \ F  x]  = (ct)2 + (KK. f ) 2 (6b)

and we can see that it is equivalent to Fig. 1, where 
N = f is ct and N = 2 is k k . f

Dimension N ~2  is the product of cardinal dimen­
sional measure as a unity of space-time, and frequency. 
According to equation (5) k K has to have the opposite 
meaning of velocity in the classical sense, because it 
represents the space-time code as a state of rest being 
the same value as light velocity, as an invariant measure 
of space-time.

2. information Physics

According to our results, from both information 
and physics point of view there exist the realities 
which can be called Holopent, marked H(5) H(3/2). 
In Greek holos means entire, and pente means five, so 
we named this reality Holopent, since its base is five­
dimensional.
a) We will define consciousness as the informational 

state of Holopent, marked cH. It should be noticed 
that there exist cH(5) and cH(3/2). cH(5) is defined 
as mapping:
cH(5):H(5) -*■ v(5°), and cH(3/2) is defined as 
mapping:
cH(3/2): cH(3/2) —► cH(3/2), while there are two 
levels:

First level: cH(3 /2)N , 4 = cH4 (7a)

Second level: cH(3 /2 )N . 2 s = ¿'FT (7b)

where we define:

the perceptive consciousness cpH as: 

c p \H :fM(3) —► e l f  -  lower level

cp2H:N(3) —► cH^ higher level (8)

the non-perceptive consciousness cueH as:

cucH : IM(T) -> cH 5 (9)

the self-consciousness csH as:

csH :cH(3/2)  —► cH( 3/2) (10)

b) We will define neurocomputing (nC) as: 
biological:

nlyC:  N(3) -> N(T)t 4 — external (I la)

nb2C: N(4) -> N(T)T- 4 — internal ( l ib )

artificial:

N(T) -> N(2) — first level (11c)

na2C : IM(2) -► N(3) — second level ( l id )

na2 C : IM(4) -► N(3) — third level ( l ie )

From the aspect of informational physics, it is possi­
ble to realize artificial consciousness only as:

a) N(4) . INI(3) = INI(O) (12)

while in the base o f  biological consciousness is the re­
lation:

N(2) . INI (I) -  N(0) ~  first level 

N(3) . N(2) = IM(0) — second level (13)
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because the expressions ( 12), and (13) give M(0) = 
H{3/2) which we defined as the point of departue of 
consciousness.

Relation with m  5) have no meaning because the 
N(5) is optimal by itself. In the negative dimension 
N = 3, 4, . . .  dimension values 6, 7, 8 , . . .  appear, 
which means that dimensions greater than N = 5 also 
have no meaning.

By further application of  the quantum theory [8] it 
is possible to arrive at Table II which presents the 
neurocomputing as a mapping of reality into its own 
image and the appearance of the consciqusness of the 
reality, because it is possible to write the expression 
(16) in the following way:

I oo
/ ( R \ t )  = f//(r, t) = h ' J  {//(/>,£)exp

2.1. Information Physics and Biological Neurocomput-
ing

In the scope of biological neurocomputing there 
exist two main possibilities given in relations ( 11a) 
and (I lb). The contemporary approach of neurocom­
puting (pattern recognition, vision, attention, etc.) is 
given in relation (I la), while the relation ( l ib )  ex­
presses the neurocomputing which leads to the first le­
vel of  consciousness as:

nb2C: N(4) > l\l(T) -* clT (14)

i. e. real physical processes IM(4) map themselves into 
the space-time structures. We will define information 
I ( R \  t) as a space-time pattern in (x,, x 2, x 3, /)-space 
which is the true picture of the real physical world in­
to the IM(4). Having in mind that the dimensions in 
Table I are reciprocal |(N(2) — N(1 ), !M(3) N(2 ),
N(4) -  N (3 ) . . .}, and so are, accordingly, their 
spaces, we will take the Fourier-space, as a reciprocal 
space, for the connection between reality and the pic­
ture o f  reality.

From the aspect of informational physics we can 
define the Fourier-space by using the variables k  and 
co where:

I n
T ’ co = 2 nv (15)

where A is wavelength and v frequency of the wave.

By using Fourier transformation it is possible to write
[8]:

P E
h

d p
(2 n f

d E (18)

and the inversive information gives:

N(4) = il/(p,E) = J  y/(r, /)

exp p , E 
h ' ~ h 1

dr d /
(2 n )

(19)

The connection which is realized between I ( R \  t) 
and N(4) is established upon the following relations:

Ai h — y f y t )
or l^  J PV(p, E) exp | i

- OO V

dp
d E

where:
(2 it?

or ox, 1 Ax, Axf

(2 0)

(21)

and operator p which is equivalent to the momentum 
P :

P = —i h ~ o v  Pi = —  ; i -  1,2, 3. (22)

Similarly it is possible to write equation (19) in the fol­
lowing way:

I (R  \ t ) = J F(k, co) exp {ifk • R cot])
dk

(2 nf
dco

(16)

xh— if/ {n ,E )=  ¡pip(p,T)

and in that way, in the scope of the F(k, co) space, it is 
possible to measure the values which determine the 
information I ( R 3, t ), as a space-time pattern.

On the other hand, we can bring together the vari­
ables k, co with the energy (E)  and momentum (p ) in 
the following way:

E = hoy p — hk .  (17)

On the basis of energy and momentum, we define 
N(4) — space as IM(4) = (p, E) — space where p has 
components P\, p 2, p%-

exp d r
dt

(2 n )
(23)

¿ 7

where the operator -i/z^g. is equivalent to time, so

that in the brain, as the quantum mechanical machine, 
an image on the external world (x,, x 2, x 3, t ) is formed 
through the sensor system, but also the picture of the 
non-perceptive world on the internal world ( - \ h . 3 /  
Ax, 2,3 and ih . B/dt)  the images of which can be seen 
during the sleep or in some altered states of concious- 
ness.
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2.2 Information Physics and Artificial Neurocomputing
\

In the scope of the artificial neurocomputing (ex­
pression ( l ie ) )  which can bring to the artificial con­
sciousness (expression (12)) it is possible to define the 
space N(3) = ( R \  E) — space and its image H(3) = 
(/?, t) space-time structure as it is given in the Table 
III.

It is necessary to introduce the following state value 
in order for the fourth dimension to exist through the
energy;

* 4 = E - 7r(= ) !kg 7  ( = ) m (24)

which is reciprocal to the force, and which can be ex­

pressed by y, = Fa. In the context of the relationship

between space and time, new value in N(3) can only 
appear as the combination c from l\l(T) and / f ro m

N(2), as a new value: C f ( =  ) cfx0) =  which

shows that the inversion in the expression (24) is ac­
celeration of gravity. C f ( = ) c(Xo) if and only if 
/  = 1 Hz, where x> is here cardinal logical operator, 
and c is space-time invariant. In other words, the 
coupling of the consciousness with the mass is possible 
on the principle of inversion of gravity, similarly as 
the coupling of the conscio us ness with the electricity is

Table II: Parameters o f the biological neurocomputing (Adapt, from
Ref Si.

REALITY PICTURE OF REALITY
IN THE BRAIN

N(4) = (p,E) cB4 = I U 3,i)

d
i h *i

d p x

d
i h — *2

dp2
d

ifi *3
dp3

d
- i  h — t

8E

d
Pi - i h —

8 x x

d
Pi —  i h ----

¿be 2

6
Pi — i h ----

¿be 3

d
E ih —

dt

achieved in biological systems. The relation between 
the biological and artificial consciousness on the basis 
of the informational physics is given in the fig. 2.

3. Relativistic Theory o f  Information

It was shown in (3) that K k from the expression (5), 
as a cardinal information code, is a space-time pattern 
with the value 3 . I0l0[cms]. Since this entity ( k\.) par­
ticipates in cH'  (expression 7b) and cucH (expression 
9), i. e. in determination of the second level of our 
consciousness, and in mapping of the contents from 
the first level of the consciousness into the second le­
vel, then it necessarily means that there is a direct con­
nection between the consciousness cIT  and the biophy­
sical state of k\. According to equation (6b) the fre­
quency as the co-factor I t  which gives different states 
of consciousness. First assumptions on the connection 
between the consciousness and electro-magnetic 
waves, based on intuition and without the knowledge 
of the nature of this connection, are given in the stud­
ies [9, 10]

A cardinal information code k\  as a property of Hol- 
opent H(3/2) according to equations (6a) and (6b) di­
rectly correlates with speed of light and biomolecular 
and brain frequency. In other words basic molecular 
information “ hardware” of the brain and its frequen­
cy are coupling.
Table III: Parameters of the artificial neurocomputing which leads to 
the phenomenon o f the artificial consciousness (Adapt, from Ref. S).

REALITY 
N(3) = ( , E)

PICTURE OF REALITY IN 
ARTIFICIAL BRAIN

U p i 3 t  ) = H (3)

8
x i i h ----

dp i
8

.X, i h ----
dp 2

8
*3 i h ----

dPi

8
- ih — t

8E

8
ih Pi

8 x x

8
— i h ---- Pi

8 x 2

8
ih Pi

8 x 3

8
E ih —

8t
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FUNDAMENTAL CONSTANTS:

\

H ( 'Vo )
h- Physical
c- P hysica l-In fo rm ational 

H-- Inform ationalK.

N ( 4 ) ( r E) — ► ( S t ) N ( i )

h ( a3K i)

o

/ ----“X H(3) = (p , t )

N(3)(R!.E) -----------
V __/  c ( Xo)

b t )  N(2)

&)- Cardinal lo g ic a l  operator 
V ___ J
Fig. 2 Connection between the natural and artificial intelligence 
based on information physics, The Holopent 11(3/2) is in the back­
ground as the non-manifested mass. The physical reality is the 4-di­
mensional space N(4)-space. The first realization o f the N(4) space is 
the lower level o f  the biological consciousness in N(7J, and further real­
isation into IM (2), as a higher level o f the biological consciousness. In­
teraction ofH(4) and N(l)  gives IM/?) which is the artificial conscious­
ness. As the point o f departure o f this process is in H(3/2) which is 
based on the laws the golden mean, (see Ref 3), then the origin o f 
IM//), N(2) and IM (3) and their information codes must follow the same

Fig. 3. Typical episodes o f the electrical activity o f  the human brain 
as recorded from the electroencephalogram (EEG) together with the 
corresponding phase portraits. These portraits are the two-dimensional 
projections o f three dimensional constructions. The EEG was recorded 
on a FM analog tape and processed off-line (signal digitized in 12 bits, 

250 Hz freq., 4'1’ order 120 Hz low pass filler). ¡A fter ref. 11]

From our point of view a very useful quantity for 
the characterisation of brain dynamic activities as 
Holopent H{3/2) is EEG, This is one of the tech­
niques for recording the electrical activity of the brain 
and if we record EEG together with phase portraits, 
as a two-dimensional projection of the three-dimen­
sional constructions, it is possible to find a relation 
between states of EEG and 77(3/2) through fractals 
[3].

Figure 3 illustrates typical episodes of the electrical 
activity of the human brain as recorded from the elec­
troencephalogram. Figure 4 presents the hierarchy of 
brain states in function of their magnitude, 

a)

10
Eyes open

& R E M

~a
c
o Eyes closed

in
C  5

Sleep 7

E
Sleep h

b Epilepsy
t—.—— — —---------------— — — — —-•

■ i ........... ...i. i i
0 30 60 90 120

E E G  absolute v o lta g e (rV)
Fig. 4a Representation of the hierarchy of brain slates in function o f 
their magnitude. An obvious relation is seen between the EEG variabil­
ity, quantified by its dimensionality, and the EEG synchrony as re­

flected by the magnitude o f the voltage. ¡A fter ref. 11]

b)

Fig. 4b A simplified “hypnogram " o f  sleep stage changes over the 
night in young human adults. [After ref. 12]

A very significant problem, closely related to con­
sciousness, is subjective time sense. From everyday 
experiences it is known that subjective time sense de­
pends on our psycho-physiological state. So, many 
people have sense that the objective time in childhood 
has elapsed slower than in adulthood. Even more stri­
king dilatations of subjective time sense have been ob­
served in altered states of consciousness (REM sleep 
phase, hypnosis, meditation, the psychedelic drugs in­
fluence and some psychopathological states, and 
near-death experiences).
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In the frame-work of the model the “ subjective*' 
reference frame will be attached to the electromagnet­
ic component of the scanning brainwaves, and the 
“ objective" to the structure of k\  (cardinal informa­
tion code) which is in each neuron of the brain. In 
fact, the “ subjective" reference frame will be attached 
to those brainwaves whose informational content ref­
er to individual “ self". It is understood that the infor­
mational content of the individual “ self" is simultane­
ously excited (from the brain's structure with k\  pro­
perties — DNA, MT and neural network, to the brain 
waves) every time when any new information or sen­
sation is excited.

A physical mechanism that can account for the stri­
king dilatations of available subjective time is the re­
lativistic one, if only consciousness can be associated 
with k\. (cardinal information code) as a reference 
frame in the neuron and brain. Such a “subjective” 
reference frame could be only associated with an elec­
tromagnetic component of brainwaves, which are gen­
erated by microtubule waves (as a part of k\  ) and 
their ionic currents inside the MT, through collective 
action of a great many of the neurons in the brain.

Microtubules are cell organelles with the outer di­
ameter around 30 nm and inner diameter around 
14 nm (Fig. 5a). The outer layer of the microtubule is

Fig. 5a Diagram o f the basic structure of a normal eucaryotic micro­
tubule: as described in the text, most microtubules arc assembled from 
15 longitudinal protofilaments, each made up of polar tubulin dimers. 
A dimer consists o f two related monomer subunits o f about equal mole­
cular weight (55 000) but with specific differences in amino acid se­
quence. The dimensions shown are those determined for hydrated spec­

imens by X-ray diffraction. [Adapt, from ref 18]

Microtubule Resonances 
Electromagnetic-SxlO15 Hz 
Acoustic » 5xl01iHz

Cell Circumference 
Resonance
Electromagnetic -1012 Hz 

Acoustic =■ 107 Hz

Tubulin Dimers

Surface Tension Waves 
Resonance =  1(3 Hz

glycoprotein antenna

cell bilipid membrane

Cell Membrane:
thickness 10 
potential 0.1V 
field 107 V/m

Membrane Resonance 
Electromagnetic = Ax1015Hz 
Acoustic -  7x1O10Hz

Fig. 5b This figure is a physical model o f an "ideal'’ biological cell 
showing its possible resonances. Since most biomolecules are electrical 
dipoles they will behave like microphones turning acoustic waves into 
electrical waves, and like loud-speakers turning electrical waves into 
acoustic waves so. the whole cell whiff-act as an oscillating interacting

entity [After ref 18]

exposed to the effect of the ions from the cytoplasm 
which affects the changes of the mass and the dipole 
moment of the subunits. Due to the change of the di­
pole moment and the mass of the subunits, MT oscil­
late with the following electromagnetic and accustic 
frequencies: fEM ^ 6 . 10 15 Hz and fAC «  1010 Hz [13]. 
The ion currents of very low intensity 10 — 100 nA 
may appear inside the microtubule, with the very low 
concentration of ions which gives relative dialectric 
permitivity: r.r -  1 + (1 0  10 — 10 '■). Having this in 
mind we can say that the speed of flow of the ion cur­
rent [14] in the microtubule is

v = - t— = const. (25)
V+r

Relativistic relation between the frequencies [15, 16] 
measured in the two reference frames, moving away 
from one to another (a  = n ), it is possible to write in 
this form:

According to the equation (26) it is possible to cal­
culate the frequency which is implemented inside the 
microtubule on the basis of the electromagnetic
waves:

'a y £,
.1 = 6 10" • — -  (27)

which for values ex = I + ( 0 , 5 - 2 0 .  10 ,5) gives the 
frequwency range from 1 — 60 Hz. Having in mind the 
sub-neural factor MT for the neural metworks [ 17] and 
the work of the brain on the whole, it can be said that 
the electromagnetic waves of the brain (EEG) origi­
nate from the oscillatory processes of microtubules 
and ion currents which form in them on the basis of 
the relativistic phenomena / Hr;lin = / ^ T(c, c r).

Taking into account all that we said above, we can 
write:

A ,  sub =
r., 1 » A /0 (28)

where A/”bj is the real physical time which gives kk 
(cardinal informational code), and A /subj — time 
which is implemented inside the MT as a whole 
acquires this property through the multitude of neu­
rons.
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4. Conclusion

In this paper we considered the phenomenon of 
consciousness and its connection with the neurocom­
puting from both aspects: fundamental physical laws 
bases on the quantum field theory, and neurcomput- 
ing based on the toplogical-geometric approach. It 
has been noticed that the consciousness as the global 
property of the brain has its point of departure on the 
molecular level. Phenomena that appear on the rela­
tion: sub-neural osccillatory processes — brain, are 
based on the relativistic phenomena. This shows that 
the informational physics applied to the biological 
systems is actually relativistic. These results throw 
new light on the problem of the subjective, and open 
up new field relativistic cybernetics, as a science 
based on informational physics,

As a result of research it is conclusive that wave-par- 
tide phenomena exist as do pure wave and pure code 
o f  tc{5°). As H(3/2) is in relation to H(3/2) through c 
and and H(3/2) being related to k (5°), then in c 
(light) there must exsist pure wave devoid of energy 
and momentum, concluding that in structures ob­
tained in x, (MT, DNA) there must exist pure code de­
void of mass. Experimental technique for both entities 
could be identified, this being one of the objects of 
our future research.
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Book Review:

Wasserman P. D.: Neural Computing: Theory and Practice
Van Nostrand Reinhold Co. , New York, NY U. S. A, 1989, 
230pp. , ISBN 0-442-20743-3

This is one of the first book on neural networks theory. It 
covers main paradigms used today: perceptrons, backpropa- 
gation, counterpropagation, Boltzmann machines, Hopfield 
nets, bidirectional associative memories, adaptive resonance 
theory (ART), optical and biological networks. Neither the 
topics nor their presentation are original, the book is (delib­
erately) repetitious (each chapter is intended to be self-con­
tained), used formalism is rather simple (with little mathe­
matics involved) and some parts are not quite well elaborat­
ed, stressing more description than explanation (e. g. when 
treating backpropagation). It is often difficult to conclude, 
which model is suited for particular application and which 
problems you really meet (in this way the „Practice“ from 
— the title has limited meaning). On the other hand it repres­
ents a good introduction to specific models with general as­
sessment of their properties and contains many Concepts 
relevant to the topics like stability, local minima problem, 
parameter setting, classification of various learning strate­
gies etc. It also provides basic references for further study. 
In general, it is a good introduction for a beginner, assum­
ing that he/she would continue, reading at least some items 
listed in the bibliography and/or some more advanced mo­

nograph [like Hecht-Nielsen’s — see p. 57] to get more in­
formation on network composition, higher mathematics 
considerations and real applications.

J. Horejs

Books Alert

The following books can be interesting for the readers of 
our Journal:

Analog VLSI Implementation of Neural Systems. Ed. Car­
ver Mead and Mohammed Ismail. — Boston, MA: Kluwer 
Academic, 1989, 248 pp., bound, $ 55. 00, ISBN 0-7 
9923-90407.

The contents are as follows: “A Neural Processor for 
Maze Solving” ; „Resistive Fuses: Analog Hardware for De­
tecting Discontinuities in Early Vision” ; „CMOS Integra­
tion of Herault-Jutten Cells for Separation of Sources” ; 
„Circuit Models of Sensor Transduction in the Cochlea” ; 
“ Issues in Analog VLSI and MOS Techniques for Neural 
Computing” ; “ Design and Fabrication of VLSI Compo­
nents for a General Purpose Analog Neural Computer” ; “A 
Chip that Focuses an Image on Itself’; “A Foveated Reti­
na-Like Sensor Using CCD Technology” ; “Cooperative 
Stereo Matching Using Static And Dynamic Image Fea­
tures” ; “Adaptive Retina.”
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LEARNING IN A PARTIALLY HARD-WIRED
RECURRENT NETWORK

C-M . Kuan*), K. Hornik**)

Abstract:
In this paper we propose a partially hard-wired El­

man network, A distinct feature of our approach is that 
only minor modifications of existing on-line and off-line 
learning algorithms are necessary in order to implement 
the proposed network. This allows researchers to adapt 
easily to trainable recurrent networks. Given this net­
work architecture, we show that in a general dynamic 
environment the standard back-propagation estimates 
for the learnable connection weights can converge to 
a mean square error minimizer with probability one and 
are asymptotically normally distributed.

1. Introduction

Neural network models have been successfully ap­
plied in a wide variety of disciplines. Typically, appli­
cations of networks with at least partially modifiable 
interconnection strengths are based on the so-called 
multilayer feedforward architecture, in which all sig­
nals are transmitted in one direction without feed­
backs. In a dynamic context, however, a feedforward 
network may have difficulties in representing certain 
sequential behavior when its inputs are not sufficient 
to characterize temporal features of target sequences 
(Jordon, 1985). From the cognitive point of view, 
a feedforward network can perform only passive cog­
nition, in that its outputs cannot be adjusted by an in­
ternal mechanism when static inputs are present (Nor- 
rod, O ’Neill, & Gat, 1987). These deficiencies thus re­
strict the applicability of feedforward neural network 
models in dynamic environments.

In view of these problems, researchers have recently
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been studying recurrent networks, i.e., networks with 
feedback connections, see e.g., Jordon (1986), Elman 
(1988), Williams & Zipser ( 1988), and Kuan (1989). In 
a recurrent network, recurrent variables compactly 
summarize the past information and, together with 
other input variables, jointly determine the network 
outputs. Because recurrent variables are generated by 
the network, they are functions of the network con­
nection weights. Owing to this parameter dependence, 
the standard back-propagation (BP) algorithm for 
feedforward networks cannot be applied because it 
fails to take the correct gradient search direction (cf. 
Rumelhart, Hinton & Williams, 1986). Kuan, Hornik 
& White (1990) propose a recurrent BP algorithm ge­
neralizing the standard BP algorithm to various recur­
rent networks. However, this algorithm has quite com­
plex updating equations and restrictions, and therefo­
re cannot be used straightforwardly by recurrent net­
works practitioners.

In this paper we suggest an easier way to implement 
recurrent networks. We focus on a variant of the El­
man (1988) network, in which only a subset of hidden 
unit activations serve as recurrent variables. We pro­
pose to hard-wire the connections between the recur­
rent units and their inputs. This approach has the fol­
lowing advantages. First, the resulting network avoids 
the aforementioned problem of parameter dependen­
ce. Second, the necessary constraints on recurrent 
connections suggested by Kuan, Hornik, & White 
(1990) can easily be imposed by hard-wiring. Third, 
off-line learning is made possible for the proposed 
network. Consequently, only minor modifications of 
existing on-line and off-line learning algorithms are 
needed. This is very convenient for neural network 
practitioners. Given this hard-wired network, we show 
that in general dynamic environments the resulting BP 
estimates converge to a mean squared error minimizer 
with probability one and are asymptotically normally 
distributed. Our convergence results extend the results 
of Kuan, Hornik, & White (1990) for general recurrent 
networks and are analogous to the results of Kuan & 
White (1990) for feedforward networks.

This paper proceeds as follows. In section 2 we 
briefly review recurrent networks. In section 3 we dis­
cuss a variant of the Elman network and its learning 
algorithms. We establish strong consistency and asym­
ptotic normality of the learning estimates in section 4. 
Section 5 concludes the paper. Proofs are deferred to 
the appendix.
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2. Recurrent Networks

A three layer recurrent network with k input units, / 
hidden units with common activation function (//, and 
m output units with common activation function (p 
can be written in the following generic form:

o, = <p( Wa, +  v) 

a, =  v|/(Cx, +  Dr, +  b) 

r, -  G(x, ,, r, ¡,0),

where the subscript / indexes time, x is the k x 1 vec­
tor of network inputs, a is the / x 1 vector of hidden 
unit activations, o is the m x I vector of network out­
puts, tp and ip compactly denote the unitwise activati­
on rules in the output respectively hidden layer, and r, 
is the n x I vector of recurrent variables which is 
computed through some general function G from the 
previous input x, ,, the previous recurrent variable 
r, ,, and

0 = [vec (C)', vec ( D )\  vec ( W)\ b \  v'] ,

the vector of all network connection weights. (In what 
follows, ' denotes transpose, the vec operator stacks 
the columns of a matrix one underneath the other, 
and |v| is the euclidean length a vector v.)

More compactly, the above network can be written 
as

o,= (p( Wig (Cx, + Dr, + b) + v) (1)

r, = G(x,  , ,r, , ,0).  (2)

That is, the network output is jointly determined by 
the external inputs x and the recurrent variables r. 
Clearly, different choices of G yield different recur­
rent networks. When r, = o, , (output feedback),

r, = G(x,_, , r , , 8 ) =  (p(Wip(Cx, + Dr, , + b) + v)

and we obtain the Jordon (1986) network. When 
r, =  a, | (hidden unit actiyation feedbacks),

r, = G (x, , , r, l t 0 )=  ip ( Cx, _ , + Dr,_ , + b ),

and we have the Elman (1988) network.
By recursive substitution, (2) becomes

r, = G (x,_ , , r, _, , 6) = G (x, , , G (x,_ 2 , r, 2 , 0), 0 ) =

. = • • • = :6 (x '  \ 9 ) ,

where x ' -1 = (x, ,, x,_2, • ■ •, ^ )  is the collection of 
past inputs. Hence, r, is a complex nonlinear function 
of tfand the entire past of x,. In contrast with external 
input x, . we may interpret r, as “ internal” input, in the 
sense that it is generated by the network. Given a re­
current network, the standard BP algorithm for feed­
forward networks does not perform correct gradient

search over the parameter space because it fails to ta­
ke the dependence of r, on the learnable network 
weights into account. Consequently, meaningful con­
vergence cannot be guaranteed (Kuan, 1989).

Kuan, Hornik, & White (1990) propose a recurrent 
BP algorithm which, by carefully calculating the cor­
rect gradients and including additional derivative up­
dating equations, maintains the desired gradient se­
arch property. To ensure proper convergence behavi­
or, their results also suggest some restrictions on the 
network connection weights. That is, parameters esti­
mates are projected into some “ stability” region 
whenever they violate the imposed constraints. Thus, 
much more effort is needed in programming appropri­
ate learning algorithms for recurrent networks. More­
over, some of their conditions to ensure convergence 
of the recurrent BP algorithm are rather stringent.

3. Partially Hard-Wired Elman Network

In this section we suggest an easier way to imple­
ment a variant of the Elman (1988) network. As we ha­
ve discussed in section 2, improper convergence of the 
learning algorithms is mainly due to the dependence 
of the internal inputs r, on the modifiable network pa­
rameters. To circumvent this problem, we propose to 
modify the Elman network as is depicted in figure 1.

Figure I. The proposed partially hard-vired recurrent network. Modifi­
able and hard-wired connections are represented by — respectively =*.

The hidden units are partitioned into two groups con­
taining lf respectively l, =  / — l, units, and only the 
units in the second group serve as recurrent units. In­
tuitively, the units in the first group play the standard 
role in artificial neural networks, whereas the task of 
the recurrent units is to “ index” information on pre­
vious inputs. Furthermore, the connections between 
the recurrent units and their inputs are hard-wired.

Hence, a is partitioned as a =  [af , a where a, is 
the 1, x 1 vector of activations of the (purely feedfor­
ward) hidden units in the first group, and a, is the 
/,. x 1 vector of activations of the feedback (recurrent) 
hidden units in the second group such that
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r, = a, , , .

If the connection matrices C and D and the bias vector 
b are partitioned comformably as

c  =
~Cf

, D =
~Df

, b -
" V

A D, A

then

a,:, = y/(CfX, + Dfa, , , + b,) 

arJ -  (//(£>, + D, a,., , + 7,) ,

where now Cr, D, and b, are fixed due to hard-wiring. 
Different choices of Cr, D, and 7>, determine how the 
past information should be represented, hence they 
are problem-dependent and should be left to resear­
chers.

Hence, writing the proposed network in a nonlinear 
functional form, we have

o, = (p(Wy/(Cx, + D a, , , + b) + v) =
= (3)

and
r, = a r , , = ¡//(C,w,._, + Drdrj 2 + b , ) =

= -G(x,  ,, a, t _ 2, 0s) , (4)

where now

6>= [vec(W) , vec(Cf) , vec(D f) , b|, v' ]

is the p x 1 vector which contains all the learnable 
network weights, where p ■ = m {l  + 1) + lf( k  + /, + I), 
and

8 = [vec(C ,y ,  vec(D,y ,  b[ ]

contains all the hard-wired weights. By recursive sub­
stitution, (4) becomes

r, = G(x, , ,  r,_ j, 7) = G’(x, _ , , G(x, 2, r, 2, 7 ), 7) =
= ...-  = ', 0 ) ,

cf. equation (2). Thus, r, = a, , is a function of the 
entire past of x, and the hard-wired weights 7.

Because r, is not a function of the learnable weights 
0, the aforementioned problem of parameter depen­
dence is thus avoided. It follows that the standard BP 
algorithm for feedforward networks is applicable to 
the proposed network with respect to the learnable 
weigths 8. Letting y, denote the target pattern presen­
ted at time t, the BP algorithm is

6, + 1 = 7 +  1, r„ &,) O, -  F(x„ r,, 6,)) , (5)

where 77, is learning rate employed at time rand ¥ f, F is 
the matrix of partial derivatives of F with respect to 
the components of 8. However, in both theory and

practice it is necessary to keep the BP estimates in so­
me compact subset 0  of IR’\ thus preventing the entri­
es from becoming extremely large. This, being a typi­
cal requirement in the convergence analysis of  the BP 
type of algorithms, see e.g., Kuan & White (1990) und 
Kuan, Hornik & White (1990), can, if not automatical­
ly guaranteed by the algorithm, be accomplished by 
applying a projection operator n  which maps IR1 onto 
0  to the BP estimates. Usually, a truncation device is 
convenient for this purpose. This requirement entails 
little loss because it is usually inactive when very large 
trunaction bounds are imposed.

In light of (5), we only have to modify the existing 
BP algorithm slightly to incorporate the internal in­
puts a, into the algorithm. Furthermore, if a fixed trai­
ning data set is given, the internal inputs a , , can be 
calculated first, and off-line learning methods such as 
nonlinear least squares can then be applied to estima­
te the learnable weights 8. These advantages allow re­
searchers to adapt to recurrent networks quite easily. 
It is then interesting to know (he properties of the al­
gorithm (5) applied to the proposed network given by 
(3) and (4). This is the topic to which we now turn.

4. Asymptotic Properties of the BP Algorithm

Let { V, \ be some sequence of random variables defi­
ned on a probability space (Í2, F, P), F¡ be the rr-alge- 
bra generated by Vr, Vr ¡ r Vt , and let \Z,\ be a se­
quence of square integrable random variables on that 
probability space. We write E'^ (Z,) for the conditio­
nal expectation E(Z, \ Fj4 '") and || || for the norm in 
LAP), i e., ||Z|| =  ( E \ Z \ 2y /2.

Definition 4,1. Let

V,„: =sup  II z, -  E'A (Zt) II.
I

Then {Z ,} is near epoch dependent (NED) on j F,} o f  
size — a if for some A < —a, vm =  0 ( m A) as m — 00. 
This definiton conveys the idea that a random varia­
ble depends essentially on the information generated 
by “ more or less current” V¡ and does not depend too 
much on the information contained in the distant fu­
ture or past. The larger the magnitude of the size of 
vm, the faster the dependence of the remote informati­
on dies out. More details on near epoch dependence 
can be found in Billingsley (1968), McLeish (1975), 
and Gallant & White (1988).

The lemma below ensures that recurrent variables 
are well behaved and do not have too long memory.

Lemma 4.2. Let {r,| be generated by (4), where {x,} is 
NED on {n,\ o f  size —a and the common hidden unit ac­
tivation function  <// is bounded and continuously diffe­
rentiable with bounded first derivative. / / |vec(D,) | < 
My1, where Mn, : =  sup^ e ,R |(//' (a ) |, then jr,\ is a boun­
ded sequence NED on { V,} o f  size —a.
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Remark 1. Notice that if the input data {x,j form a se­
quence of independent random variables (which is 
a special case of  an NED sequence), then jr,} need not 
necessarily be mixing but is NED on j.v,} of arbitrarily 
large size, see Gallant & White (1988, pp. 27 — 31). 
Elence, introducing the concept of near epoch depen­
dence is not a technical triviality, but a necessity when 
dealing with feedback networks in stochastic input en­
vironments.

In what follows we compactly write the algorithm
(5) as

6, < i =  0, +  i], 11,(0,) z,

h,(0) = VnF(xr, /■,„ 0) (y, -  F(x ,, r,, &)). Our consisten­
cy result is based on the ordinary differential equation 
(ODE) method of Kushner & Clark (1978), cf. Ljung 
(1977). This approach is now well-known in analyzing 
neural network learning algorithms, cf. e.g., Oja 
(1982), Oja & Karhunen (1985), Sanger (1989), Kuan 
& White (1990), Kuan, Hornik, & White (1990), and 
Hornik & Kuan (1990).

We need the following notation. Let ru = 0 and, for 
t >  1, let r, : =  27, //,. The piecewise linear interpola­
tion of \9,\ with interpolation intervals {?;,} is

d;4l, r e [ r „ r M1),

and for each t, its “ left shift” is

0'(r) = (r, + r) .

Observe in particular that 0'(0) = 0 {](r,) = Ô,. 
We impose the folowing conditions.

A.l. {V,} and \z,} are defined on a complete probabili­
ty space (Q, F, P) such that for some r > 4,
(i) { V,) is a mixing sequence with mixing coeffici­

ents (p,„ of size — r/2(r  — 1) or a m of size — r/ 
(r — 2) and

(ii) the sequence {z,j is NED on \V,\ of size — 1 
with sup, |x,| < Mx < oo and sup,
E(\y,n  <  oo .

A.2. For the network architecture as specified in (3) 
and (4),
(i) (p and t// a re continuously differentiable of or­

der 3. ip is bounded and has bounded first or­
der derivative.

(ii) |vec( D,)\ < where
=  sup , m \ip' (<r)| .

A.3. {?/,} is a sequence of positive real numbers such 
that X, 7h = 00 and Z ,  if, < 00 •

A.4. For each 0 e 0 ,  h(6) -  lim, E(h,(6))  exist.

A.l. allows the data to exhibit a considerable amount 
of dependence in the sence that they are functions of 
the (possibly infinite) history of an underlying mixing

sequence. For more details on a- and mixing sequ­
ences we refer to White (1984). Assuming that the ex­
ternal inputs .v, are uniformly bounded simplifies so­
me technicalities needed to establish convergence and 
causes no loss of generality, as pointed out by Kuan & 
White (1990). Desired generality is assured by allo­
wing the y, sequence to be unbounded.  Note that typi­
cal choices for t// such as the logistic squasher and 
hyperbolic tangent squasher satisfy A 2(i). Condition 
A,2(ii) is needed in lemma 4.2 and is the constraint 
suggested by Kuan, Hornik & White (1990) for gene­
ral recurrent networks. A.3 is a typical restriction on 
the learning rates for BP types of algorithms. For 
example, learning rates of order  I/O satisfy this condi­
tion. A.4 is needed to define the associated ODE who­
se solution trajectory is the. limiting path of the inter­
polated processes {#'(-)}.

The result below follows from corollary 3.5 of Kuan 
& White (1990).

Theorem 4.3. For the network given by (3) and (4) and 
the algorithm (5), suppose that assumptions A.l-A.4 
hold. Then
(a) \0'( )} is hounded and equieontinuous on hounded 

intervals with probability one. and (01 limits of con­
vergent subsequences satisfy the OFF 0 = h{0).

(b) let 0 *  be the set o f  all (locally) asymptotically stable 
equilibria o f  this ODE contained in 0, and let 
33(0*) c  IRr be the domain of attraction of 0* .  
Then, i f  Ô, enters a compact subset o f£{  (0* ) infini­
tely often with probability one, and thus in particu­
lar, i f  0 ^ 3 2 ( 0 * ) ,  then with probability one, 
6,-*  0 *  as t —* oo.

Remark 2. Because the elements (I* of 0 *  solve the 
equation lim, E(h(z , ,  r,, (T)) = h (0) ~  0. they (locally) 
minimize

lim E\y, -  F (x , , /*,, 0)\~. (6)

Theorem 4.3 thus shows that the BP estimates can 
converge to a mean squared error minimizer with pro­
bability one. Note however that this convergence oc­
curs conditional on 0.

Remark 3. By the Toeplitz lemma,
lim7 F 'Z /= i  Ff| yy -  F(.v,, /;, ())\ is the same as (6). 
Therefore, the (on-line) BP estimates converge to the 
same limit as the (off-line) nonlinear least squares esti­
mator.

Remark 4, As y, is not required to be bounded, our 
strong consistency result holds under less stringent 
conditions than those of Kuan, Hornik & White 
(1990) for the fully recurrent BP algorithm.

To establish asymptotic normality vvç consider the 
algorithm (5) with the specific choice ;/, =  ( / +  1) !. 
(Note that no limiting distribution results for BP esti­
mators in recurrent networks have been published 
thus far; in particular, Kuan, Hornik. A White (1990)
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give only a consistency result for their recurrent BP al­
gorithm,) Let U, ■ = ( /  + 1) (0: 0*) be the sequence
of normalized estimates. The piecewise constant inter­
polation of U, on [0, oo) with interpolation intervals 
{(/-+- 1 ) | is defined as

U( r) = U, . r e [ r.. r, . ,),

and again, for each t its "left shift" is defined as

U'(r) - Hr. + r) . r > 0.

Finally, let

H(0) ■ lim E[VJi,(0)\  + I f  2 ,
!

where /„ is the /»-dimensional identity matrix.
Our result follows from the stochastic differential 

equation (SDL) approach of Kushner & Huang 
(1979). In contrast with the ODE approach, the inter­
polated processes can now be shown to converge 
weakly to the solution paths of a corresponding SDE 
with respect to the Skorohod topology. For more de­
tails on weak convergence we refer to Billingsley 
(1968). The following conditions suffice for the asym­
ptotic normality result.

B, 1. A.l(i) holds, and Jr,} is a stationary sequence 
NED on | F,| of size X with sup, 
|.v, | < M, < oo sup, E(\y, |H) < oo.

B.2. A.2 holds with (/»and i//continously differentiable 
of order 4.

B.3. 0* € int((9) is such that h(0* ) = 0 and all eigen­
values of 11(0*) have negative real parts.

The result below follows from corollary 3.6 of Kuan 
& White (1990).

Theorem 4.4. Consider the network given by (3) and (4) 
and the algorithm (5) with tj, = (t T I) suppose that 
assumptions B.1-B.3 hold and that with probability one, 
0, -* 0* as t — o o . Then { U'( )} eonwrges weakly to the 
stationary solution o f  the stochastic differential equation

dU(r) = ~R(0* U(r)dr  + £ ( 0 * ) ; : dW(r)  ,

where W denotes the standard p-variate Wiener process 
and

S(0*) ■ = J  e\p( IF 0*)s ) f  exp( IF 0* )s)ds
0

is the unique solution to the matrix equation

H[ 0*)S  f S ¡1(0*)' f ( 0 * ) .

Remark 5. If / / ,=  ( / +  1) 1 R is a nonsingular p x p 
matrix, the SDE in theorem 4.4 becomes
di l (r)  H(0*) U( r) dr + R f ( 0 * ) '  ' d W( r ), and the 
covariance matrix of the asvmptotitc distribution of 0, 
becomes RS(0*)R '.

Remark 6. If the probability that 0, converges to 0* is 
positive, but less that one, the above theorem provides 
the limiting distribution conditional on convergence to 
0*. Hence, if (-)* contains only finitely many points, 
assumption B.3 is satisfied for each 0* c 0 * ,  and 0, 
converges with probability one to one of the elements 
of (-)*, then the asymptotic distribution of 0, is mixture 
of N(0* ,S(0*)) distributions, weighted relative to the 
convergence probabilities.

5. Conclusions

In this paper we propose a partially hard-wired El­
man network, in which only a subset of hidden-unit 
activations is allowed to feed back into the network 
and connections between these hidden units and input 
layer are hard wired. A distinct feature of our appro­
ach is that existing on-line and off-line learning algo­
rithms can be slightly modified to implement the pro­
posed network. (Note that off-line learning is not pos­
sible for a fully learnable recurrent network.) This is 
particularly convenient for researchers. Our results al­
so show that the estimates from the standard BP algo­
rithm adapted to this network can converge to a mean 
squared error minimizer with probability one and are 
asymptotically normally distributed. These asymptotic 
properties are analogous to those of the standard and 
recurrent BP algorithms.

As the convergence results in this paper are conditi­
onal on the hard-wired connection weights 0, the re­
sulting weight estimates are not fully optimal, in con­
trast with fully learnable recurrent networks. To im­
prove the performance of the proposed network, one 
can train the network with various hard-wired connec­
tion weights and search for the best performing archi­
tecture.

£ ( # * ) : “ lim e [Ii,(0*)h,. i(0*y\.
t Appendix

In particular,

( / +  1)’ ( ê , - o * ) D tf(O ,S(0*))  ,

Lemma A. Let {.v,} be NED on \V,) o f  size —a and let 
the square integrable sequence Jr,} be generated by the 
recursion

where A signifies convergence in distribution and r,= G(x,  i , r, ,, 0).
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Suppose that G( ,r ,B) satisfies a Lipschitz condition 
with" 1 uniformly in r, i.e., there exists a finite constant 
L such that fo r  all r,

| g ( * i , G 0) ~  g ( x 2, /; if) | < L \ x, -  x2| ,

and that Qx, 0) is a contraction mapping uniformly in 
x, i.e., there exists some p  < 1 such that for  all x,

|G(.y, r], 0) - p (  v- '■ 0) 1 ^  p Ig — r2| .

Then j r, \ is NED on Í k  ! 0 ' size —

Proof. We first observe that

Il g -  e ; ' ;;;(g) ii

-  Il G (3ll 1 7 G 1 5 B) _ IT' * i v / - /;/ ( 0 ( x ,  i , G 1, «))n

^  I|G(a 17 G 17 E) - c ( e ;* :  2 (a  .),
fft + m *̂1 m 2( g ,), 0)||

IA ČS i. G i. 0) — C(Er;;; 2 (A  i), G i ,7()ii ■»

+ Il G { E f :  2 (.y, i ), G i. k ) -
~ g ( e ; 2 (g  ,), P' f m 2^  t m ( g i), f7)||

< L j) x, rv i ni 2 - 1 m (A i) II + p II G 1 -
_  p '  + »< 

*^l m 2 ( g i) II,

where the first inequality follows from the fact that 
E'f. "! (G (x, | , r, | , ())) is the best mean square pre­
dictor of G (.y, i , r, ,, If) among all FJ f ¡"-measurable 
functions and the second inequality follows from the 
triangle inequality. Hence, we obtain

v,;,„ S Lv,.,„ I + PA„, , , (al)

Gmf I L \ \  m + p V r m

< LC0m ^  + pD{)m k()

= ( E Q  + pDtt) (m + \ f ( m l ( m  + I))4

< (LC„ + pD{,) cr(m + 1 / "

<  D f m  + 1 ) '\

completing the induction step and thus the proof of 
the lemma.

Proof of Lemma 4.2. By boundedness of t//, the sequ­
ence {/•,} generated by (4) is bounded and thus trivially 
square integrable. Hence, in view of the above lemma 
A, it suffices to show that Gis Lipschitz continuous in 
y and a contraction mapping in r. As by assumption 
the first derivative of i// is uniformly bounded, G is 
clearly Lipschitz continuous in y with Lipschitz con­
stant L =  A/, \C,\. (If A is a matrix, then 
\A\ := maxj \Ax\ : |.y| = 1}.) Similarly, let V,G denote 
the matrix of partial derivatives of G with respect to r. 
Note that | V, G ( jy, r, 0) | is the square root of the maxi­
mal singular value of V, G, and thus by a well-known 
result from linear algebra,

| V, G(.y, r, 6)| < (trace (v,  G (x, /; 0) V, G(.y, r, 0)0 ) '  

< M w (trace (D, D ' )'

-  M J v e c ( D r)|

= : A

By assumption, p  < 1. As clearly,

j G(.y, r,, 0) -  G(.y, r2, 7)) | <sup | V, G(.y, r, 7))|
r

Ig -  g I ^  p Ig -  g I ,

where vv„,and v , a r e  the NED coefficients for ¡.y,} 
and \r,\, respectively. We must show that for some 
A < — a , v,. „, is O ( n f - )  as m  —► c o .  Because j.Y,} is 
NED on { V,\ of  size a, we can find a finite constant Ct, 
and some Aq < ~  a such that vY < CpnN. By the fact 
that p  < 1, we can find m0 and some a  >  1 such that 
p a  < 1 and for all m > mu,

Let

A0
( m l (m  + 1 )) < a.

D0 ■ ^m ax
Í r̂.mii G0 L(J 1
I mÿ ’ I -  per )

We now prove by induction that for all 
m > m„, v, < DprPA\ Eor rn = m0, this is trivially 
true by the definition of D0, Suppose we have already 
shown that for some m > m(),v,.„,< D0m k°. Then, 
using ( a l ),

G is a contraction mapping in /; thereby completing 
the proof of lemma 4.2.

Proof of theorem 4.3. We verify then conditions of co­
rollary 3.5 of Kuan & White (1990), which we shall 
briefly refer to as [KW], Their conditions A.4 and C.3 
are explicitly assumed (our assumptions A.3 and A.4). 
It follows from lemma 4.2 that \r,} and thus also {£,} 
are bounded sequences NED on { V,\ of size — 1, whe­
re = [ x , , r ]  which establishes condition C.l of 
[KW]. Let AT be an upper bound for the sequence {£,}, 
and let K , : = {£:|£| <  AT}. Condition C.2 of [KW] 
requires that in AG x 0,  both F ( f  ■) and •) sa­
tisfy a Lipschitz condition with Lipschitz constants 
L, (<C) and T  ( f) ,  respectively, where L, and T  are Lip­
schitz continuous in f  and that both F ( - , 0 )  and 
VhF ( - , 6 )  satisfy a Lipschitz condition. It is straig­
htforward to show that continuous differentiability of 
A.2(i) ensures these Lipschitz conditions. See also co­
rollary 4.1 of Kuan & White (1990).
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Proof of theorem 4.4. We verify then conditions of co­
rollary 3.6 of [KW], Lemma 4.2 ensures that \r,} is 
NED on {V,} of size —8. Stationarity of j.v,} implies 
that jr,[ is also stationary. Hence, {£,} is a stationary 
sequence NED { L,[ of size —8, which establishes con­
dition D.l of [KW], Condition D.2 of [KW] follows 
from B.3 and the moment condition of B.l. Finally, as 
in the preceding proof, four times continuous diffe­
rentiability of B.2 ensures the Lipschitz conditions im­
posed in condition D.3 of [KW]. See also corollary 4.2 
of Kuan & White (1990).
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TEACHING STRATEGIES FOR ARTIFICIAL 
NEURAL NETWORK LEARNING

S. Nordbotten*)

Abstract:

This paper presents an evaluation of the effects of 
variation of training set si/e, ordering of examples in 
the training set, adjustment (learning) rate, and rein­
forcement on pattern recognition in artificial single lay­
er neural networks (ANNs) which use a learning algo­
rithm based on the Widrow-Hoff principle. These para­
meters can be considered as alternative teaching strate­
gies for ANNs.

The evaluation has been carried out as a set of simu­
lation experiments on synthetic sets of patterns. The re­
sults indicate that for the type of pattern identification 
considered, learning in ANN is sensitive to the teaching 
strategy chosen.

1. Teaching and learning

A number oflearning algorithms for different artifi­
cial neural networks have been developed in recent 
years [RUMELHART 1988]. The merits of different 
learning algorithms are currently being studied from 
theoretical as well as empirical perspectives [NORD- 
BOTTEN 1990b].

In human training systems, there are two actors, the 
learner and the teacher, and material used for instruc­
tion. The .complexity of the network topology and 
learning ability of a learner may be considered as in­
herited. How effectively a learner learns a given set of 
examples may depend, however, on the teacher’s 
strategy with respect to the size of the training set 
used, the order in which the examples are presented, 
the intensity by which the examples are introduced, 
and the reinforcement of the teaching material. In the 
present study we consider the material used for in­
struction as predetermined.

In the development of an artificial network the de­
signer will frequently define a network which can be 
trained by examples, choose an adequate learning al­
gorithm suited for the network, and rely on a set of ex­
amples which serve as training material. The success 
of training can be evaluated in several ways:

*) Prof. Svein Nordbotten
Department of Information Science 
University of Bergen 
N-5008 Bergen 
NORWAY

1) during the training,
2) by evaluation tests or
3) by experience through practical application.

In the study reported in this paper, the impact of 
several teaching strategy factors has been investigated. 
The first factor investigated is the size of-the training 
set used. A similar investigation for learning in 
stochastic knowledge bases used for consultation 
systems, has been reported in a previous paper 
[NORDBOTTEN 1991].

The second factor investigated, is the sequence in 
which the training examples are introduced to the 
learner. As for a human learner, we assume that the 
order in which training examples are presented may 
be important for ANN learning. Learning basic and 
simple examples before more complex is a frequently 
applied teaching strategy.

The size of the adjustment rate used by a training 
algorithm reflects how fast the learner adjusts to an er­
ror made. We assume that the adjustment rate can be 
controlled by the teacher and therefore also belongs 
to the teaching strategy.

A learner can be exposed repeatedly to each indi­
vidual example in a training set a number of times be­
fore the teacher proceeds to the next example. We will 
call this strategy concentrated reinforcement. Alterna­
tively, the learner can be exposed to each example of 
the training set sequentially, and then the exposition 
for the complete set is repeated a certain number of 
times. This strategy we will call dispersed reinforce­
ment. Mixed strategies may also be designed by divid­
ing the training set into partitions the examples of 
which are presented using concentrated reinforcement 
while the partitions are reinforced in a dispersed man­
ner.

In reinforcement another important factor is the 
number of repetitive presentations of the training set 
to the learner. This factor we call the number of rein­
forcement cycles.

The performance of a trained network in our inves­
tigation is considered to be the ability of the network 
to correctly identify patterns. The overall aim of 
a teaching strategy is either to give the learner some 
predetermined performance level using a minimum of 
teaching investment, a maximum performance level 
by means of given teaching resources or a maximum 
of some weighted combination of performance level 
and teaching investment. We shall return in following

Nordbotten: Teaching Strategies NNW 1/91,46—51



sections to the measurement of performance and fo r i:  =  I to M do
teaching investment. for j :=  1 to N do

a[j, 1] :=  a[j, 1] + w[i, j]*o[i, 0];

2. Teaching strategies

2.1 The Artificial Neural Network

The network model used in this study is a single lay­
er network with M input sources providing simultane- 
nous binary inputs denoted o[i, 0], i =  1 . . M, with va­
lue 0 or 1 to a set of N neurons which each generate 
an output o[j, 1], j =  1 . . N. The vectors of M input 
elements and N output elements are referred to re­
spectively as a pattern and its identification.

A neuron is a processing unit characterized by its 
activation level and its output. The activation level is 
determined by the activation function:

a [j, 1]: = SUM[i] w[i, j]*o[i, 0],
for j =  I, . . .,N, i =  1, . . . M,

where w[i, j] denotes the weight between the input 
source i and the neuron j. The activation level is a real 
variable.

The output o[j, 0] of the neuron is a binary variable:

ofj, I] :=  I if afj, IJ > a[k, 1], 
for all k < > j,

ofj, 1] :=  0 if afj, 1] < = afk, l|
for one or more k < > j,

k, j =  I, . . ., N.

This implies that a neuron never creates an output 
vector with more than one non-zero element. Usually 
an output vector will have one single non-zero ele­
ment indicating the position of the pattern identifica­
tion. In some situations, the output vector may have 
only zero elements, indicating that the network was 
unable to make an identification. One important aim 
is to train the ANN recognize the correct pattern 
identifiers for the input patterns.

in the real world applications we have in mind, 
there are frequently several different patterns associa­
ted with identical target vectors or pattern identifiers. 
This reflects the possibilty of noise, uncertainty, or er­
rors in the pattern.

2.2. The Learning algorithm

The learning algorithm used is based on the well 
known Widrow-Hoff algorithm [WIDROW 1960, 
1985]. The core of the algorithm used in this investiga­
tion consists of two steps:

Step I: The forward computation by which the net­
work, based on current knowledge, computes an acti­
vation vector afj, 1], j =  1 . . N, according to:

and.

Step II. The backwards computation of adjusted 
weights based on comparison of the target output vec­
tor t[j, 1], j =  1 . . N, from the training set and the 
computed activation vector from Step I.:

for i : = I to M do
for j : =  1 to N do

wfi, j] :=  wfi, j] + rate*{o[i, 0] * (t[j, 1] -
afj, !])}■

Initially, all weights are set equal to zero. Rate is 
here the adjustment rate. During the learning process, 
the algorithm can be repeated in reinforcement cycles. 
Note that it is the computed activation vector, not the 
binary output vector, which is compared with the tar­
get vector.

The algorithm has the property that it adjusts the 
weights to minimize the sum of squares of the differ­
ences between the elements of the computed activa­
tion vector and the target vector. The sum of square 
errors (SSE) each pattern k of a training set of P pat­
terns is:

for k : =  1 to P do 
for j : =  1 to N do

SSEfk] :=  SSEfk] + (tfj, I] -  afj, 1])**2, 
while the mean square error (MSE) for a training set 
of P patterns after a learning cycle is:

for k :=  1 to P do MSE :=  MSE + SSE[k]/P

A MSE decreasing in value from one reinforcement 
cycle to the next will indicate improved learning.

2.3. Strategy factors

2.3.1 T he  s t r a t e g y  v e c to r

The teaching strategies can be represented in the vec­
tor space

V = (S, O, L, C, R)

where S represents the size of a training set generated 
randomly from a probability distribution reflecting 
the patterns of the domain of interest, O represents 
training set order, L denotes the adjustment rate, R 
the reinforcement strategy, and C the number of rein­
forcement cycles.

2.3.2 Size o f  t r a i n i n g  se t ,  S

A network’s ability to learn a set of different pat­
terns is a main property of the network. In evaluating
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a network and its associated learning algorithm, the 
network can be exposed to and taught pattern sets 
randomly generated from the domain of interest. Af­
ter learning, the same set of patterns can be presented 
to the network to determine how well the network has 
learned to identify the patterns.

The size of the training set can be easily varied. Two 
factors must be distinguished. One is the number pat­
terns in the set. Keeping in mind that the training sets 
are random samples, subsets of identical patterns may 
exists. The second factor is the number of different 
target vectors or pattern identifiers present in the set. 
To each pattern identifier, a subset of different pat­
terns may be associated. The differences are assumed 
to represent noises acting on the patterns. The ratio 
between the total number of patterns in the training 
set and the number of different pattern identifiers 
therefore indicates the average number of instancies 
of each identifier within the training set. We would ex­
pect that the percent of different patterns correctly 
identified decreases as the number of patterns in- ‘ 
creases.

2.3.3 O r d e r  o f  p r e s e n t a t i o n ,  O

In human teaching, a common strategy is to present 
to the learner simple patterns prior to more complex 
patterns. In our investigation a pattern is described as 
a binary vector with zero and one value elements. In 
all our patterns, the number of non-zero elements is 
less than the number of zero elements. The degree of 
complexity of a pattern is defined by the number of 
non-zero elements.

Our hypothesis is that learning will be more effi­
cient if the network is exposed to a training set or­
dered by increasing complexity than if the network is 
exposed to the same set of patterns presented in a ran­
dom order.

2.3.4 A d j u s t m e n t  r a t e ,  L

The adjustment rate can be eonsidered as the inten­
sity by which the learner is led or instructed to react to 
errors it makes in recalling a pattern when it learns the 
correct answer or the target vector. A adjustment rate 
of >  1 corresponds to an over-reaction while a adjust­
ment rate of 0 corresponds to ignorance of errors, or 
inability to adjust knowledge to facts. We consider ad­
justment rates in the interval 0 < r a t e <  1 only.

A high rate should be expected to give a fast adjust­
ment to the current pattern. Aplied in a situation with 
many different patterns it can make harmful disturb­
ance of the weights learned about other patterns. In 
such a situation, we would expect that a slower adjust­
ment of the knowledge combined with more reinforce­
ment cycles a more safe teaching strategy.

2.3.5 R e i n f o r c e m e n t  c y c le s ,  C

Like human learning, the artificial network’s ability

to identify a pattern is assumed to improve with rein­
forcement. We would expect that the ability of  a ne­
twork to correctly recognize a pattern increases with 
the number of times the pattern has been exposed to 
the network. However, improvement by repetition 
would be expected to approach asymptotically a limit, 
above which no further improvement can be expected.

9.3.6 R e i n f o r c e m e n t  d i s p e r s i o n ,  R

A related question is how reinforcement should be 
organized. We consider two alternative ways in which 
the reinforcement can be organized, and denote these 
as dispersed and concentrated reinforcement. In dis­
persed reinforcement, the different patterns are ex­
posed to the network one by one in some sequence 
which is repeated in a prescribed number of cycles. In 
concentrated reinforcement, each pattern is exposed 
repeationally to the network a prescribed number of 
times before the next pattern.

With a small number of simple patterns, we expect 
that concentrated reinforcement would be a wise 
strategy. However, with an increasing number of pat­
terns, concentrated reinforcement might result in de­
struction of the knowledge of the first patterns before 
the last were learned.

3, Experimental design

3.1 Overall design

To study teaching strategies, a set of simulation exper­
iments were carried out. Each experiment consisted of 
two steps, training and testing. Each training step was 
designed with a specific training set size, ordering of 
the patterns, adjustment rate, reinforcement cycle, and 
reinforcement organization. During this step the mean 
square error was also carried out. The second step of 
the experiment was performance tests of the network. 
In this step each pattern of the training set was re­
called one by one to let the ANN compute the output 
vector, and the percentage of correctly identified pat­
terns in the set was computed.

Two evaluations metrics were thus computed and 
used:

1) MSE of the training set after learning,
2) PCT of correctly identified patterns in recall 

from the set.

The mean square error is probably the more general 
indicator of how the network will work within the do­
main of interest. Decreasing MSE from one experi­
ment to another indicates improving performance. 
The percentage of correctly identified patterns is 
more easily understood and directly interpretable 
measure. Increasing PCT from one experiment to an­
other indicates superior performance in the second ex­
periment.
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3.2 Training sets

The training sets of patterns used were obtained by 
random generation from a probability distribution 
[NORDBOTTEN 1990a]. In this distribution, which 
we assume represent our real world domain of inter­
est, the different target vectors were assigned proba­
bilities, and for each target vector, the element of the 
pattern vector was assigned a conditional probability. 
The generation process produced pattern identifiers 
according to their assumed frequency of occurence. 
For each generated identifier, an associated pattern 
was generated with errors or noise included in accord­
ance with the assumed error probability.

The mapping between pattern vectors and target 
vectors is therefore manv-to many. Different input 
vectors can he associated to the same target vector 
corresponding to a synonym situation, while different 
target vectors can be associated to the same input vec­
tor corresponding to a homonym problem. The latter 
is obviously the more serious for pattern identifica­
tion.

The size of the pattern and target vectors were both 
100 elements. The training sets have been used also in 
several other experiments and are described in detail 
in other papers [NORDBOTTEN 1989, 1990b, 1991],

Five statistically independent training sets were 
generated. Each set was replicated and then sorted by 
increasing complexity.

The resulting 10 training sets were denoted respec­
tively :

R 100 SI 00
R200 S200
R400 S400
R800 S800

R 1600 SI 600

in which R and S refer to random and sorted, while 
the numbers indicate the sizes of the the respective 
training sets.

R < n >  denotes a randomly ordered training set of 
< n >  patterns, while S < n >  denotes the same train­
ing set sorted by increasing complexity. L < r >  de­
notes an experiment in which an adjustment rate 
< r >  was. D or C indicates whether a dispersed or 
concentrated reinforcement of < c >  cycles was appli­
ed.

3.4 Implementation

The experiments were programmed in PASCAL and 
C, and the simulations carried out on an IBM AIX 
PS/2 and an IBM RS/6000 computer.

4. Discussion

4.1 Restrictions

The results of the 22 experiments carried out, are 
summarized in table 9.1 to Table 9.5 attached at the 
end of this paper. The limitation of the experiments 
must be emphasized and clearly understood.

The topology of the network studied and the learn­
ing algorithm applied are only one pair out of many 
possible which might have been applied for the same 
purpose. Another pair may have given quite different 
results.

The training sets used are composed of synthetic 
patterns each classified in a simple target pattern. 
Even though the patterns may satisfy certain condi­
tions for representability of a wide class of real world 
problems, the patterns cannot be claimed in anv way 
to be universally representative. As representations of 
images, they have a low degree of resolution and com­
plexity.

4.2 Size and ordering of training set

The results of the simulations presented in Table I 
indicate a clear covariation between the performance 
indicators and the size of the training set as w ell as the

3.3 Experiments

22 different experiments were carried out. Each exper-

number of identifiers included in the sets.
The results illustrated in Fig. 2 confirm the expect­

ed relations between performance indicators and size

iment was described by the parameters values PCT on
S < n > | R < n > ,  
dicated in Fig. 1.

L < r > , and D < c > C < c > as in- the trail

X01 R100, LO. 1. 015 X 12 Slot), LO.l, CIS F*CT , i nn -j-
X02 R200, LO.l, D15 X13 R100, LO.l, C l5 99 t
X03 R400, LO.I, 015 X ! 4 SI 600. LO.l, Cl 5 98
X04 R800, LO.l. 015 XI5 - R 1600, LO.l, CIS 97 |  

96 /
95 4-

X05 R1600, LO.l, OI5 X 16- S800. LO.l, 015
X06 SI 00, LO.l. OI5 X 17 S800. LO.l, 1)20
X07 SI 600. LO.l. 0 15 X 18 - S800. LO.l, 025 94 T
X08 R800, LO.3, 015 X 19 — S800. LO.l, 030 93 111X09 R800, LO.5, 015 X20 - S800. LO.l, 035
XI0 R800, LO.7, 015 X2I S800. LO.l, 001 R
XII R800, LO.9, 015 X22 - S800, LO.l, 002

fiSE
t OI 500
T 0 1 4U0i
-i-0 1 300I-j-o. 1 zoo 
-f 0 1 1 00 
4- o l ooo
- 0 0900 
4-0 0800

R 1 00 R Z  0 0 R400 R800 R 1 600

Figure I : List o f experiments
Figure 2: Performance bv size of training set. Dispersed training. Ad­

justment rate 0.1 and 15 reinforcement cycles.
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garithmic scale used for presenting the size, the covar­
iation between the two performance indicators and 
the size of  the training set becomes less significant 
when the set size is increased.

If we study Fig. 3 in which the horizontal axis of the 
former figure is exchanged with the number of differ­
ent pattern identifiers in each set from Table /. quite 
similar results are obtained, but the relations between 
the performance indicators and the number of ident­
ifiers are linear.

PCT
I 00 

9 9  

9 8  

9 7  

9 6  
9 5  

9 4  

9 3

M5E 
0 1 5 0 0

-  0 1 4 0 0  
0 1 3 0 0

0 1 ZOO 

Oil 00 
0 1 000 
0 0 9 0 0  

- 0 . 0 8 0 0

3 0 4 0 5 0 6 0

Figure 3: Performance by number o f pattern identifiers. Dispersed rein­
forcement. Adjustment rate 0.1 and 15 reinforcement cycles.

The conclusion we may draw is that the ability of 
an ANN with a given topology to learn and subse­
quently make correct identifications within a certain 
domain decreases by the number of different pattern 
identifiers existing in the domain. If the number of 
training patterns is increased, more versions of each 
patterns are exposed to the network. The network 
learning will continue, but the improvement will be 
decreasing and approach a state in which no further 
improvement can be expected.

Table 2 gives the results of the simulations which 
were carried out to evaluate the impact of ordering the 
patterns before they are introduced to the ANN. 
There is, however, no indication in the results of our 
experiments that an ordering of the training set has 
any serious impact on the learning results.

4.3 Adjustment rate

Table 3 presents the results as to the impact of the 
adjustment rate on the performance indicators. The 
experiments carried out were based on the training set 
R800 with Dispersed reinforcemnet in 15 cycles. TTie 
relationship between MSE and the value of the adjust­
ment rate is quite clear. The MSE value increases by 
increasing adjustment rate value as illustrated in 
Fig. 4. The interpretation must be that in our domain

Figure 4: Performance by adjustment rate. Training set R800. Dis­
persed reinforcement and 15 reinforcement cycles.

of interest the adjustment rate should be given a small 
value.

The performance expressed by PCT is less obvious. 
It seems to indicate that the performance curve has 
a minimum for an adjustment value in the interval 
0.5—07. This may, however, be the result of random 
variations in the training sets. Still, there is no indica­
tion that a higher adjustment value should be chosen 
in preference for a low valued adjustment value. This 
can be interpreted as support for the assumption that 
a fast adjustment in a ANN may destroy previously 
learned knowledge.

4.4 Reinforcement

Table 4 and Eig. 5 give the results of the reinforce­
ment cycle investigation. The experiments were all 
based on the R800 training set and used an adjust­
ment rate of 0.1. The results support the assumption 
of significant impact from reinforcement.

p c t  u s e

Figure 5: Performance by number o f rein forcement cycles. Training set 
R800. Adjustment rate 0.1. Dispersed reinforcement.

As was expected the performance improved rapidly 
by number of reinforcement cycles. It is interesting to 
note that already after 5 cycles the performance ob­
tained was relatively high and further gains in per­
formance by increasing the number of cycles up to 35 
were not great.

Table 5 shows the results from experiments with dis­
persed and concentrated reinforcement in 15 cycles. 
The experiments were based on the R800 set and the 
adjustment rate was 0.1. A comparison between the 
two reinforcement strategies indicates that in all ex­
periments carried out in this investigation, dispersed 
reinforcement is the superior strategy. Mixed strate­
gies not investigated may, however, give better results 
than the pure dispersed strategy.

For applications in which the cost of making an ad­
ditional reinforcement cycle is significant, it is a good 
reason for considering this cost with the gain in per­
formance.

4.5 Further questions

This paper is one of a series reports on of empirical 
studies in artificial intelligence and neural networks 
using simulation. The present investigation was besed 
on a certain set of assumptions about the functional 
characteristics of the neurons included. Simulations 
with non-linear activation functions will also be inves-
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tigated and compared with the results presented in the 
present paper.

As pointed out in the introduction to this section, 
the practical value of the results from this investiga­
tion depends on how representative the patterns we 
have used are for the applications. If the patterns are 
not representative, are the results still valid? One way 
to proceed, which we plan to follow, will be to repeat 
the present simulations with more complex patterns 
than used in the present investigation and make com­
parisons between results from the different investiga­
tions.

The experiments and evaluations will also be ex­
tended to multi layer networks and learning algo­
rithms for networks with hidden layers of neurons.

5. Conclusions

The investigation carried out indicates that the suc­
cess of learning in artificial neural networks is sensi­
tive to the teaching strategy applied. In particular, 
success depends on the number of patterns to be dis­
tinguished, the adjustment rate and the number of 
reinforcement cycles used.

However, the investigation did not give any results 
supporting the hypothesis that introduction of a sort­
ed sequence of training examples would give better re­
sults than a random sequence of examples. Neither 
did the results support the hypothesis that a concen­
trated reinforcement would give better learning results 
than dispersed reinforcement.
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Tables

Set
Number of 

pattern 
identifiers

Mean
square
error

Pet. of correctly 
identified 
patterns 
in recall

R100 33 0.0913 98.0
R200 40 0.1023 96.5
R400 43 0.0949 96.5
R800 51 0.1187 94.5

R1600 57 0.1302 93.9

Table I : Performance by size of the training set. Adjustment rate 0.1. 
Dispersed reinforcement with 15 cycles.

Training set order

Size Random Sorted

MSE Pet. correctly 
identified 
patterns 
by recall

MSE Pet. correctly 
identified 
patterns 
by recall

100 0.0913 98.0 0.0619 97.0
1600 0.1302 93.9 0.1303 93.2

Table 2: Performance by training set size and ordering. 
Adjustment rate 0.1.
Dispersed reinforcement with 15 cycles.

Adjustment
rate

Mean
squared

error

Pet. correctly 
identified patterns 

in recall

0.1 0.1 187 94.5
0.3 0.2145 89.0
0.5 0.7478 66.0
0.7 1.4077 56.5
0.9 2.0943 65.1

Table J: Performance by adjustment rate for set R800. Dispersed
reinforcement with 15 cvcles.

Mean Pet. of correctly
Cycles square identified patterns

error in recall

01 0.3577 88.1
05 0.1392 94.0
10 0.1235 94.3
15 0.1 187 94.3
20 0.1 164 94.3
25 0.1 1 52 94.3
30 0.1 145 94.3
35 0.1 141 94.4

Table 4: Performance by reinforcement cycles for set R800. 
Adjustment rate 0.1. Dispersed reinforcement.

Set Pet. of correctly identified patterns in recall

Dispersed
reinforcement

Concentrated
reinforcement

R100 98.0 94.3
SI 00 97.0 83.0

R1600 93.9 85.8
S1600 93.2 82.0

Table 5: Perf ormance by reinforcement concentration. Pet. o f correctly 
identified patterns. Adjustment rate 0.1. 15 reinforcement cycles.
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SELF-REPRODUCIBLE NETWORKS: 
CLASSIFICATION, ANTAGONISTIC RULES AND

GENERALIZATION
Ezhov A. AKhr amov , A. G., Knizhnikova L. /i, *j, Vvedensky V. L.**)

Introduction

Self-reproducible neural networks (SRN) with syn­
chronously changing neuron thresholds are interesting 
objects for theoretical investigations and computer 
modeling [I]. The properties of these networks may 
have direct biological analogies, so it is natural to 
treat such objects with minimal restrictions. On the 
other hand generalization of the model may simplify 
its investigation and lead to strong theorems. In this 
communication we present our recent results that may 
help in formulation of the theory. In particular, we de­
scribe the networks with anti-Hebbian bonds which 
have some interesting properties and naturally lead us 
to a generalization of the conception of self-reprodu­
cibility.

The fundamental model [I] implies an ensemble of 
neural networks with the same number of neurons N, 
where networks can exchange information with each 
other. In the simplest case the fundamental model 
considers Hopfield networks [2] with the following 
properties. Every neuron can be in passive (0) or ac­
tive (1) state. The running state of a network is de­
scribed by a vector with components V, = (0 or I ), 
where / =  1,. . . , /V. Synaptic connections between 
neurons i and j constitute matrix Tn with positive ele­
ments for excitatory and negative ones for inhibitory 
synapses. For any initial state of the network its evolu­
tions is determined in the following way. Action of the 
rest of the network on the k-th neuron is calculated as

c - Z r o ' ,

If l \  exceeds the threshold Uk for the neuron, it 
switches into Vk — 1 state (it fires), if F < Uk then 
Vk — 0 (stays silent), if F =  Uk. Later we'll show that 
monotony is not necessary for self-reproducibility in 
general, but for the networks with Hebbian connec­
tions we have no examples of nonmonotonic informa­
tional sets of patterns. The case of a monotonic Heb­
bian SRN seems to be general enough to obtain an

*) E/hov A. A., Khrorrun A. O .. Kni/hnikovu i . A.
Affiliated Branch of Kurchatov Institute of Atomic Energy. 
142(02. T roitsk. Moscow Region. I SSR 

**)Vvedensky V L.
Kurchatov Institute of Atomic Energy. 123182. Moscow. USSR

estimate for a cardinal number of SRN sets. We con­
sider just this case.

1. Hebbian SRN with Monotonic 
Informational Set of Patterns

First we consider necessary and sufficient condi­
tions for self-reproducibility in the monotonic case. 
Suppose that the learning rule is Hebbian [2]

u
X  ( 2 0 -  I) (2 K; -  I ) ,  / , . / = ! ......... ; 7-, = 0;
A I

5 =  I , . . . ,  M

We introduce an m-basis for the set { F1, . . . , T N}, 
which consists of L =  N + 1 vectors I — 1 
[3]. It is sufficient to form the matrix =  V] and to 
find all identical columns of the matrix to generate 
this basis. B\ =  I at the positions of the columns of 
1-th type and equals 0 everywhere else. All the vectors 
Vs and all the network’s attractors can be presented as 
a combination of these basic vectors (see Fig. 1 ).

S' B2 1 Bs /T 1
V 1 1 1 1 11111111 i m m . . . .  111 1 1 1 000000
V: 1111 1111111 i m m . . . . i n 000 000000

r  1 1111111 m u m  i n . . 000 000 000000
r 1111111 m u 000000 . . . . 000 000 000000

Figure /. Informational set o f patterns. Groups o f neurons correspon­
ding to different basic vectors (for which B\ — \ ) are shown

The neuron i belongs to the basic vector B ' if 
B ; = I. In our case the Hebbian matrix of connec­
tions T„ has such a block structure, such then Vk re­
mains unchanged. Matrix T„ is symmetrical w'ith zero 
diagonal elements. Evolution of such a network ends 
up in a stationary state corresponding to the minimum 
of energy functional [2],

We introduce a new important feature —* that is 
a mechanism of synchronous change of all neuronal 
thresholds in every network of the ensemble. We as­
sume that the thresholds for all neurons in a network 
are equal and can be changed in synchrony between
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t/min and i/max. For any matrix of connections Tu one 
can choose Um]n so that the network becomes “epilep­
tic” , that is V, =  ! for every neuron. We suppose that 
this extremal state initiates an information transfer be­
tween this “ donor” network and other “ acceptor” net­
work^). In a similar way £/max can be chosen so that 
the network falls into “ coma” , that is V, ~  0 for all 
neurons and this state inactivates information chan­
nels, In the following, Umw and are chosen so that 
during the sweep of the threshold in this range the 
network transits from “ epilepsy” to “ coma” , sending 
information outside in the form of quasi-stationary 
patterns of activity.

We consider variations of the threshold ( U) to be 
adiabatic, so that at any U the network has time to re­
lax to a certain stationary state. It remains stationary 
until U reaches a new value when the network relaxes 
to a new state. In such a way during the sweep be­
tween Umin and Umilx the neural network passes finite 
number of stationary (quasi-stationary) states which 
can be considered as an “ informational set” transmit­
ted into an acceptor network. The extremal “ epilep­
tic” and “ coma” states are not included in this set. 
The transfer of the informational set leads to modifi­
cation of synaptic connections in the acceptor net­
work in accordance with (we consider this to be sim­
plest case), the Hebbian rule [2],

Let us see what would happen in a linear chain of 
the neural networks of that kind (see Fig. 2). Suppose, 
that only the first network (k = 1) is trained, that is 
having a nonzero matrix of connections. All the rest 
(k > 1) are ignorant and have zero matrixes — “ tabu­
la rasa” . We assume that the information transfer is 
unidirectional to the next neighbor from network 
k to k +  1. In the beginning the sweep of the thres­
hold in all the networks produces information transfer 
only from the first one which trains the second ne­
twork. The second network trains the next one during 
the next sweep of the threshold and so on. The repeti­
tion of information transfer from network k  to k +  1

k  =  i  2 5

n = 0

n - 1

n  =  l

ZHZHZHZh
M W r  H !.C >

n  =  i+  1

□
□

Figure 2. Transf ormation in the chain o f  neural networks transmitting 
information to nearest neighbour (k to k + 1 ). in the course of repetiti­
ve sweep o f the neural threshold (n — number o f sweeps). Different 
symbols means different information sets in particular networks. Initi­
ally, only the first network contains a nonzero information set solid 
black; the others are empty — open boxes. After i sweeps a row o f self- 
reproducible networks appears — checkerboards. Networks with transi­

tional information sets are also present — other symbols.

does not change the set of attractors in the former. 
One observes propagation of the “ learning wave” in 
the chain.

The remarkable feature of this process, observed in 
computer simulations [ IJ. is the emergence of identical 
networks after a small number of transitional net­
works in the beginning of the chain. The population 
of the identical networks grows with every sweep of 
the threshold; they transmit the same set of patterns to 
the neighbor and build the same matrix of connec­
tions. In fact these networks are copying themselves 
and we call them self-reproducible networks. The sim­
plest version of the model may be generalized in dif­
ferent ways considering other learning rules, nonsym- 
metrical matrices of connections (and more general 
forms of network attractors), other geometries (two-di­
mensional, for example) of network ensembles, etc. 
[1], though the phenomenon of developement of self- 
reproducible networks seems to be independent of all 
these complications! We mentioned already the need 
to consider observed phenomenon in the simplest 
form in order to find the fundamental results.

Therefore, we discuss the described chain of Hop- 
field networks with Hebbian interconnections. Des­
pite the fact that this simplest scheme gives random 
(in some sense) SRN it is useful because it gives some 
experience and knowledge on the structure of these 
interesting objects. One observation is that for the net­
works with Hebbian connections, an informational set 
of patterns of SRN is monotonic (we didn't find any 
counter example so far). It means that in a set 
\ V \  . . . , F AJ, ordered in accordance with the thresh­
old value at which the patterns arise, there are no two 
patterns V1', V"\ such that k < tn, but for some 
i V) < V"!. In a monotonic set under suitable permu­
tation of neuron indexes all patterns can be presented 
in such a manner that F, =  I for / =  < Nk and V, = 0 
for / > Nk (see Fig. 3a and compare with 3b).

a) b)
F1 111111111111111110000 F1 11111111111000000000
V1 111111111111100000000 V2 11111111)11111100000
V3 111111111110000000000 F3 m i  m i  ii lioooooooo
F1 111111000000000000000 F1 1 III 1111100000000000

Figure 3. Examples o f pattern sets: a) monotonie, b) nonmonotonic.

that for neurons / and / belonging to basic vectors B 1 
and B k respectively, their synaptic junction efficiency 
equals

Tim k ) = n — 2|/ — Ac| , Tu = 0. (2)

If the network is initially in epileptic state 
F11 =  ( 1 , 1 , . . . ,  1) then the force’s values for neurons 
of different groups will be equal to

F] = 2 c r - n ( N +  1)

F1 =2<j -  n ( N +  1) + 2 { ( / -  1)
N -  2a„. . .  -  2 a„ _, + 2} , />  2. (3)
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Il
where a  = ^  a \

V- I

II The actual number of such SRN is sufficiently close 
to this estimate for large A'and N /n  (see Table I ).

-activity of .v-th pattern.
If a network under consideration is self-reproduci­

ble. then the minimal force value is for I = n + 1. For­
ce value depends on / so that the minimum may be 
reached only for / =  I or / =  n -1-1 and the latter case 
takes place if cr> nN/2.

Then, for threshold U" =  F" 41 the neurons of the 
n -H-th group (i.e. belonging to basic vector B" ') 
may pass into zero state. But this does not mean that 
networks will pass into the stationary state V, because 
forces acting on the neurons from other groups after 
the switch off of neurons from the / / +  1-th group 
may become smaller then U. Let us introduce a restric­
tion and suppose that for the set of patterns 
{V'.........V"\ this is impossible.

More concretely, let us suppose that switch off of 
the neurons from the k-th group in any state V"4 1 k 
(for the threshold value U "+ 1 \  for which this state 
become unstable) changes the actions on the neurons 
from other groups in such a manner that their new va­
lues will be still less then U" 4 1 k for passive neurons 
and still more than this threshold for active neurons. 
In other words let us demand that during relaxation 
from state V"+ 1 ‘ to f " 4 2' k only neurons of the A-th 
group may change their states. We shall refer to such 
self-reproducible networks as monotonic with simple 
dynamics. After simple algebraic transformations one 
can get necessary and sufficient conditions for realiza­
tion of such a type of dynamics. They have the follow­
ing form

yN  < a1 < N,

va' < a2 < a \

.....................................  (4)

VI?
n = 2 384 468

N = 50 n = 3 3 532 4 181
n — 4 21 820 27 232

N = 100 n = 2 1 601 1 875
n = 3 30 .379 33 450

Table I. Number o f classes o f  monotonie SRN with simple dynamics

It is also interesting that qualitative properties of 
SRN depend on how close the pattern activities are to 
the lower or upper limits of inequalities (4). If a k ~  
a k ' (a° =  N), then for each threshold value, the ne­
twork has as a rule only one stationary state and looks 
like a “generalizing” one. On the other hand, if a k g* 
yak 1 then for each threshold value there exists as 
a rule many stationary states and the network looks 
like a “ memorizing” one (see Fig. 4). (It should be not­
ed that such attractors may have some interesting in­
terpretations [4].

y a" 1 < a" < a" 

where y = n/ (n + 2),

a' + a2 + . . .  + a" > nN/2.

Figure 4. Landscape metaphor for SRN o f two different types:
a) “generalizing network has single attractor Jar all threshold's va­

lues U;
b) “memorizing" network has many attractors for different values o f

threshold.

We may calculate under these conditions the number 
of classes of SRN with monotonie informational sets 
and simple dynamics. Each of this class includes pat­
tern sets which differ only by all possible permuta­
tions of neurons.

It can be shown that the number of classes of SRN 
with fixed number of patterns in informational set 
K ( n, N)  is less then

N) = C(n)Nn, (5)

where

C(n)  = (1 -  y) (1 -  y 2) . . .  (1 -  y")l n\ (6)

Are monotony and simplicity of dynamics crucial 
for self-reproducibility of Hebbian networks? We 
don’t know, but our computer modeling did not give 
any example of Hebbian SRN having complex dy­
namics. Is it possible to prove that monotony and sim­
plicity of dynamics are the necessary and sufficient 
conditions of self-reproducibility on other cases? 
Probably this task is difficult enough if we shall not li­
mit ourselves to the above case. Indeed, if we consider 
for example neurons with spin states ¡.i, =  ±  l then 
the emergence of SRN in some cases will seem more 
complex. It is not difficult to see that for spin model 
formation of SRN does not mean in general the stabi­
lization and repetition of an informational set of pat­
terns. For example in a 4-neuron self-reproducible ne­
twork with 3 learned patterns
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//, -  (1, 1, 1, -  1), Ll: =  (1, 1, -  1, -  1),
fh = — I . -  1, ~  I )

the informational set may also consist of the following 
patterns

u, -  ( — 1, l, 1, 1), /o = ( ~  1, -  1, 1, 1),
/A = ( -  1, -  1, -  1, 1).

Hebbian matrices constructed from these two sets are 
identical.

The cause of nonuniqueness of informational set is 
the asynchronous random dynamics of Hopfield’s ne­
tworks.

Hence, we must consider self-reproducibility at 
least as repetition of matrix structure, but not neces­
sarily a repetition of informational sets of patterns. 
This introduces some complications and makes the 
problem more general. Is the problem in this new 
form general enough to make its solution relatively 
simple?

We think that it is possible to generalize the pheno­
menon of self-reproducibility further, but first we de­
scribe a new method of generation of SRN.

3. Networks with Antagonistic Learning Rules

In contrast to the Hebbian rule (1) we may intro­
duce the so called “ anti-Hebbian” learning rule which 
differs only by the negative sign before sum in (1).

This learning rule tends to form “ hills“ , not 
“ holes” , near corresponding states Vs; s =  1 
(see Fig. 5). At first glance the anti- Hebbian rule 
gives us an example of a law which does not lead to 
formation of any self-reproducible network. Hence, 
our observations give the evidence of non-triviality of 
self-reproducibility. Moreover, for a small number of 
recorded patterns, n anti- Hebbian networks look like 
generators of SRN with a direct Hebbian learning rule.

Figure 5. Landscape metaphors for networks with Hebbian (a) and an­
ti-Hebbian learning rules. The use o f an anti-Hebbian rule leads to for­

mation o f hills near the stored patterns Vs.

For example, if n =  1 then after only one threshold 
sweep the anti- Hebbian network generates in­
formational set of patterns consisting of 
Abs (| V' 1 — |/V — V' | ) patterns ( V1 -pattern recorded in 
the anti-Hebbian network) wath activities a 1 =  N — 1, 
a 2 = N — 2,. , . ,  a ”1 = N — m. If m < 2 / 3 N then this 
set determines a self-reproducible Hebbian network.

This informational set consists of patterns which 
may be produced by sequential one-neuron switch off.

If two patterns V' and V2 are stored in synaptic 
bonds of anti Hebbian matrix then one threshold 
sweep in this network leads to generation of a set con­
sisting of m paterns with activities

a 1 — N -  1, a 2 = N  -  2 , . .  . , a ”' ‘ = N -  (m -  c) ;
a'" r • i = /y -  ( ni -  c + 2), . . .,

a"' — N -  (m -- c + 2(m c)) where ni '= ma \ (SB' ,  S B2),
c = min ( S B 1, S B 2),

SBk = Abs (\Bk\ |/T|), k = 1,2 and B k, B' - vectors
of m-basis that correspond to mirror-symmetrical co­
lumns in matrix V] [3],

If
m < N I  3, c < m or N I 3 < m  <2/V/3, c<2NI 3  - m + 1 
then this set determines a self-reproducible Hebbian 
network. It is clear that the informational set of this 
network consists of patterns which are produced by 
sequential switch off of one or two neurons.

An Anti-Hebbian network built with n >  2 patterns 
has set of patterns which can be produced by sequen­
tial passivizetion of more then two neurons in a step.

Hence, in raising the threshold of the antagonistic 
network we may obtain an informational set of pat­
terns for a self-reproducible network with a direct 
learning rule. But it is possible that we obtain a mo­
notonic set of patterns, which only sometimes may de­
termine a self-reproducible network and an, antagon­
istic network is the generator of networks with monot­
onic learned patterns rather than a generator of SRN.

We do not know exactly the relation between mono­
tony and self-reproducibility. However, the antagonis­
tic networks can give us a quite different view on the 
phenomenon of self-reproducibility and these ne­
tworks can be more important than simple generators 
of a monotonic set of patterns.

4. Generalized Self-Reproducibility

Remember that at first glance, the anti-Hebbian 
rule looks like an example of a law for which the 
phenomenon of self-reproducibility does not take 
place. Indeed, for every set of stored patterns an anti- 
Hebbian network has attractors quite different from 
these to the patterns (this is due to formation of 
“ hills” not “holes” near states Vs in a configuration 
space).

Therefore recording of patterns from an informa­
tional set of donor network produces acceptor ne­
twork with apparently different connections. In a line-
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ar chain of  networks we shall see the emergence of 
random-like neural networks. One can think that the 
“ theorem of  convergence” for a linear chain o f  ne­
tworks must use conditions that exclude the case of 
the anti-Hebbian law. But one can ask whether an an- 
ti-Hebbian network analogous to a self-reproducible 
(Hebbian, for example) exists. O f  course, such analo­
gy can differ substantially from the usual SRN, but 
can also have something in common with the SRN.

It is surprising enough that such an anti-Hebbian 
network with a quasi self-reproducible property is not 
difficult to find. In every chain of such networks 
permanently appear remarkable areas of networks 
transferring an equal number of  patterns to the next 
neighbor. The informational sets of such networks dif­
fer one from another only by the permutation of neu­
ron indexes. In other words these quasi self-reprodu­
cible networks may reproduce themselves with high 
probability in some generalized sense — the off­
springs can differ from the parent by some trivial 
transformation. Virtually such a network may produce 
another quasi transient network (with a slightly differ­
ent set of pattenrs as a rule) but very quickly the area 
of one-type networks emerges again (see Fig. 6).

netwrte of the m  t$ 

[~Mj—  qussi Kir-rapiotaible netmk

quwl transient netstork

Figure 6. Emergence o f quasi self-reproducible and quasi transient 
neural networks in a linear chain o f anti-Hebbian neural ensembles 
emitting information unidirectional!}’ to the next neighbor. Networks 
belong to the same type i f  they differ by a purmutation of neuron's in­

dices only (corresponding boxes are simply rotated!.

Networks from such an area are characterized by 
informational sets which in some sense generate Boo­
lean functions of the same type [5]. Therefore, we may 
consider the reference phenomenon as reproducibility 
of network's type. In the general case the initial donor 
network with anti-Hebbian connections does not pro­
duce a final steady state- ordinary self-reproducible 
network in a chain of networks. Nevertheless synchro­
nous repetitive change of  threshold brings the evolu­
tion of the network’s structure to the final stmtge at­
tractor which includes a number of different types of 
networks. Fig. 7 presents the structures of such attrac­
tors for a small number of neurons.

Com puter  simulations show that for different num­
bers of neurons (at least for small ones) andl°r al~ 
most any initial matrix of  interconnections of in’tia] 
network only one such attractor exists.

Degenerate initial matrices can also exist which

H -l  N-8 N = 9 N= 10

Figure 7. Structures o f strange attractors in a space o f network confi­
guration types for different numbers o f neurons N. Black circles denote 
classes of quasi self-reproducible neural networks o f the same type; 
white classes of quasi transient networks o f the same type. Arrows 
show possible transitions between classes in a chain of interacting ne­

tworks.

lead to formation of so-called black hole networks 
with an empty informational set. For example, an an­
ti-Hebbian network containing one pattern with equal 
numbers of units and zeros into anti- Hebbian ne­
tworks produces a black hole daughter network. (In 
the case of a 4-neuron network any initial network 
gives a final network with an empty informational set 
— this case is unique). This is similar to famous Hon- 
on strange attractor, where some initial data led to the 
infinite growth of the solution and others led to 
a strange attractor [6] The networks appearing during 
the transition of the system into the strange attractor 
area may be roughly divided into quasi self-reproduci­
ble and quasi transient. The former has a nonzero 
probability to reproducing a network of  the same 
type; for the latter this probability is vanishing.

Another important feature of these networks is that 
they may have a nonmonotonic informational set.

Let us summarize the main features of generalized 
self-reproducibility.

1. Transfer of  stationary patterns which are passed by 
a network with anti-Hebbian connections during 
a synchronous sweep of the threshold in a chain of 
identical networks leads to formation of  a limited 
class of networks.
2. These networks can be divided into groups of ne­
tworks of  the same type. The networks of the same 
type have informational sets, containing patterns dif­
fering from each other by permutations of neuron's 
indices only.
3. Quasi self-reproducible networks may reproduce ne­
tworks of the same type. Quasi-transient networks may 
reproduce only networks of another type.
4. If we define a mapping of  the set of all possible ne­
tworks onto itself taking into account that synchro­
nous changing of thresholds and informational trans­
mission determines the corresponding network to ne­
twork transformation; then generalized self-reprodu- 
cibility may be represented as the chaotic moving of 
trajectory of the point representing the network's 
structure within the limited area of configurational 
space.

In conclusion we remark that anti-Hebbian ne­
tworks show the complexity of the phenomenon of
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self-reproducibility in general. The investigation of 
this phenomenon in its general formulation is related 
to the study of the chaotic behavior of dynamical sys­
tems as a whole and of neural networks in particular 
[7].
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Book Review:
Heeht-INielsen, R. : Neurocomputing
Addison-Wesley Publishing Co, 1989, pp. 432, ISBN 
0-201-09355-3

The book comprises 9 chapters and an Appendix:

1. Introduction: What is neurocomputing?
2. Neural Network Concepts, Definitions and Building 
Blocks
3. Learning Laws: Self-Adaptation Equations
4. Associative Networks: Data Transformation Structures
5. Mapping Networks: Multilayer Data Transformation 
Structures
6. Spatiotemporal, Stochastic and Hierarchical Networks: 
Frontiers of Neurocomputing
7. Neurosoftware: Description of Neural Network Struc­
tures
8. Neurocomputers: Machines for Implementing Neural 
Networks
9. Neurocomputing Applications: Sensor Processing, Con- 
rol and Data Analysis
A. Neurocomputing Projects: Developing New Capabilities 
that Succeed in the Marketplace

As the contents indicates, the author tries first to classify 
various concepts (including implementation, management 
and project planning) and only within this framework he in­
troduces most usual paradigms (of which e. g. backpropaga- 
tion is handled more consistently using sun planets meta­
phor). Generally, this book is more technically oriented 
(practically omitting neurophysiological motivations togeth­
er with models serving primarily brain research, like works 
of Grossberg, Krjukov and others), requires more prerequi­
sites (including some higher mathematics, like calculus, line­
ar algebra, statistics, filters etc) and is more original than 
Wasserman’s introduction [see the page 38], It also brings 
exercises, more complete bibliography and examples of real 
applications.

The approach brings a lot of valuable insights, comments 
on various experiences and gives theoretical mathematical 
support wherever possible.

There may still be some objections concerning both orga­
nization of the bobk, style of presentation and incomplete­
ness. Thus e. g. the generality of introductory parts describes 
too many concepts, used in full generality afterwards only 
occasionally (slabs, fascicles, classes), which may disgust the 
reader keen to meet first more concrete facts, and ready to

wait for the general architecture description as the need 
arises. Treatment of neurosoftvvare is not too instructive: 
every careful reader will perhaps design the software proce­
dures along similar lines and details of AXON example is 
not much more than simple exercise in ( . Chapter 9 should 
be better incorporated into the text after chapter 6, some ap­
plications being mentioned at least implicitly in the preced­
ing parts anyway. Also section 6. 3 is ordered somehow il- 
logically (neocognitron combinatorial hypercompression 

attentional mechanism: back to neocognitron). The expo­
sition is sometimes not well-balanced, easier parts being of­
ten discussed in more detail than the more complicated 
ones; e. g. in sect. 9. 2, where character recognition seems to 
be understandable at first sight while “ logons” would de­
serve more space. Of often cited paradigms, I miss ART, 
“neurons” with decay factor and similar questions, no mat­
ter that they are more biologically inspired.

The mentioned objection are however overcame by the 
positive features of the book, which brings a handful of 
ideas both from the theory and real-world practice. 1 can 
strongly recommend reading it carefully by anyone who 
wants to make a second step in learning the fascinating yet 
down-to earth story of neurocomputing.

J. Horejs

Books Alert

Advances in Neural Information Processing Systems 2 Ed.
David S. Touretsky. -San Mateo, CA: Morgan Kaufmann, 
1990, 853 pp., bound, $ 35.95, ISBN 1-55860-100-7.

This volume contains the collected papers of the 1989 
IEEE Conference on Neural Information Processing Sys- 
tems-Natural and Synthetic. This collection of over 120 pa­
pers represents the increasing cross-fertilization of the inter­
disciplinary nature of neural network research.

Advanced Neural Computers. Ed. R. Eckmiller. -Amster­
dam, Elsevier Science Publishers, 1990, 500 pp. ISBN: 
0-444-88400-9.

This book is the outcome of the International Symposium 
on Neural Networks for Sensory and Motor Systems held in 
March 1990 in the FRG. The NSMS symposium assembled 
45 invited experts from Europe, America and Japan repres­
enting the fields Neuroscience.
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_______ LETTERS

STATISTICAL M ODELS  
OF INTRANEURAL TOPOGRAPHY

O. Frank*)

Summary

Segregation by modality of various fibers in human sen­
sory nerve fascicles was studied by recordings from thin 
needle electrodes. In order to analyze data from such 
experiments, a statistical model was developed to test 
intraneural modality clustering. This model and some 
test statistics are presented here.

Introduction

Sensory nerve fascicles in the human arm are com­
posed of bundles of  fibers of different modalities. 
A special electrode for percutaneous recording of fi­
ber activity has been developed and tested at the Hud- 
dinge University Hospital in Stockholm. Neurological 
findings in this research are reported in a series of ar­
ticles; see, for instance, Hallin, Wiesenfeld-Hallin and 
Duranti (1986), Hallin (1990) and Hallin, Ekedahl and 
Frank (1990). The last reference contains a stochastic 

^jnodel of nerve impulse recording that was used in the 
statistical analysis of the experimental data. The pur­
pose of the present note is to describe this model in 
a general setting and indicate some extensions of it. 
The emphasis here is on the probabilistic and statisti­
cal aspects of the model.

An Intraneural Recording Technique

Activity in nerve fibres was recorded by using thin 
needle electrode with a „recording window“ at the 
top. This window is of oval shape and of approximate 
length 8 and width 3 measured in units of nerve fiber 
diameters (about 12 a). Recordings are obtained from 
a sequence of sites when the needle is moved perpen­
dicular to the nerve. Displacements that are smaller 
than the length of the window are causing overlaps 
between neighboring sites which implies that the same 
fibers might be contributing to several records.
Along the fibers there are nodes at a distance of about 
50 u. These nodes are centers of nerve activity that 
have to be within the window in order to be contribut­
ing to the record. The window’s width is a fraction of 
3/50 = 0, 06 n  of the internodal distance, and this frac­
tion can be considered as a probability of finding ac­
tivity in an individual fiber. Now each recorded activi­
ty cannot be traced to an individual fiber but only to 
the set of fibers in the window. With 8 fibers in the

*) Prof. Ove Frank
Department of Statistics, University of Stockholm, Sweden

window, the probability of at least one recordable ac­
tivity is 1 —0, 94s = 0,39. This probability reflects the 
difficulties encountered in trying to find an initial site 
with activity. After such an initial site has been found, 
further recordings are obtained from a sequence of 
sites having about 3 units displacement and 5 units 
overlap with the previous site. This overlap implies 
that the recordings from different sites are dependent, 
and this has to be taken into account when experimen­
tal data are used to draw conclusions about the ar­
rangement of fibers of different modalities in the 
nerve fascicles.
There are four specific modalities of fibers that can be 
identified by different signals. These modalities are 
present in the proportions 0. 40, 0. 15, 0. 25 and 0. 20 
so that, for instance, the window is expected to have
3.2 fibers of the first modality. Intraneural topography 
tries to describe how the nerve fascicles are composed 
of fibers of specific modalities. Are the different mo­
dalities randomly mixed or are there any tendencies 
for fibers of similar modality to be close together in 
the fascicles? Experimental evidence seems to imply 
that there is a clustering tendency by modality. The 
statistical problem is essentially to determine whether 
data from overlapping sites give significant for clus­
tering.

A Stochastic Model

Let X be the recorded state of a fibre. With k different 
modalities there are k+ 1 states labeled by 0 for no ac­
tivity and labeled by I, , . . , k  for the different modal­
ities. The probabilities of different states are denoted 
by p,,, , pk. The initial site consists of m fibers of
states X ], . . . ,  X,„. The next site is obtained by a dis­
placement across h fibers, where h is an integer be­
tween 1 and m. This site has m-h fibers in common 
with the initial site, and the states of its fibres are
Xy + h.........Xm+h. Continuing to label the states in this
way, the next site will have the states X ]+2i,........
Xm+2h, and so forth. Let T0 Ykx be the frequencies 
of the different states present at the initial site, 
YQ2, . . . ,  Yk2 the frequencies at the next site, etc. 
Different displacement policies can be applied in 
these kinds of experiment. One policy is to first move 
the needle until a site of activity is found, then dis­
place it the same number of times in every experi­
ment. Another policy is to successively move the nee­
dle from the first site of activity to a new site until 
there is no activity recorded. This last alternative 
yields recordings from a varying number of sites in 
different experiments.

9

Statistical Testing of no Modality Clustering

The hypothesis of no modality clustering is implied by 
assuming that all fiber states X, are independent ran-

Frank: Statistical models NNW 1/91 ,58-59



dom variables with the same distribution as X. Two 
test statistics that tend to take large values if there is 
type / modality clustering are

r r - I
Si = X  YU and T  = X  YU Yu+ I for / = 1,. . . ,A

j = 1 / !

where r is the number of sites visited after and includ­
ing the initial site of activity. Modality of any type 
tends to make the following statistics large:

k k r I
■S= Z  S„ T=  Z  T.  U=  Z  Z , Z „ ,

I - I I = I / i
«

k

where Z,- = X  U  = m -  Yoj. The probability distribu-
i~ i

tions of these i= 1 statistics under the hypothesis of no 
modality clustering can be determined empirically by
simulating a large number of sequences X , .........X,„,rh
and calculating the relative frequencies of different 
outcomes of the statistics involved.
An extension of the model which can be handled by 
a similar simulation method is obtained by allowing 
the displacements to be independent random var­
iables with a common distribution. A simple displace­
ment distribution of interest is uniform on the integers 
between I and h for some h between 1 and m.
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AN ARCHITECTURE 
OF NEUROCOM PUTER FOR IMAGE 

RECOGNITION*)

A. V. Gavrilov**)

Abstract: A new kind of neurocomputer architecture for 
situation recognition and other complex image process­
ing is proposed. The features of its neural elements and
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structure of the network is described. Some simulation 
results of this neural network are discussed.

In the last ten years, after the end of a great attention 
of the investigation in the neurocybernetics, initiated 
by Minsky M. and Papert S. [1], the attention to neural 
networks and neurocomputers was increased again. 
Particularly, this was stimulated by the design of 
Boltzman machine [2]. This attention is caused by the 
small ability of logistic approach for learning to recog­
nize fuzzy things at first, and by appearing of new 
ideas which are able to give the direct recommenda­
tions for choice of the neural network structure and of 
their acting algorithms at second.

The applications of neural networks for image re­
cognition are known for example, in the speech recog­
nition [3] and in the control of industrial systems [4].

Almost all the known neural networks are con­
structed from very simple threshold elements, similar 
on formal neurons of McCulloch and Pitts. This paper 
deals with another approach to their construction 
based on the view of the elements of neural network 
as if the simple perceptrons learning to recognize the' 
simple image *** binary input code.

On the basis of this idea, the following architecture 
of neural network is proposed:

The elements (nodes) of network are connected by 
random links. Each its element (/ = 1, N) has some bi­
nary inputs u,j [ j  = 1, M  connected with the outputs of 
another elements, one binary input for adaptation a,- 
(/i-input) and one output v, The state of the element is 
characterized by threshold h, and key k, The rule of 
switching of its element is :

M

V, = <
U if Z  / ( “»/» ka) > h<

i - 1

0 in other case,

where Ay —- j  th bit of key k ,■ {j — 1, M);
f — function equal / if uv = Ay and 0 in other 

case.

The vector of inputs u, = (uv ; j  = 1, M)  or the key 
may be represented by point in the code space. So the 
neural element may be represented as a perceptron re­
cognizing the set of binary codes in any occurrence of 
key. The size of occurrence is determined by thresh­
old. Therefore in this model the element of network 
executes more complex function hat in known neural 
network.

Some elements of neural network are connected to 
inputs by binary sensors of any kind. They compose 
the input layer. Others compose the output and hid­
den layers. The zTinputs are connected to outputs of 
another elements or to special sensors detecting the 
bad image or the other unsatisfactory situation in 
which the system, including the neural network, may 
be appeared. The goal of the neural network is to 
learn to escape from such bad situation.
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The neural network operates in the discrete time, i. 
e, for time the outputs of all elements determined by 
the inputs in the time t = 1.

For the design of model the behavior of the system 
coming-away from any moving object was chosen. 
The environment simulated by 8 x 8  points from the 
field where the system and object may move. For one 
step of time scale the object and the system can make 
one step in the space in any direction: up, down, to 
right or to left. Output layer of neural network in­
cludes four motor neurons. Signals on outputs of each 
of them indicate the move of the system in certain di­
rection. The object and the system can not be situated 
in one point of field. The situation when the system is 
near the object is detected as bad. To delete a boun­
dary effect the field is circled, i. e. the permanent line­
ar moving is allowed.

Two kinds of the object behavior were simulated — 
linear moving (L) and random moving (R). In first 
case the moving in your direction is possible. The di­
rection is changed, if the collision was not during the 
interval TT. For to compare the results of simulation, 
the probability of nearness of the system and the ob­
ject P, computed during simulation time T was used.

The following parameters of neural network were 
changed:
— number of the nodes of network (N) 

number of the nodes in input layer (DR) 
per cent of A-inputs of the nodes connected with 
outputs of other nodes (PA)

Two kinds of connections between the input layer and 
the field were simulated. In first the elements of the 
input layer are connected with the points of the field 
and the signals on these inputs are determined by ap­
pearing of the object in corresponding points (G 
global view). In second case four sensors are simula­
ted. These sensors detect the relative position of the 
object: up, down, right or left from system. The inputs 
of the nodes of the input layer are connected with 
them. This approach may be called local view (L).

The program model is based on the following algo- 
rythm:

Input of parameters of model.
Creation of the neural network structure and its 

connection with sensors.
Set begin states of neural network and variables 

of model
WHILE t < T DO

Show the picture of model state and held.
IF t = TT THEN 

Computation of P.
Reset of some variables of model 

E N D IF
FOR i : =l  TO N DO 

Simulation of acting of i-th neural element. 
ENDFOR

Simulation of step moving of system and 
object.

t; = t + ' l  
END WHILE

Further some results obtained in experiments with 
program model for T= 1000, TT -100 are shown.

Number
Model N NR PA P of network 

adaptation

LG 100 20 10 0.05 1 3
LG 100 48 10 0.044 4
LG 100 48 90 0.124 1
LG 100 30 10 0.097 2
LG 70 20 10 0.08 3
LG 50 20 0 0.044 4
LG 50 20 10 0.025 4
LG 50 30 90 0.14 0
LG 50 40 90 0.089 S
LL 100 48 10 0.032 4
LL 50 20 10 0.043 5
RG 100 40 10 0.096
RG 50 20 10 0.46
RG 50 30 10 0.08
RG 50 20 50 0.082
RG 50 20 70 0.071
RG 50 20 90 0.08

The results obtained by simulation allow to make the
following conclusions:

the proposed architecture provides the adaptation 
of acting of neural network in the changing and un­
determined environment;

— in the case of linear moving of the object the best 
results were obtained for small per cent of connec­
tions of the A-inputs with outputs of another ele­
ments of network;

— this per cent not influence on effective of adapta­
tion in the case of random behavior of object.
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TUTORIAL

A VIEW ON NEURAL NETWORKS 
PARADIGM DEVELOPMENT

J. Hořejš*)

The aim of this paper is to give the reader an intro­
ductory survey of the most known paradigms and 
technique, which he/she may encounter on his/her 
way either to theoretical research or practical applica­
tions of neural networks (NN[s[). We will not compete 
with textbooks and monographs with detailed and 
quite precise descriptions and elaborations. Instead 
we will rely on metaphors and simple examples, hop­
ing that the reader at the assumed level (near to a be­
ginner with basic knowledge of math) needs to catch 
the ideas and flavor rather than being overwhelmed 
by intricacies. In the presentation, we shall loosely fol­
low the history, starting briefly with the “ first genera­
tion” of NNs at the end of the Second Word War, 
introducing then “second generation” perceptrons 
and ending with the promises of the current “third 
generation” . Yet we tried to introduce basic concepts 
as quickly as the text methodically permits. The gen­
erations are characterized not only by successive en­
richments of new concepts and techniques; they are 
also separated in time by about twenty years gaps, de­
monstrating successes and failures and at the same 
time successive shifts from biological considerations 
(brain research, if you like) to non-traditional infor­
mation processing machines ready to serve as new 
tools of the computer science community. Although 
we often prefer neurophysiological terminology (thus 
speaking about “ neurons” instead of more indifferent 
“processing elements” etc. ) which suggests a lot of 
useful psychological and similar metaphors, the final 
aim is to present a technically oriented account.
There are now thousands of contributions on NNs 
and maybe hundreds of them should be indeed read 
depending on reader's interest and ability. What to 
recommend in such a situation to a beginner? Try to 
follow this tutorial; if you consider it legible and the 
topic catches you, proceed with some elementary text­
book [Wasserman's Neural Computing Theory and 
Practice, van Reinhold Nostrand 1989 is a hint] and 
then by some of the first monographs (like Hecht- 
Nielsen's Neurocomputing, Addison Wesley 1989). 
During this introductory exposition we shall not bore 
you by suggestions to get and read anything else; if 
you like, just  remember the names scattered through

*) Prof. Dr. J i ř í  Hořejš, Department of Computer Science, Charles Universi­
ty, 1 1800 Prague I, Malostranské nám. 25, Czechoslovakia*

out the text — they are mostly famous by now. And at 
the end of the tutorial we bring a selected, briefly an­
notated bibliography.

A NN is generally an oriented graph, the nodes of 
which are so called neurons [processing elements, 
cells] and arcs are connections between them. Using 
neurophysiological analogy we often speak about ax­
ons: axon is the only connection leaving a neuron 
body [soma] possibly branching to many terminals: on 
the end of each there resides a so called synapse, 
which mediates the signal [impulse] spreading over the 
axon further on. Each neuron of a net gathers some 
impulses [stimuli/  from other neurons or from the en­
vironment and under certain circumstances (when it is 
stimulated enough) it responds by another stimulus, 
sending it along the axon, and thus the terminals and 
synapses, to the rest of the net (i. e. to some other neu­
rons) or to the external word according to proper acti­
vation dynamics laws. If a neuron is in this way activat­
ed, it "fires", and its activity is passed over its axon. If 
the axon branches, all terminal synapses receive the 
same stimulating power — the energy of the stimulus 
does not decrease. By this mechanism a spreading ac­
tivity in the whole net is provoked.

Under certain conditions, the whole net can change, 
mostly by changing the strengths of individual connec­
tions [weights of terminal synapses] coming out of 
a neuron to other neurons [specifically to their mor­
phological parts called dendrites]. The efficiency 
(weights) of synapses can be characterized numerical­
ly and under certain conditions these numbers can be 
modified — the net adapts itself in order to perform 
a given task more suitably. The way how such an ad­
aptation is performed is given by some adaptation dy­
namics laws. In living organisms (and some models), 
both activation and adaptation processes run concur­
rently. In many simpler models and in computer simu­
lation we distinguish between active / working] mode, 
in which the net (already) satisfactorily does its job 
for which it has been designed, and adaptive [selfor­
ganizing] mode, in which it is tuned for its own im­
provements. We shall not meet adaptation until sec­
tion 3, where its importance and characteristics will 
become a supreme topic.

A real brain contains about 10" neurons and about 
1014 synapses. Neurocomputers, which are artificial de­
vices for simulating NNs (ranging from usual PC's to 
sophisticated experimental devices), deal at present 
with hundreds to billions of neurons and synapses.

1. NN as a calculus for nervous activity ¡The 
first generation!.

The first (formal) neurons of McCulloch and Pitts 
were very simple indeed. Two sorts of axons were per­
mitted to connect to them: excitatory (depicted by full 
dots in figures) and inhibitory (empty dots). We speak 
also about excitatory or inhibitory synapses. Every 
neuron has its threshold (indicated by the number in-
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scribed inside the node). Whenever excitations are 
greater (in their number, say) than inhibitions so that 
the difference exceeds the neuronal threshold, the 
neuron becomes activated and sends its own impulse 
over its axon to the rest of the net. Fig. / demonstrates 
how easy it was to model trivial conditioning. If an ex­
ternal unconditional stimulus U came to the net, the 
leftmost bottom neuron, and afterwards also the out­
put (top) neuron, fired and caused some active re­
sponse R of the net. If, at some time moment (for 
simplicity we consider discrete time scale), both U and 
the conditional stimulus C appear concurrently, both 
intermediate neurons are activated (note the values of 
thresholds!) and one time step later the top neuron 
fires as well. Now, if immediately C alone appears, 
then due to the stimulus C and the feedback loop of 
the rightmost bottom neuron (representing memory of 
previous activity), this neuron fires too and so does 
the top one — the same effect occurs.

U Fig. i C

The net of Fig. 2 is slightly more complicated. Un­
like the first case, now there is also an inhibitory syn­
apse and the condition for activation of every neuron 
now reads

I  z * -  S z ,■ > 8 ; ( 1 )

here 8 is the threshold of the considered neuron, z is 
a vector consisting of impulses on all connection ax­
ons (terminals) leading to the neuron, z = [zh 
z2, . . . ,  z,„], and every connection z, is either activated

(z, = 1) or not (Zj = 0). The formula (1) is our first ex­
ample of a simple activation dynamics law.

For a z \ to contribute to the first sum in (1) it is in- 
ecessary and sufficient that z, = 1 and the z-th axon 
have an ¡excitatory synapse. Similarly for the second 
sum. Now let x =  [.v,, x2] be an input vector to the net 
and a = [au a2] the vector of current activities of the 
net, a, representing the activity (1 or 0) of the neuron i. 
Under influence of x, vector a generally changes. Be­
cause there are four possible input vectors, four possi­
ble activity (also „state“ ) vectors and because 
above all — the state vector (initially e. g. a =  [0, ()]) 
changes dynamically in time, it is not so easy to pre­
dict immediately the net behavior under a changing 
environment, represented by a sequence of external 
input vectors. To see what may happen, we help our­
selves by drawing the transition graph of the net, esta­
blishing beforehand what happens if in a given state 
we encounter any of the possible inputs. This graph is 
given in Fig. 3. It consists of four boxes; within a box 
the state a^a2 is inscribed. Any of the 16 arrows is lab­
eled by one or more pairs X\X2. Given a state (box) and 
an input vector, we find out the arrow labeled by that 
input vector and receive at its end the next state. The 
reader surely recognizes that this is a finite automaton; 
as a matter of fact the idea of finite automata, so use­
ful in computer science, originated by studying NNs.

Now we generalize the model of a neuron a bit.

2. Perceptions (Second generation]

First of all we extend the binary data used till now 
by admitting that both incoming stimuli and synapses 
may acquire the arbitrary real values. With z, express­
ing the strength of z-th stimulus and w, the weight of 
the synapse, we change the activation dynamics (I) to
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v = Z  w > z i ~  ,c- (2)
/ = i

If Wj > 0 we speak again about excitatory synapses, if 
Wj < 0 the term inhibitory synapse fits. The neuron 
now fires if and only if the total sum of stimuli, each 
recalculated w. r. t. its synaptical weight, exceeds the 
threshold. The output of the neuron is now also real­
valued. Because we shall use it first as a classifier, 
which accepts some input vectors x and rejects others, 
we introduce A convention that actual output is again 
binary, assuming a value 1 (representing the answer 
YES to the classification problem) if the right hand 
side of (2) is greater than 0 (the neuron fires), and 0 
(representing NO) otherwise. This can be achieved by 
introducing another, nonlinear function S’ (signum), 
defined simply by S(rj) — 1 whenever // > 0 and S ( t]) 
= 0 otherwise. By introducing a fictive neuron with 
constant output — 1 and setting w() = .9, we can rewrite 
(2) in a more homogeneous form as

y = S Z w>zt
\  i - o

which can be depicted as in Fig. 4. often omitting

X and S inside the circle or splitting the neuron into 
two twins and thus the linear and nonlinear part of 
the mapping (3). The sum C= X nyx, is occasionally 
called the net income of the neuron.

Note carefully that X w,z, is a linear form, X w, z, = 0 
is an equation of a hyperplane (for m ~ 2 a straight 
line in a usual two dimensional plane). w0 under the 
last convention represents then the offset (shift from 
the origin of cartesian coordinates), remaining w, s 
form the normal vector of that hvperplane. The neu­
ron fires if and only if the weighted sum of all nonfic- 
tive contributors exceeds the threshold 3 = w{]. For 
a given vector w (which we standardly interpret as the 
vector specifying a hyperplane) (3) separates all vec­
tors z into two categories: if y  = 1, the vector z lies in 
the positive m-dimensional halfspace 2 and specifies 

and specifies a point which is at the distance

a point which is at the distance X wi:i /  sqrt (X wy), 
where the first sum is taken for i = 0, 1,. . . ,  m and 
the second one only for i = 1, . . . , m. If the scope of 
indices is clear from the context, we often abbreviate 
the sum X vr, v, by the dot product w . x.

If we now characterize all objects from an input 
space (stimuli environinent)by real vectors (coordinates 
of which numerically describe various symptoms/ 
tags), the described, form of neuron perceptron can 
separate and thus recognize two categories: those 
which are in the positive halfspace giving v ~ 1 and 
those which are not ( v = 0). If the symptom vectors 
are treated like descriptions of the first category, the 
perceptron will fire, in the remaining cases it remains 
still. Actually perceptions were introduced just for re­
cognition of perceptional stimuli (visual, audio) corre­
sponding to some interesting objects and distinguish­
ing them from the others. It should be noted that the 
vector x can describe a very concrete form of a visual 
information [e. g. bit valued (0/1 -  white/black) pix­
els of a matrix raster read line after line similarly to 
a TV screen or a retina], but it may be composed of 
any quantitatively expressed abstract data characteriz­
ing external objects] [e. g. in medicine we can have 
x = [BP (blood pressure), FW (sediment), No of leu­
kocytes, . . . ].

Similarly a perceptron assigned a task of recogniz­
ing correct signatures from forgeries (GOOD objects 
from BAD ones) written on a raster p x q might use as 
an input the binary vector x = [a ,, . . . ,  a/)(/], where 
xil, 1)n/ means that the square in the /-th row and /-th 
column intersects the signature line; or it may (better) 
use a real input vector x, the components of which de­
scribe such aspects as duration of the process of sign­
ing, maximal acceleration achieved during it, number 
of lifts of the pen, etc.

Imagine now a highly metaphoric “ brain” of 
a chicken, consisting of a single perceptron only. Re- 
ceptory organs (eyes, ears) supply the chicken by 
a many-dimensional stimuli vector x (including some 
characteristics of shape and noise of an approaching 
object, etc). Let the chicken have its perceptron (speci­
fied by the vector w) originally established by innate 
genetic information so that if the approaching object x  
is interpreted as a hawk (squares in Fig. 7a), the per­
ceptron fires and starts a sequence of escape actions, 
while if x “ reminds” it of a farmer (examples of  which 
are depicted by circles), the neuron and the chicken 
remain still. So the perceptron again classifies the in­
put vector space into categories BAD and GOOD. For 
an x  e BAD, it is w. x > 0, while for an x e GOOD, 
w . x < 0.

As the reader hopefully noticed, one perceptron is 
only able to distinguish between two subsets of the in­
put space, which are separable by some hyperplane 
they have to be linearly separable. The simplest case of 
an impossibility of solving (by a single neuron!) a line­
arly nonseparable problem is the implementation ex­
clusive OR, called XOR, where [00], [11] e GOOD, 
while [01], [10] £ GOOD. [Try to draw a straight line
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separating the two pairs of vertices in the square!]. 
The fact is however that by introducing more neurons 
this limitation can be overcome, as will be shown im­
mediately.

So let us see how to avoid the necessity of  linearly 
separable subsets; at the same time it should be clear 
that we do not need to restrict ourselves to a binary 
classification (YES/NO, GOOD/BAD). We shall first 
introduce the concept of a multilayered NN. Let there 
be several layers ( subsets) of neurons (at present per- 
ceptron-like, i. e. governed by equation (3)). The lay­
ers are imagined to be ordered in a vertical fashion. 
The bottom layer serves for an input of say m-dimen- 
sional input vectors. The upmost «-dimensional layer 
gives the output vectors. In between these two there 
may be several so-called hidden layers. Neurons of 
a layer connect (only) to neurons in the layer above 
(look at Fig. 6 for an example). Please notice now that 
with these sorts of multilayered nets we are able to 
implement boolean functions: given one or more neu­
rons, we can connect their outputs to another neuron 
(in a layer above, with synoptical weights 1) so that 
the above neuron fires if and only if a) all lower neu­
rons fire (generalization of boolean AND); (1) at least 
one lower neuron fires (generalization of OR); y) 
none of the lower neurons fires (generalization of 
NOT). To see a), simply choose as the threshold of 
the above neuron one less than is the number of lower 
neurons, to see /?), choose the threshold 0, to see y ) ,  

choose the threshold I.
Now let a subset G O OD  of the input space be con­

vex, i. e. there are several hyperplanes such that every 
x € G O O D  lies in their positive halfspaces. Assign to 
every hyperplane a neuron (in Fig. 5a we have a tri­
angle, members of GOOD are squares, separating 
lines and corresponding neurons connected by dotted 
lines) and create above them another neuron which 
fires if and only if all of the externally stimulated neu­
rons do, which happens exactly if input x belongs to 
GOOD. So we can characterize by the topmost neu­
ron the membership to any convex subset. In a layer 
higher still we can similarly create neuron characteriz­
ing unions (actually any boolean function) of such 
convex sets — see Fig. 5b. And finally, because we

Fig. 5

have n neurons in the topmost layer, we can categor­
ize the input space into n different subsets. In conclu­
sion, three layers are enough for such a categorization.

Following this general algorithm we can however 
arrive at a NN which may be rather cumbersome if 
the members of, say, GOOD objects are scattered 
through the input space rather irregularly, requiring in 
the worst case the treatment of any member of GOOD 
by a special “ small triangle” . That this need not al­
ways be the case is shown in the last example of this 
section. Now we describe how much more elegant so­
lutions can often be achieved, and later on we will see 
that such solutions can be reached even by an auto­
matic adaptation of the net.

Let the input space consist of all binary 6-dimen­
sional vectors and include in GOOD exactly those 
which are center symmetric. Thus e. g. x = [l 1001 I] 
e GOOD, while x = [I0l 100] £ GOOD. The net of 
Fig. 6 solves this problem with only 6 + 2+ I neurons, 
where, moreover, the input layer performs no compu­
tation, just fans-out the information from the input 
vector to the neurons in the layer above. Note that the 
weights from the input layer to the hidden one are 
powers of 2, so that any combination of the ( first) 
three of them cannot compensate the total “ income” 
of the remaining three in the case that the input vector 
is not symmetric. (If x is symmetric, the net income of 
both hidden neurons is 0 and both fire; otherwise 
there are two symmetrically positioned neurons, one 
of which — say x2 has the value l and the other 
here .vs has the value 0. In this case the right hidden 
neuron lacks the compensating contribution 2 from vs 
and receives thus the net income which does not ex­
ceed its threshold.] This gives a hint of how to con­
struct the solution of an symmetry problem for an ar­
bitrary «/-dimensional case (m even).

Fig. 6
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